Spore-Forming Clostridia in Raw Cow Milk from Northern Italy: A Trend Analysis over the Past 20 Years
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Collection
2.2. MPN Protocols
2.3. MPN Validation
2.4. Data Analysis
3. Results
3.1. The Demand for S2 Analysis Declines as S3 Requests Increase
3.2. Samples Positive for Clostridium Contamination Decreased in the Past 20 Years
4. Discussion
4.1. S2 and S3 Demand Is Tied to Regulatory Requirements, Dairy Practices, and External Events
4.2. Regulatory Changes and Seasonal Variation Impact on Clostridium-Positive Milk Samples
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bassi, D.; Fontana, C.; Gazzola, S.; Pietta, E.; Puglisi, E.; Cappa, F.; Cocconcelli, P.S. Draft Genome Sequence of Clostridium Tyrobutyricum Strain UC7086, Isolated from Grana Padano Cheese with Late-Blowing Defect. Genome Announc. 2013, 1, e00614-13. [Google Scholar] [CrossRef] [PubMed]
- Arias, C.; Oliete, B.; Seseña, S.; Jimenez, L.; Pérez-Guzmán, M.D.; Arias, R. Importance of On-Farm Management Practices on Lactate-Fermenting Clostridium Spp. Spore Contamination of Manchega Ewe Milk: Determination of Risk Factors and Characterization of Clostridium Population. Small Rumin. Res. 2013, 111, 120–128. [Google Scholar] [CrossRef]
- Cocolin, L.; Innocente, N.; Biasutti, M.; Comi, G. The Late Blowing in Cheese: A New Molecular Approach Based on PCR and DGGE to Study the Microbial Ecology of the Alteration Process. Int. J. Food Microbiol. 2004, 90, 83–91. [Google Scholar] [CrossRef]
- Cremonesi, P.; Vanoni, L.; Silvetti, T.; Morandi, S.; Brasca, M. Identification of Clostridium Beijerinckii, Cl. Butyricum, Cl. Sporogenes, Cl. Tyrobutyricum Isolated from Silage, Raw Milk and Hard Cheese by a Multiplex PCR Assay. J. Dairy Res. 2012, 79, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Brändle, J.; Heinzle, L.; Fraberger, V.; Berta, J.; Zitz, U.; Schinkinger, M.; Stocker, W.; Kneifel, W.; Domig, K.J. Novel Approach to Enumerate Clostridial Endospores in Milk. Food Control 2018, 85, 318–326. [Google Scholar] [CrossRef]
- Reindl, A.; Dzieciol, M.; Hein, I.; Wagner, M.; Zangerl, P. Enumeration of Clostridia in Goat Milk Using an Optimized Membrane Filtration Technique. J. Dairy Sci. 2014, 97, 6036–6045. [Google Scholar] [CrossRef]
- Zucali, M.; Bava, L.; Colombini, S.; Brasca, M.; Decimo, M.; Morandi, S.; Tamburini, A.; Crovetto, G.M. Management Practices and Forage Quality Affecting the Contamination of Milk with Anaerobic Spore-Forming Bacteria. J. Sci. Food Agric. 2015, 95, 1294–1302. [Google Scholar] [CrossRef]
- Vissers, M.M.M.; Driehuis, F.; Te Giffel, M.C.; De Jong, P.; Lankveld, J.M.G. Concentrations of Butyric Acid Bacteria Spores in Silage and Relationships with Aerobic Deterioration. J. Dairy Sci. 2007, 90, 928–936. [Google Scholar] [CrossRef]
- Bassi, D.; Fontana, C.; Zucchelli, S.; Gazzola, S.; Cocconcelli, P.S. TaqMan Real Time-Quantitative PCR Targeting the Phosphotransacetylase Gene for Clostridium Tyrobutyricum Quantification in Animal Feed, Faeces, Milk and Cheese. Int. Dairy J. 2013, 33, 75–82. [Google Scholar] [CrossRef]
- McHugh, A.J.; Feehily, C.; Hill, C.; Cotter, P.D. Detection and Enumeration of Spore-Forming Bacteria in Powdered Dairy Products. Front. Microbiol. 2017, 8, 109. [Google Scholar] [CrossRef]
- Cecere, P.; Gatto, F.; Cortimiglia, C.; Bassi, D.; Lucchini, F.; Cocconcelli, P.S.; Pompa, P.P. Colorimetric Point-of-Care Detection of Clostridium Tyrobutyricum Spores in Milk Samples. Biosensors 2021, 11, 293. [Google Scholar] [CrossRef] [PubMed]
- Stadhouders, J.; van den Berg, G. Use of Lysozyme for the Prevention of Butyric Acid Fermentation in Gouda Cheese. Limited Effect of the Enzyme. In MILK the Vital Force, Presented at the XXII International Dairy Congress, The Hague, The Netherlands, 29 September–3 October 1986; Springer: Dordrecht, The Netherlands, 1986; p. 77. ISBN 978-94-009-3733-8. [Google Scholar]
- Publications Office of the European Union. CELEX1, Commission Regulation (EU) No 1129/2011 of 11 November 2011 Amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by Establishing a Union List of Food Additives (Text with EEA Relevance). Available online: http://op.europa.eu/en/publication-detail/-/publication/28cb4a37-b40e-11e3-86f9-01aa75ed71a1 (accessed on 27 March 2023).
- Disciplinare Grana Padano, D.O.P. Available online: https://www.granapadano.it/it-it/disciplinare-grana-padano-dop.aspx (accessed on 8 February 2023).
- Disciplinare e Normative del Consorzio—Parmigiano Reggiano. Available online: https://www.parmigianoreggiano.com/it/consorzio-disciplinare-normative/ (accessed on 8 February 2023).
- Arnaboldi, S.; Benevenia, R.; Bertasi, B.; Galuppini, E.; Mangeri, L.; Tilola, M.; Bassi, D.; Cocconcelli, P.S.; Stroppa, A.; Varisco, G. Validation of a Real-Time PCR Method on Pta Gene for Clostridium Tyrobutyricum Quantification in Milk. Food Control 2021, 130, 108250. [Google Scholar] [CrossRef]
- Borreani, G.; Tabacco, E. Low Permeability to Oxygen of a New Barrier Film Prevents Butyric Acid Bacteria Spore Formation in Farm Corn Silage. J. Dairy Sci. 2008, 91, 4272–4281. [Google Scholar] [CrossRef]
- Colombari, G.; Borreani, G.; Crovetto, G.M. Effect of Ensiling Alfalfa at Low and High Dry Matter on Production of Milk Used to Make Grana Cheese. J. Dairy Sci. 2001, 84, 2494–2502. [Google Scholar] [CrossRef]
- Morandi, S.; Silvetti, T.; Brasca, M. Content and Spatial Distribution of Dairy-Related Clostridium Spores in Grana Padano Cheese during the Ripening Period. LWT 2022, 167, 113850. [Google Scholar] [CrossRef]
- Giraffa, G. The Microbiota of Grana Padano Cheese. A Review. Foods 2021, 10, 2632. [Google Scholar] [CrossRef]
- Brändle, J.; Domig, K.J.; Kneifel, W. Relevance and Analysis of Butyric Acid Producing Clostridia in Milk and Cheese. Food Control 2016, 67, 96–113. [Google Scholar] [CrossRef]
- Floris, I.; Martucci, F.; Romano, A.; Marello, G.; Ligotti, C.; Bianchi, D.M. Multiplex-PCR Detection of Clostridium Tyrobutyricum, Clostridium Butyricum, and Clostridium Sporogenes in Raw Milk for Cheesemaking. Life 2024, 14, 1093. [Google Scholar] [CrossRef]
- Burtscher, J.; Rudavsky, T.; Zitz, U.; Domig, K.J. Specificity of the AMP-6000 Method for Enumerating Clostridium Endospores in Milk. Foods 2024, 13, 1192. [Google Scholar] [CrossRef]
- SY-LAB—AMP-6000. Available online: https://microbiology.sylab.com/products/p/show/Product/product/amp-6000R.html (accessed on 26 April 2024).
- UNE EN ISO 7218:2008/A1:2013; Microbiology of Food and Animal Feeding Stuffs—General Requirements and Guidance for Microbiological Examinations—Amendment 1 (ISO 7218:2007/Amd 1:2013). ISO: Geneva, Switzerland, 2013. Available online: https://www.en-standard.eu/une-en-iso-7218-2008-a1-2013-microbiology-of-food-and-animal-feeding-stuffs-general-requirements-and-guidance-for-microbiological-examinations-amendment-1-iso-7218-2007-amd-1-2013/ (accessed on 24 April 2024).
- CLAL—Pagamento Latte-Qualita’. Available online: https://www.clal.it/?section=plq (accessed on 6 February 2023).
- IDF. Factsheet 22/2022: Enumeration of Butyric Acid Forming (Cheese Spoiling) Clostridia—Methodical Considerations. Available online: https://shop.fil-idf.org/products/idf-factsheet-22-2022-enumeration-of-butyric-acid-forming-cheese-spoiling-clostridia-methodical-considerations (accessed on 6 December 2022).
- Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 Laying Down Specific Hygiene Rules for Food of Animal Origin; European Union: Brussels, Belgium, 2004; Volume 139.
- Bava, L.; Colombini, S.; Zucali, M.; Decimo, M.; Morandi, S.; Silvetti, T.; Brasca, M.; Tamburini, A.; Crovetto, G.M.; Sandrucci, A. Efficient Milking Hygiene Reduces Bacterial Spore Contamination in Milk. J. Dairy Res. 2017, 84, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, J.; Rudavsky, T.; Zitz, U.; Neubauer, V.; Domig, K.J. Importance of Pre-Milking Udder Hygiene to Reduce Transfer of Clostridial Spores from Teat Skin to Raw Milk. Microorganisms 2023, 11, 1337. [Google Scholar] [CrossRef] [PubMed]
- Lavilla, M.; De Luis, R.; Pérez, M.D.; Calvo, M.; Sánchez, L. Selection of High Affine Peptide Ligands for Detection of Clostridium Tyrobutyricum Spores. J. Microbiol. Methods 2009, 79, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Doyle, C.J.; Gleeson, D.; Jordan, K.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; Cotter, P.D. Anaerobic Sporeformers and Their Significance with Respect to Milk and Dairy Products. Int. J. Food Microbiol. 2015, 197, 77–87. [Google Scholar] [CrossRef]
- Nishihara, M.; Takahashi, H.; Sudo, T.; Kyoi, D.; Kawahara, T.; Ikeuchi, Y.; Fujita, T.; Kuda, T.; Kimura, B.; Yanahira, S. Multilocus Variable-Number of Tandem Repeat Analysis (MLVA) for Clostridium tyrobutyricum Strains Isolated from Cheese Production Environment. Int. J. Food Microbiol. 2014, 190, 61–65. [Google Scholar] [CrossRef]
- Prost, H.; Hugues, B. Dénombrement Des Micro-Organismes par la Technique du Nombre le Plus Probable (Indice NPP): Emploi Statistique de Cet Indice. In Annales de Falsifications de L’Expertise Chimique; La Société: Les Alluets-le-Roi, France, 1982; Volume 75, pp. 185–207. [Google Scholar]
- McBride, G.B.; McWhirter, J.L.; Dalgety, M.H. Uncertainty in Most Probable Number Calculations for Microbiological Assays. J. AOAC Int. 2003, 86, 1084–1088. [Google Scholar]
- Weenk, G.H. Chapter 1 Microbiological Assessment of Culture Media: Comparison and Statistical Evaluation of Methods. Prog. Ind. Microbiol. 2003, 37, 1–23. [Google Scholar]
- Skalar|Laboratory Automation. Available online: https://www.skalar.com/ (accessed on 20 December 2023).
- Niemelä, S.I. Uncertainty of Quantitative Determinations Derived by Cultivation of Microorganisms; MIKES Publication; Centre of Metrology and Accreditation (MIKES): Helsinki, Finland, 2003; ISBN 978-952-5209-76-1. [Google Scholar]
- «UNI CEI EN ISO/IEC 17025:2018 - UNI Ente Italiano di Normazione». Available online: https://store.uni.com/uni-cei-en-iso-iec-17025-2018 (accessed on 5 November 2024).
- Heyndrickx, M. The Importance of Endospore-Forming Bacteria Originating from Soil for Contamination of Industrial Food Processing. Appl. Environ. Soil Sci. 2011, 2011, e561975. [Google Scholar] [CrossRef]
- Esame Routine Sporigeni—Istituto Zooprofilattico Sperimentale Della Lombardia e Dell’Emilia Romagna. Available online: https://www.izsler.it/carta_servizi/esame-routine-sporigeni-2/ (accessed on 8 March 2024).
- CLAL TESEO—UE-27: Analisi Delle Aziende Agricole Europee. Available online: https://teseo.clal.it/?section=aziende-agricole (accessed on 4 October 2024).
- I Risultati: Produzione e Consumo. Grana Padano. Available online: https://www.granapadano.it/it-it/il-consorzio-di-tutela/i-risultati-produzione-e-consumo/ (accessed on 7 October 2024).
- Regolamento (UE) 2017/625 del Parlamento Europeo e del Consiglio, del 15 Marzo 2017, Relativo ai Controlli Ufficiali e Alle Altre Attività Ufficiali Effettuati per Garantire L’Applicazione Della Legislazione Sugli Alimenti e sui Mangimi, Delle Norme Sulla Salute e Sul Benessere Degli Animali, Sulla Sanità Delle Piante Nonché sui Prodotti Fitosanitari, Recante Modifica dei Regolamenti (CE) n. 999/2001, (CE) n. 396/2005, (CE) n. 1069/2009, (CE) n. 1107/2009, (UE) n. 1151/2012, (UE) n. 652/2014, (UE) 2016/429 e (UE) 2016/2031 del Parlamento Europeo e del Consiglio, dei Regolamenti (CE) n. 1/2005 e (CE) n. 1099/2009 del Consiglio e Delle Direttive 98/58/CE, 1999/74/CE, 2007/43/CE, 2008/119/CE e 2008/120/CE del Consiglio, e che Abroga i Regolamenti (CE) n. 854/2004 e (CE) n. 882/2004 del Parlamento Europeo e del Consiglio, le Direttive 89/608/CEE, 89/662/CEE, 90/425/CEE, 91/496/CEE, 96/23/CE, 96/93/CE e 97/78/CE del Consiglio e la Decisione 92/438/CEE del Consiglio (Regolamento sui Controlli Ufficiali) (Testo Rilevante ai fini del SEE); European Union: Brussels, Belgium, 2017; Volume 095.
- Neviani, E.; Bottari, B.; Lazzi, C.; Gatti, M. New Developments in the Study of the Microbiota of Raw-Milk, Long-Ripened Cheeses by Molecular Methods: The Case of Grana Padano and Parmigiano Reggiano. Front. Microbiol. 2013, 4, 36. [Google Scholar] [CrossRef]
- Bittante, G.; Cologna, N.; Cecchinato, A.; De Marchi, M.; Penasa, M.; Tiezzi, F.; Endrizzi, I.; Gasperi, F. Monitoring of Sensory Attributes Used in the Quality Payment System of Trentingrana Cheese. J. Dairy Sci. 2011, 94, 5699–5709. [Google Scholar] [CrossRef]
- von Keyserlingk, M.A.G.; Rushen, J.; de Passillé, A.M.; Weary, D.M. Invited Review: The Welfare of Dairy Cattle—Key Concepts and the Role of Science. J. Dairy Sci. 2009, 92, 4101–4111. [Google Scholar] [CrossRef]
- Council Directive 98/58/EC of 20 July 1998 Concerning the Protection of Animals Kept for Farming Purposes. 2019. Available online: https://www.legislation.gov.uk/eudr/1998/58 (accessed on 5 November 2024).
- Bermúdez, J.; González, M.J.; Olivera, J.A.; Burgueño, J.A.; Juliano, P.; Fox, E.M.; Reginensi, S.M. Seasonal Occurrence and Molecular Diversity of Clostridia Species Spores along Cheesemaking Streams of 5 Commercial Dairy Plants. J. Dairy Sci. 2016, 99, 3358–3366. [Google Scholar] [CrossRef] [PubMed]
- Calamari, L.; Morera, P.; Bani, P.; Minuti, A.; Basiricò, L.; Vitali, A.; Bernabucci, U. Effect of Hot Season on Blood Parameters, Fecal Fermentative Parameters, and Occurrence of Clostridium Tyrobutyricum Spores in Feces of Lactating Dairy Cows. J. Dairy Sci. 2018, 101, 4437–4447. [Google Scholar] [CrossRef] [PubMed]
- Bertocchi, L.; Vitali, A.; Lacetera, N.; Nardone, A.; Varisco, G.; Bernabucci, U. Seasonal Variations in the Composition of Holstein Cow’s Milk and Temperature–Humidity Index Relationship. Animal 2014, 8, 667–674. [Google Scholar] [CrossRef]
S2_2004–2023 (A) | |||
---|---|---|---|
Year | n° Samples Received | n° Samples Excluded | n° Samples Included |
2023 | 42,880 | 39 | 42,841 |
2022 | 45,023 | 57 | 44,966 |
2021 | 47,003 | 40 | 46,963 |
2020 | 41,634 | 30 | 41,604 |
2019 | 50,937 | 27 | 50,910 |
2018 | 48,982 | 40 | 48,942 |
2017 | 49,338 | 52 | 49,286 |
2016 | 48,872 | 28 | 48,844 |
2015 | 49,693 | 6 | 49,687 |
2014 | 51,170 | 32 | 51,138 |
2013 | 52,250 | 50 | 52,200 |
2012 | 53,325 | 73 | 53,252 |
2011 | 52,178 | 146 | 52,032 |
2010 | 49,768 | 109 | 49,659 |
2009 | 49,996 | 72 | 49,924 |
2008 | 49,797 | 65 | 49,732 |
2007 | 52,993 | 208 | 52,785 |
2006 | 61,264 | 252 | 61,012 |
2005 | 59,562 | 181 | 59,381 |
2004 | 62,563 | 115 | 62,448 |
S3_2004–2023 (B) | |||
Year | n° Samples Received | n° Samples Excluded | n° Samples Included |
2023 | 3020 | 97 | 2923 |
2022 | 2326 | 0 | 2326 |
2021 | 2892 | 1 | 2891 |
2020 | 3035 | 20 | 3015 |
2019 | 4671 | 355 | 4316 |
2018 | 5131 | 380 | 4751 |
2017 | 5824 | 410 | 5414 |
2016 | 3021 | 226 | 2795 |
2015 | 2203 | 23 | 2180 |
2014 | 2116 | 20 | 1996 |
2013 | 1744 | 13 | 1731 |
2012 | 2019 | 1 | 2018 |
2011 | 2031 | 23 | 2008 |
2010 | 2244 | 10 | 2234 |
2009 | 2228 | 3 | 2223 |
2008 | 1998 | 5 | 1993 |
2007 | 2988 | 6 | 2982 |
2006 | 3599 | 19 | 3580 |
2005 | 3226 | 2 | 3224 |
2004 | 2875 | 1 | 2874 |
S2_2004–2023 (A) | |||
---|---|---|---|
Year | Sampling Provinces | % Samples by Origin | Year |
2023 | BG, BS, CR, LO, MI, MN, VR | 97.90% | 2023 |
2022 | BG, BS, CR, LO, MI, MN, VR | 97.87% | 2022 |
2021 | BG, BS, CR, LO, MI, MN, VR | 97.63% | 2021 |
2020 | BG, BS, CR, LO, MI, MN, VR | 97.76% | 2020 |
2019 | BG, BS, CR, LO, MI, MN, VR | 98.21% | 2019 |
2018 | BG, BS, CR, LO, MI, MN, VR | 97.27% | 2018 |
2017 | BG, BS, CR, LO, MI, MN, VR | 97.35% | 2017 |
2016 | BG, BS, CR, LO, MI, MN, VR | 97.46% | 2016 |
2015 | BG, BS, CR, MN, VR | 97.55% | 2015 |
2014 | BG, BS, CR, MN, VR | 97.56% | 2014 |
2013 | BG, BS, CR, MN, VR | 97.86% | 2013 |
2012 | BG, BS, CR, MN, VR | 97.75% | 2012 |
2011 | BG, BS, CR, MN, VR | 97.77% | 2011 |
2010 | BG, BS, CR, MN, VR | 97.52% | 2010 |
2009 | BG, BS, CR, MN, VR | 97.54% | 2009 |
2008 | BG, BS, CR, MN, VR | 96.96% | 2008 |
2007 | BG, BS, CR, MN, VR | 96.12% | 2007 |
2006 | BG, BS, CR, LO, MI, MN, VR | 97.10% | 2006 |
2005 | BG, BS, CR, MN, VR | 98.16% | 2005 |
2004 | BG, BS, CR, MN, SO, VR | 98.16% | 2004 |
S3_2004–2023 (B) | |||
Year | Sampling Provinces | % Samples by Origin | |
2023 | BG, BS, PC | 97.43% | |
2022 | BG, BS, | 96.82% | |
2021 | BG, BS, MN | 97.23% | |
2020 | BG, BS, CR | 96.62% | |
2019 | BG, BS, LC, MI, MN | 97.38% | |
2018 | BG, BS, LC, MI | 97.20% | |
2017 | BG, BS, LC, MI | 97.8% | |
2016 | BG, BS, LC, MI, MN | 97.46% | |
2015 | BG, BS | 96.93% | |
2014 | BG, BS, CR | 96.40% | |
2013 | BG, BS, CR, MN | 95.96% | |
2012 | BG, BS, MN | 95.14% | |
2011 | BG, BS, MN, SO | 97.86% | |
2010 | BG, BS, MN, SO | 96.96% | |
2009 | BG, BS, SO | 96.85% | |
2008 | BG, BS, CR, SO | 98.60% | |
2007 | BG, BS, CR, SO | 98.56% | |
2006 | BG, BS, CR, SO | 98.16% | |
2005 | BG, BS, CR, SO | 97.08% | |
2004 | BG, BS, CR, PV | 96.48% |
S2 | ||||
---|---|---|---|---|
P | MPN (Spore/L) | Confidence Intervals (Lower-Upper) | ||
1 mL | 0.1 mL | |||
0 | 0 | <308 | n.s. | |
0 | 1 | 308 | 66–1438 | |
1 | 0 | 363 | 78–1697 | |
1 | 1 | 742 | 159–3470 | |
1 | 2 | 1140 | 244–5327 | |
2 | 0 | 966 | 207–4514 | |
2 | 1 | 1508 | 323–7047 | |
2 | 2 | 2099 | 449–9814 | |
3 | 0 | 3015 | 645–14,094 | |
3 | 1 | 4924 | 1053–23,015 | |
3 | 2 | 8704 | 1862–40,685 | |
3 | 3 | >11,000 | n.s. | |
S3 | ||||
P | MPN (Spore/L) | Confidence Intervals (Lower-Upper) | ||
10 mL | 1 mL | 0.1 mL | ||
0 | 0 | 0 | <31 | 0–110 |
0 | 1 | 0 | 31 | 4–230 |
1 | 0 | 0 | 36 | 5–270 |
1 | 0 | 1 | 72 | 17–300 |
1 | 1 | 0 | 74 | 18–310 |
1 | 2 | 0 | 110 | 35–370 |
2 | 0 | 0 | 92 | 21–400 |
2 | 0 | 1 | 140 | 42–490 |
2 | 1 | 0 | 150 | 43–500 |
2 | 1 | 1 | 200 | 70–600 |
2 | 2 | 0 | 210 | 71–620 |
3 | 0 | 0 | 230 | 55–970 |
3 | 0 | 1 | 390 | 93–1600 |
3 | 1 | 0 | 430 | 95–1900 |
3 | 1 | 1 | 750 | 190–3000 |
3 | 1 | 2 | 1200 | 360–3700 |
3 | 2 | 0 | 930 | 220–4000 |
3 | 2 | 1 | 1500 | 440–5100 |
3 | 2 | 2 | 2200 | 720–6400 |
3 | 3 | 0 | 2400 | 560–10,000 |
3 | 3 | 1 | 4600 | 960–22,000 |
3 | 3 | 2 | 11,000 | 2500–49,000 |
3 | 3 | 3 | >11,000 | 3600–n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guaita, A.; Gambi, L.; Baresi, P.; Paterlini, F.; Bolzoni, G.; Zanardi, G.; Daminelli, P. Spore-Forming Clostridia in Raw Cow Milk from Northern Italy: A Trend Analysis over the Past 20 Years. Foods 2024, 13, 3638. https://doi.org/10.3390/foods13223638
Guaita A, Gambi L, Baresi P, Paterlini F, Bolzoni G, Zanardi G, Daminelli P. Spore-Forming Clostridia in Raw Cow Milk from Northern Italy: A Trend Analysis over the Past 20 Years. Foods. 2024; 13(22):3638. https://doi.org/10.3390/foods13223638
Chicago/Turabian StyleGuaita, Arianna, Lorenzo Gambi, Pierluigi Baresi, Franco Paterlini, Giuseppe Bolzoni, Giorgio Zanardi, and Paolo Daminelli. 2024. "Spore-Forming Clostridia in Raw Cow Milk from Northern Italy: A Trend Analysis over the Past 20 Years" Foods 13, no. 22: 3638. https://doi.org/10.3390/foods13223638
APA StyleGuaita, A., Gambi, L., Baresi, P., Paterlini, F., Bolzoni, G., Zanardi, G., & Daminelli, P. (2024). Spore-Forming Clostridia in Raw Cow Milk from Northern Italy: A Trend Analysis over the Past 20 Years. Foods, 13(22), 3638. https://doi.org/10.3390/foods13223638