Effect of Traditional and Non-Traditionally Processed Blue Corn Tortilla Consumption During the Gestation of Rats in the Dentate Gyrus of Pups
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Blue Corn Tortillas by Traditional Nixtamalization
2.2. Preparation of Blue Corn Tortilla by Non-Traditional Process
2.3. Total Polyphenols
2.4. Total Anthocyanins
2.5. Experimental Animals
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deshmukh, S.S.; Knierim, J.J. Hippocampus. Wires Cogn. Sci. 2012, 3, 231–251. [Google Scholar] [CrossRef] [PubMed]
- Kinney, H.C.; Haynes, R.L.; Armstrong, D.D.; RiGoldstei, R.D. Abnormalities of the hippocampus in sudden and unexpected death in early life. In SIDS Sudden Infant and Early Childhood Death: The Past, the Present and the Future, 1st ed.; Duncan, R., Byard, R.W., Eds.; University of Adelaide Press: Adelaide, Australia, 2018; Chapter 29. [Google Scholar]
- Sun, D.; Mei, L.; Xiong, W.C. Dorsal Dentate gyrus, a key regulator for mood and psychiatric disorders. Biol. Psychiatry 2023, 93, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nut. Res. 2017, 1, 1361779. [Google Scholar] [CrossRef]
- Aguilar, F.; Crebelli, R.; Dusemund, B.; Galtier, P.; Gott, D.; Gundert-Remy, U.; König, J.; Lambré, C.; Leblanc, J.-C.; Mortensen, A.; Pratt, I.; Tobback, P.; Waalkens-Berendsen, I.; Woutersen, R.A. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the re-evaluation of anthocyanins (E 163) as a food additive. EFSA J. 2013, 11, 3145. [Google Scholar]
- Ruiz-Martínez, S.M.; Guzmán-Gerónimo, R.I.; Alvarado-Olivarez, M.; Santiago-Roque, I.; Palma-Jacinto, J.-A. Effect of black-berry juice consumption by pregnant rats on brain length and cell density of dentate gyrus in male Wistar pups. J. Med. Food 2024, 27, 901–904. [Google Scholar] [CrossRef]
- Guzmán-Gerónimo, R.; Aparicio, E.A.; Barradas, O.G.; Chávez-Servia, J.; Alarcón-Zavaleta, T. Chemical, antioxidant, and cytotoxic properties of native blue corn extract. In Natural Products and Cancer Drug Discovery; Badria, F.A., Ed.; InTech: Oakville, ON, Canada, 2017; Volume 1. [Google Scholar]
- Espejel-García, M.V.; Mora-Flores, J.S.; García-Salazar, J.A.; Pérez-Elizalde, S.; García-Mata, R. Characterization of tortilla consumers in Estado de México. Agric. Soc. Desarro. 2016, 13, 71–384. [Google Scholar]
- Serna-Saldivar, S.O. Understanding the functionality and manufacturing of nixtamalized maize products. J. Cereal Sci. 2021, 99, 103205. [Google Scholar] [CrossRef]
- Red OTT México. Available online: https://redott.mx/wp-content/uploads/2022/08/UV-FICHA-4_-TORTILLA-AZUL.pdf (accessed on 16 August 2022).
- Guzmán-Gerónimo, R.I.; Alarcón-Zavaleta, T.M.; Oliart-Ros, R.M.; Meza-Alvarado, J.E.; Herrera-Meza, S.; Chávez-Servia, J.L. Blue maize extract improves blood pressure, lipid profiles, and adipose tissue in high-sucrose diet-induced metabolic syndrome in rats. J. Med. Food 2017, 20, 110–115. [Google Scholar] [CrossRef]
- Herrera-Sotero, M.Y.; Cruz-Hernández, C.D.; Trujillo-Carretero, C.; Rodríguez-Dorantes, M.; García-Galindo, H.S.; Chávez-Servia, J.L.; Oliart-Ros, R.M.; Guzmán-Gerónimo, R.I. Antioxidant and antiproliferative activity of blue corn and tortilla from native maize. Chem. Cent. J. 2017, 11, 110. [Google Scholar] [CrossRef]
- Alarcón-Aparicio, A.E.; Bañuelos-Pineda JGuzmán-Gerónimo, R.I.; Ramos-Ibarra, M.L.; Gómez-Rodiles, C.; Rivas-Celis, E.; Acero-Ortega, L.; Aguirre López, O.; Chávez-Servia, J.L. Efectos del consumo de tortilla de maíz azul de la raza mixteco sobre parámetros morfológicos del hipocampo de ratón. In Progreso en las Ciencias Biológico-Agropecuarias, 1st ed.; Carvajal, S., Sahagún, G.M.L., Eds.; Centro Universitario de Ciencias Biológicas y Agropecuarias: Jalisco, México, 2016; p. 388. [Google Scholar]
- Zhang, J.; Wu, J.; Liu, F.; Tong, L.; Chen, Z.; Chen, J.; He, H.; Xu, R.; Ma, Y.; Huang, C. Neuroprotective effects of anthocyanins and its major component cyanidin-3-O-glucoside (C3G) in the central nervous system: An outlined review. Eur. J. Pharmacol. 2019, 5, 858. [Google Scholar] [CrossRef]
- Ramírez-Araujo, H.; Gaytán-Martínez, M.; Reyes-Vega, M.L. Alternative technologies to the traditional nixtamalization process: Review. Trends Food Sci. Technol. 2019, 85, 34–43. [Google Scholar] [CrossRef]
- Menchaca-Armenta, M.; Frutos, M.J.; Ramírez-Wong, B.; Quintero-Ramos, A.; Torres-Chávez, P.I.; Valero-Cases, E.; Muelas-Domingo, R.; Ledesma-Osuna, A.I.; Campas-Baypoli, O.N. The effect of nixtamalization extrusion process and tortillas making on the stability of anthocyanins from blue corn through the kinetic and thermodynamic parameters. Plant Foods Hum. Nutr. 2021, 76, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Castro, L.E.; Quintero-Ramos, A.; Ruiz-Gutiérrez, M.G.; Sánchez-Madrigal, M.Á.; Meléndez-Pizarro, C.O.; Pérez-Reyes, I.; Lardizábal-Gutiérrez, D. Nixtamalization assisted with ultrasound: Effect on mass transfer and physicochemical properties of nixtamal, masa and tortilla. Rev. Mex. Ing. Quím. 2015, 14, 265–279. [Google Scholar]
- Pérez-Grijalva, G.; Herrera-Sotero, M.; Mora-Escobedo, R.; Zebadúa-García, J.C.; Silva-Hernández, E.; Oliart-Ros, R.; Pérez-Cruz, C.; Guzmán-Gerónimo, R. Effect of microwaves and ultrasound on bioactive compounds and microbiological quality of blackberry juice. LWT 2018, 87, 47–53. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, B.; He, F.; Duan, C.Q.; Shi, Y. The influence of prefermentative addition of gallic acid on the phenolic composition and chromatic characteristics of Cabernet Sauvignon wines. J. Food Sci. 2016, 81, C1669–C1678. [Google Scholar] [CrossRef]
- Brglez, M.E.; Knez, H.M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. (Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Giusti, M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV visible spectroscopy. In Current Protocols in Food Analytical Chemistry; Giusti, M., Wrolstad, R., Eds.; Wiley: New York, NY, USA, 2001; pp. F1.2.1–F1.2.13. [Google Scholar]
- NOM-062-ZOO-1999; Norma Oficial Mexicana. Especificaciones Técnicas para la Reprodución Cuidado y Uso de Animales de Laboratorio. D.O.F. 22-VIII-2001. Norma Oficial Mexicana: Ciudad de México, Mexico, 2001; pp. 107–163.
- National Research Council. Guide for the Care and Use of Laboratory Animals, 8th ed.; The National Academies Press: Washington, DC, USA, 2011.
- Altman, J.; Bayer, S.A. Atlas of Prenatal Rat Brain Development; CRC Press Inc.: Boca Raton, FL, USA, 1995; 664p. [Google Scholar]
- Zhang, L.; Wang, W.; Yue, X.; Wu, G.; Yue, P.; Gao, X. Gallic acid as a copigment enhance anthocyanin stabilities and color characteristics in blueberry juice. J. Food Sci. Technol. 2020, 57, 1405–1414. [Google Scholar] [CrossRef]
- Qian, B.-J.; Liu, J.-H.; Zhao, S.-J.; Cai, J.-X.; Jing, P. The effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability. Food Chem. 2017, 228, 526–532. [Google Scholar] [CrossRef]
- Azman, E.M.; Yusof, N.; Chatzifragkou, A.; Charalampopoulos, D. Stability enhancement of anthocyanins from blackcurrant (Ribes nigrum L.) pomace through intermolecular copigmentation. Molecules 2022, 27, 5489. [Google Scholar] [CrossRef]
- Clifford, M.N. Anthocyanins—Nature, occurrence and dietary burden. J. Sci. Food Agric. 2000, 80, 1063–1072. [Google Scholar] [CrossRef]
- Sandoval, V.; Sanz-Lamora, H.; Arias, G.; Marrero, P.F.; Haro, D.; Relat, J. Metabolic impact of flavonoids consumption in obesity: From central to peripheral. Nutrition 2020, 12, 2393. [Google Scholar] [CrossRef] [PubMed]
- Deepa, P.; Hong, M.; Sowndhararajan, K.; Kim, S. A review of the role of an anthocyanin, cyanidin-3-o-β-glucoside in obesity-related complications. Plants 2023, 12, 3889. [Google Scholar] [CrossRef] [PubMed]
- Nanashima, N.; Horie, K.; Tomisawa, T.; Chiba, M.; Nakano, M.; Fujita, T.; Maeda, H.; Kitajima, M.; Takamagi, S.; Uchiyama, D.; et al. Phytoestrogenic activity of black currante (Ribes nigrum) anthocyanins is mediated through estrogen receptor. alpha. Mol. Nut. Food Res. 2015, 59, 2419–2431. [Google Scholar] [CrossRef] [PubMed]
- Al Ghannam, S.M.; El-Rahman, S.N.A. Antioxidant evaluation study of black rice anthocyanins nano-composite as prospective against infertility induced by AlCl3 in rats. Braz. J. Biol. 2024, 84, e280570. [Google Scholar]
- Bautista, A.; García-Torres, E.; Prager, G.; Hudson, R.; Rodel, H. Development of behavior in the litter huddle in rat pups: Within and between litter differences. Dev. Psychobiol. 2009, 52, 35–43. [Google Scholar] [CrossRef]
- Shery, J.; Nair, A.B.; Morsy, M.A. Dose conversion between animals and humans: A practical solution. Indian J. Pharm. Educ. Res. 2022, 56, 600–607. [Google Scholar]
- Borzello, M.; Ramirez, S.; Treves, A.; Lee, I.; Scharfman, H.; Stark, C.; Knierim, J.J.; Rangel, L.M. Assessments of dentate gyrus function: Discoveries and debates. Nat. Rev. Neurosci. 2023, 24, 502–517. [Google Scholar] [CrossRef]
- Festa, J.; Hussain, A.; Al-Hareth, Z.; Singh, H.; Da Boit, M. Anthocyanins and vascular health: A matter of metabolites. Foods 2023, 12, 1796. [Google Scholar] [CrossRef]
- Zaa, C.A.; Marcelo, Á.J.; An, Z.; Medina-Franco, J.L.; Velasco-Velázquez, M.A. Anthocyanins: Molecular aspects on their neuroprotective activity. Biomolecules 2023, 13, 1598. [Google Scholar] [CrossRef]
- Vauzour, D.; Rendeiro, C.; D’Amato, A.; Waffo-Téguo, P.; Richard, T.; Mérillon, J.M.; Pontifex, M.G.; Connell, E.; Müller, M.; Butler, L.T.; et al. Anthocyanins promote learning through modulation of synaptic plasticity related proteins in an animal model of ageing. Antioxidants 2021, 10, 1235. [Google Scholar] [CrossRef] [PubMed]
- Cor-Albornoz, M.C.; García-Guáqueta, D.P.; Velez-van-Meerbeke, A.; Talero-Gutiérrez, C. Maternal nutrition and neurodevelopment: A scoping review. Nutrients 2021, 13, 3530. [Google Scholar] [CrossRef] [PubMed]
- Benes, F.M.; Sorensen, I.; Bird, E.D. Reduced neuronal size in posterior hippocampus of schizophrenic patients. Schizophr. Bull. 1991, 17, 597–608. [Google Scholar] [CrossRef]
- Roeske, M.J.; Konradi, C.; Heckers, S.; Lewis, A.S. Hippocampal volume and hippocampal neuron density, number and size in schizophrenia: A systematic review and meta-analysis of postmortem studies. Mol. Psychiatry 2021, 26, 3524–3535. [Google Scholar] [CrossRef] [PubMed]
Blue Corn Tortillas * | Total Polyphenol mg GAE/100 g | Total Anthocyanin mg C3GE/100 g |
---|---|---|
Blue corn tortilla processed by traditional nixtamalization/grains without gallic acid | 66.5 ± 0.2 a | 20.9 ± 2.8 e |
Blue corn tortilla processed by microwave nixtamalization/grains without gallic acid | 90.1 ± 0.4 b | 53.0 ± 1.4 f |
Blue corn tortilla processed by traditional nixtamalization/with gallic acid | 79.9 ± 0.1 c | 49.6 ± 0.3 f |
Blue corn tortilla processed by microwave nixtamalization/with gallic acid | 95.9 ± 0.3 d | 61.0 ± 1.8 g |
*C | TN | TNGA | MN | MNGA | |
---|---|---|---|---|---|
Gestational weight gain (g) | 53.4 ± 13.4 a | 45.6 ± 15.1 a | 53.6 ± 22.9 a | 64.8 ± 4.31 a | 63.9 ± 4.65 a |
Number of pups per litter | 9.28 ± 0.95 c | 5.71 ± 2.81 d | 7.42 ± 3.86 c | 10.4 ± 0.57 c | 13.0 ± 0.57 e |
Litter weight (g) | 3.74 ± 4.06 f | 3.17 ± 0.34 g | 2.98 ± 0.0 g | 3.29 ± 0.16 f | 2.86 ±0.16 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Nieto, P.F.; Alvarado-Olivarez, M.; Guzmán-Gerónimo, R.I.; Rodríguez-Landa, J.F.; Hernández-Salazar, L.T. Effect of Traditional and Non-Traditionally Processed Blue Corn Tortilla Consumption During the Gestation of Rats in the Dentate Gyrus of Pups. Foods 2024, 13, 3639. https://doi.org/10.3390/foods13223639
González-Nieto PF, Alvarado-Olivarez M, Guzmán-Gerónimo RI, Rodríguez-Landa JF, Hernández-Salazar LT. Effect of Traditional and Non-Traditionally Processed Blue Corn Tortilla Consumption During the Gestation of Rats in the Dentate Gyrus of Pups. Foods. 2024; 13(22):3639. https://doi.org/10.3390/foods13223639
Chicago/Turabian StyleGonzález-Nieto, Paola Fernanda, Mayvi Alvarado-Olivarez, Rosa Isela Guzmán-Gerónimo, Juan Francisco Rodríguez-Landa, and Laura Teresa Hernández-Salazar. 2024. "Effect of Traditional and Non-Traditionally Processed Blue Corn Tortilla Consumption During the Gestation of Rats in the Dentate Gyrus of Pups" Foods 13, no. 22: 3639. https://doi.org/10.3390/foods13223639
APA StyleGonzález-Nieto, P. F., Alvarado-Olivarez, M., Guzmán-Gerónimo, R. I., Rodríguez-Landa, J. F., & Hernández-Salazar, L. T. (2024). Effect of Traditional and Non-Traditionally Processed Blue Corn Tortilla Consumption During the Gestation of Rats in the Dentate Gyrus of Pups. Foods, 13(22), 3639. https://doi.org/10.3390/foods13223639