Saussurea involucrata SiLEA5 Enhances Tolerance to Drought Stress in Solanum lycopersicum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Promoter Analysis of SiLEA5 Gene
2.2. Plant Material and Growth Conditions
2.3. Drought Stress Treatment
2.4. Growth Status and Biochemical Analysis
2.5. Stomatal Density and Shape
2.6. Photosynthetic Physiology and Yield Analysis
2.7. Gene Expression Analysis
2.8. Statistical Analysis
3. Results
3.1. Bioinformatics Analysis of SiLEA5
3.2. SiLEA5 Promotes Tomato Growth and Improves Tomato Drought Resistance
3.3. SiLEA5 Enhances Photosynthetic Capacity by Regulating Stomatal Changes
3.4. The SiLEA5 Enhances Plant Productivity
3.5. SiLEA5 Gene May Be Involved in ABA Metabolic Pathway
4. Discussions and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Batool, T.; Ali, S.; Seleiman, M.F.; Naveed, N.H.; Ali, A.; Ahmed, K.; Abid, M.; Rizwan, M.; Shahid, M.R.; Alotaibi, M.; et al. Plant Growth Promoting Rhizobacteria Alleviates Drought Stress in Potato in Response to Suppressive Oxidative Stress and Antioxidant Enzymes Activities. Sci. Rep. 2020, 10, 16975. [Google Scholar] [CrossRef] [PubMed]
- Abdul Aziz, M.; Sabeem, M.; Mullath, S.K.; Brini, F.; Masmoudi, K. Plant Group II LEA Proteins: Intrinsically Disordered Structure for Multiple Functions in Response to Environmental Stresses. Biomolecules 2021, 11, 1662. [Google Scholar] [CrossRef]
- Chen, J.; Li, N.; Wang, X.; Meng, X.; Cui, X.; Chen, Z.; Ren, H.; Ma, J.; Liu, H. Late Embryogenesis Abundant (LEA) Gene Family in Salvia miltiorrhiza: Identification, Expression Analysis, and Response to Drought Stress. Plant Signal. Behav. 2021, 16, 1891769. [Google Scholar] [CrossRef] [PubMed]
- Chong, L.; Xu, R.; Huang, P.; Guo, P.; Zhu, M.; Du, H.; Sun, X.; Ku, L.; Zhu, J.-K.; Zhu, Y. The Tomato OST1–VOZ1 Module Regulates Drought-Mediated Flowering. Plant Cell 2022, 34, 2001–2018. [Google Scholar] [CrossRef]
- Du, L.; Huang, X.; Ding, L.; Wang, Z.; Tang, D.; Chen, B.; Ao, L.; Liu, Y.; Kang, Z.; Mao, H. TaERF87 and TaAKS1 Synergistically Regulate TaP5CS1/TaP5CR1-Mediated Proline Biosynthesis to Enhance Drought Tolerance in Wheat. New Phytol. 2023, 237, 232–250. [Google Scholar] [CrossRef]
- Footitt, S.; Hambidge, A.J.; Finch-Savage, W.E. Changes in Phenological Events in Response to a Global Warming Scenario Reveal Greater Adaptability of Winter Annual Compared with Summer Annual Arabidopsis Ecotypes. Ann. Bot. 2021, 127, 111–122. [Google Scholar] [CrossRef]
- Giordani, T.; Natali, L.; D’Ercole, A.; Pugliesi, C.; Fambrini, M.; Vernieri, P.; Vitagliano, C.; Cavallini, A. Expression of a Dehydrin Gene during Embryo Development and Drought Stress in ABA-Deficient Mutants of Sunflower (Helianthus annuus L.). Plant Mol. Biol. 1999, 39, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Hao, Y.; Dong, Z.; Tang, W.; Wang, X.; Li, J.; Wang, L.; Hu, Y.; Fang, L.; Guan, X.; et al. Identification and Expression Analysis of LEA Gene Family Members in Pepper (Capsicum annuum L.). FEBS Open Bio. 2023, 13, 2246–2262. [Google Scholar] [CrossRef]
- Geng, W.; Wang, Y.; Zhang, J.; Liu, Z.; Chen, X.; Qin, L.; Yang, L.; Tang, H. Genome-Wide Identification and Expression Analyses of Late Embryogenesis Abundant (LEA) Gene Family in Tobacco (Nicotiana tabacum L.) Reveal Their Function in Abiotic Stress Responses. Gene 2022, 836, 146665. [Google Scholar] [CrossRef]
- Hajihashemi, S.; Brestic, M.; Landi, M.; Skalicky, M. Resistance of Fritillaria Imperialis to Freezing Stress through Gene Expression, Osmotic Adjustment and Antioxidants. Sci. Rep. 2020, 10, 10427. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, Y.; Sun, H.; Duan, R.; Jiang, Y.; Wang, X.; Sun, Y.; Luo, Z.; Wang, P.; Guan, S.; et al. Overexpression of Soybean GmDHN9 Gene Enhances Drought Resistance of Transgenic Arabidopsis. GM Crops Food 2024, 15, 118–129. [Google Scholar] [CrossRef]
- Onyemaobi, O.; Sangma, H.; Garg, G.; Wallace, X.; Kleven, S.; Suwanchaikasem, P.; Roessner, U.; Dolferus, R. Reproductive Stage Drought Tolerance in Wheat: Importance of Stomatal Conductance and Plant Growth Regulators. Genes 2021, 12, 1742. [Google Scholar] [CrossRef]
- Razi, K.; Muneer, S. Drought Stress-Induced Physiological Mechanisms, Signaling Pathways and Molecular Response of Chloroplasts in Common Vegetable Crops. Crit. Rev. Biotechnol. 2021, 41, 669–691. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Cao, D.; Wang, Z.; Ma, L.; Tian, K.; Liu, Y.; Gong, Z.; Zhu, X.; Jiang, C.; Li, Y. Genome-Wide Identification and Expression Analyses of the LEA Protein Gene Family in Tea Plant Reveal Their Involvement in Seed Development and Abiotic Stress Responses. Sci. Rep. 2019, 9, 14123. [Google Scholar] [CrossRef]
- Jan, R.; Khan, M.-A.; Asaf, S.; Lubna; Waqas, M.; Park, J.-R.; Asif, S.; Kim, N.; Lee, I.-J.; Kim, K.-M. Drought and UV Radiation Stress Tolerance in Rice Is Improved by Overaccumulation of Non-Enzymatic Antioxidant Flavonoids. Antioxidants 2022, 11, 917. [Google Scholar] [CrossRef] [PubMed]
- Ju, H.; Li, D.; Li, D.; Yang, X.; Liu, Y. Overexpression of ZmDHN11 Could Enhance Transgenic Yeast and Tobacco Tolerance to Osmotic Stress. Plant Cell Rep. 2021, 40, 1723–1733. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.; Yue, X.; Min, Z.; Wang, X.; Fang, Y.; Zhang, J. VvNAC17, a Novel Stress-Responsive Grapevine (Vitis vinifera L.) NAC Transcription Factor, Increases Sensitivity to Abscisic Acid and Enhances Salinity, Freezing, and Drought Tolerance in Transgenic Arabidopsis. Plant Physiol. Biochem. 2020, 146, 98–111. [Google Scholar] [CrossRef]
- Wang, G.; Xu, X.; Gao, Z.; Liu, T.; Li, Y.; Hou, X. Genome-Wide Identification of LEA Gene Family and Cold Response Mechanism of BcLEA4-7 and BcLEA4-18 in Non-Heading Chinese Cabbage [Brassica campestris (Syn. Brassica rapa) Ssp. chinensis]. Plant Sci. 2022, 321, 111291. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Xia, W.-W.; Zhang, X.-L.; Li, A.-W.; Qin, J.; Sun, H.-L.; Li, J.; Zhu, J.-B. Overexpression of the SiLEA5 Gene in Saussurea involucrata Increases the Low-Temperature Tolerance of Transgenic Tomatoes. Horticulturae 2022, 8, 1023. [Google Scholar] [CrossRef]
- Xin, H.; Li, Q.; Wang, S.; Zhang, Z.; Wu, X.; Liu, R.; Zhu, J.; Li, J. Saussurea involucrate PIP2;4 Improves Growth and Drought Tolerance in Nicotiana tabacum by Increasing Stomatal Density and Sensitivity. Plant Sci. 2023, 326, 111526. [Google Scholar] [CrossRef]
- Zhang, C.; Niu, D.; Zhang, L.; Li, X.; Fu, H. Plant Functional Traits Shape Growth Rate for Xerophytic Shrubs. Plant Biol. J. 2022, 24, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Richter, A.K.; Frossard, E.; Brunner, I. Polyphenols in the Woody Roots of Norway Spruce and European Beech Reduce TTC. Tree Physiol. 2007, 27, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yang, H.; Yang, H.; Zhang, C.; Lyu, L.; Li, W.; Wu, W. A Physiological and Metabolomic Analysis Reveals the Effect of Shading Intensity on Blueberry Fruit Quality. Food Chem. X 2022, 15, 100367. [Google Scholar] [CrossRef]
- Liu, X.; Xia, W.; Zhang, D.; Li, A.; Li, J.; Zhu, J. Cold Tolerance Gene SiLEA B19.3 of Saussurea involucrate Increases the Yield of Transgenic Tomato. S. Afr. J. Bot. 2023, 160, 657–666. [Google Scholar] [CrossRef]
- Liu, X.; Li, A.; Wang, S.; Lan, C.; Wang, Y.; Li, J.; Zhu, J. Overexpression of Pyrus sinkiangensis HAT5 Enhances Drought and Salt Tolerance, and Low-Temperature Sensitivity in Transgenic Tomato. Front. Plant Sci. 2022, 13, 1036254. [Google Scholar] [CrossRef]
- Li, N.; Zhang, S.; Liang, Y.; Qi, Y.; Chen, J.; Zhu, W.; Zhang, L. Label-Free Quantitative Proteomic Analysis of Drought Stress-Responsive Late Embryogenesis Abundant Proteins in the Seedling Leaves of Two Wheat (Triticum aestivum L.) Genotypes. J. Proteom. 2018, 172, 122–142. [Google Scholar] [CrossRef]
- Kwon, E.; Basnet, P.; Roy, N.S.; Kim, J.-H.; Heo, K.; Park, K.-C.; Um, T.; Kim, N.-S.; Choi, I.-Y. Identification of Resurrection Genes from the Transcriptome of Dehydrated and Rehydrated Selaginella tamariscina. Plant Signal. Behav. 2021, 16, 1973703. [Google Scholar] [CrossRef]
- Liu, X.; Wang, L.; Zhang, X.; Li, A.; Xia, W.; Lin, C.; Li, J.; Zhu, J. Expression of the Pyrus sinkiangensis HD-Zip Ι Transcription Factor PsHB7 and PsHB12 in Hybrid Broussonetia papyrifera Regulates Its Natural Overwintering. Environ. Exp. Bot. 2023, 216, 105534. [Google Scholar] [CrossRef]
- Nong, Q.; Malviya, M.K.; Solanki, M.K.; Solanki, A.C.; Lin, L.; Xie, J.; Mo, Z.; Wang, Z.; Song, X.-P.; Huang, X.; et al. Sugarcane Root Transcriptome Analysis Revealed the Role of Plant Hormones in the Colonization of an Endophytic Diazotroph. Front. Microbiol. 2022, 13, 924283. [Google Scholar] [CrossRef]
- Xie, J.; Yin, G.; Ma, D.; Chen, R.; Zhao, W.; Xie, Q.; Wang, C.; Lin, S.; Yuan, W. Climatic Limitations on Grassland Photosynthesis over the Tibetan Plateau Shifted from Temperature to Water. Sci. Total Environ. 2024, 906, 167663. [Google Scholar] [CrossRef]
- Lawson, T.; Vialet-Chabrand, S. Speedy Stomata, Photosynthesis and Plant Water Use Efficiency. New Phytol. 2019, 221, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Thudi, M.; Palakurthi, R.; Schnable, J.C.; Chitikineni, A.; Dreisigacker, S.; Mace, E.; Srivastava, R.K.; Satyavathi, C.T.; Odeny, D.; Tiwari, V.K.; et al. Genomic Resources in Plant Breeding for Sustainable Agriculture. J. Plant Physiol. 2021, 257, 153351. [Google Scholar] [CrossRef] [PubMed]
- Murvai, N.; Kalmar, L.; Szabo, B.; Schad, E.; Micsonai, A.; Kardos, J.; Buday, L.; Han, K.-H.; Tompa, P.; Tantos, A. Cellular Chaperone Function of Intrinsically Disordered Dehydrin ERD14. IJMS 2021, 22, 6190. [Google Scholar] [CrossRef]
- Zhao, Y.; Fu, X.; Zou, Z. Insights into Genes Encoding LEA_1 Domain-Containing Proteins in Cyperus Esculentus, a Desiccation-Tolerant Tuber Plant. Plants 2024, 13, 2933. [Google Scholar] [CrossRef]
- Martin-StPaul, N.; Delzon, S.; Cochard, H. Plant Resistance to Drought Depends on Timely Stomatal Closure. Ecol. Lett. 2017, 20, 1437–1447. [Google Scholar] [CrossRef]
- Gao, H.; Cui, J.; Liu, S.; Wang, S.; Lian, Y.; Bai, Y.; Zhu, T.; Wu, H.; Wang, Y.; Yang, S.; et al. Natural Variations of ZmSRO1d Modulate the Trade-off between Drought Resistance and Yield by Affecting ZmRBOHC-Mediated Stomatal ROS Production in Maize. Mol. Plant 2022, 15, 1558–1574. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.; Dunn, J. Optimizing Crop Plant Stomatal Density to Mitigate and Adapt to Climate Change. Cold Spring Harb. Perspect. Biol. 2024, 16, a041672. [Google Scholar] [CrossRef]
- López-Cordova, A.; Ramírez-Medina, H.; Silva-Martinez, G.-A.; González-Cruz, L.; Bernardino-Nicanor, A.; Huanca-Mamani, W.; Montero-Tavera, V.; Tovar-Aguilar, A.; Ramírez-Pimentel, J.-G.; Durán-Figueroa, N.-V.; et al. LEA13 and LEA30 Are Involved in Tolerance to Water Stress and Stomata Density in Arabidopsis Thaliana. Plants 2021, 10, 1694. [Google Scholar] [CrossRef]
- Muhammad Aslam, M.; Waseem, M.; Jakada, B.H.; Okal, E.J.; Lei, Z.; Saqib, H.S.A.; Yuan, W.; Xu, W.; Zhang, Q. Mechanisms of Abscisic Acid-Mediated Drought Stress Responses in Plants. IJMS 2022, 23, 1084. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, Y.; Li, Z.; Hsu, C.-C.; Liu, X.; Fu, L.; Hou, Y.-J.; Du, Y.; Xie, S.; Zhang, C.; et al. Reciprocal Regulation of the TOR Kinase and ABA Receptor Balances Plant Growth and Stress Response. Molecular Cell 2018, 69, 100–112. [Google Scholar] [CrossRef]
- Bulgakov, V.P.; Wu, H.-C.; Jinn, T.-L. Coordination of ABA and Chaperone Signaling in Plant Stress Responses. Trends Plant Sci. 2019, 24, 636–651. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, T.; Itai, R.; Maeda, M.; Kitashiba, H.; Isuzugawa, K.; Kato, K.; Kanayama, Y. Characterization of PcLEA14, a Group 5 Late Embryogenesis Abundant Protein Gene from Pear (Pyrus communis). Plants 2020, 9, 1138. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Peng, N.; Yang, C.; Wang, C. The Poplar (Populus trichocarpa) Dehydrin Gene PtrDHN-3 Enhances Tolerance to Salt Stress in Arabidopsis. Plants 2022, 11, 2700. [Google Scholar] [CrossRef] [PubMed]
- Soltabayeva, A.; Dauletova, N.; Serik, S.; Sandybek, M.; Omondi, J.O.; Kurmanbayeva, A.; Srivastava, S. Receptor-like Kinases (LRR-RLKs) in Response of Plants to Biotic and Abiotic Stresses. Plants 2022, 11, 2660. [Google Scholar] [CrossRef]
- Agurla, S.; Gahir, S.; Munemasa, S.; Murata, Y.; Raghavendra, A.S. Mechanism of Stomatal Closure in Plants Exposed to Drought and Cold Stress. Adv. Exp. Med. Biol. 2018, 1081, 215–232. [Google Scholar] [CrossRef] [PubMed]
- Brookbank, B.P.; Patel, J.; Gazzarrini, S.; Nambara, E. Role of Basal ABA in Plant Growth and Development. Genes 2021, 12, 1936. [Google Scholar] [CrossRef]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant Hormone-Mediated Regulation of Stress Responses. BMC Plant Biol. 2016, 16, 86. [Google Scholar] [CrossRef]
- Xie, Z.; Jin, L.; Sun, Y.; Zhan, C.; Tang, S.; Qin, T.; Liu, N.; Huang, J. OsNAC120 Balances Plant Growth and Drought Tolerance by Integrating GA and ABA Signaling in Rice. Plant Commun. 2024, 5, 100782. [Google Scholar] [CrossRef]
Name of Element | Core Sequence | Number | Biological Function |
---|---|---|---|
ARE | AAACCA | 1 | Cis-acting regulatory element essential for the anaerobic induction |
WUN-motif | AAATTACT | 2 | Wound-responsive element |
TGA-element | AACGAC | 1 | Auxin-responsive element |
ABRE | ACGTG | 2 | Cis-acting element involved in the abscisic acid responsiveness |
Box-4 | ATTAAT | 3 | Part of a conserved DNA module involved in light responsiveness |
TC-rich repeats | ATTCTCTAAC | 1 | Cis-acting element involved in defense and stress responsiveness |
MBS | CAACTG | 1 | MYB binding site involved in drought inducibility |
CAAT-box | CAAT(T) | 13 | Common cis-acting elements in promoter and enhancer regions |
TCA-element | CCATCTTTTT | 1 | Cis-acting element involved in salicylic acid responsiveness |
CGTCA-motif | CGTCA | 1 | Cis-acting regulatory element involved in the MeJ-responsiveness |
TATA-box | TATA | 17 | Core promoter element around −30 of transcription start |
TATC-box | TATCCCA | 1 | Cis-acting element involved in gibberellin responsiveness |
W-box | TTGACC | 2 | WRKY transcription factor binding site |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Li, A.; Luo, G.; Zhu, J. Saussurea involucrata SiLEA5 Enhances Tolerance to Drought Stress in Solanum lycopersicum. Foods 2024, 13, 3641. https://doi.org/10.3390/foods13223641
Liu X, Li A, Luo G, Zhu J. Saussurea involucrata SiLEA5 Enhances Tolerance to Drought Stress in Solanum lycopersicum. Foods. 2024; 13(22):3641. https://doi.org/10.3390/foods13223641
Chicago/Turabian StyleLiu, Xiaoyan, Aowei Li, Guanghong Luo, and Jianbo Zhu. 2024. "Saussurea involucrata SiLEA5 Enhances Tolerance to Drought Stress in Solanum lycopersicum" Foods 13, no. 22: 3641. https://doi.org/10.3390/foods13223641
APA StyleLiu, X., Li, A., Luo, G., & Zhu, J. (2024). Saussurea involucrata SiLEA5 Enhances Tolerance to Drought Stress in Solanum lycopersicum. Foods, 13(22), 3641. https://doi.org/10.3390/foods13223641