Sustainable Omega-3 Lipid Production from Agro-Industrial By-Products Using Thraustochytrids: Enabling Process Development, Optimization, and Scale-Up
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain Preparation
2.2. Bioprocess Optimization in Shake Flasks
2.3. Bench-Scale Strategies
2.4. Kinetic Studies of Bioprocess
2.5. Biomass Recovery and Proximate Composition
Lipid Content
2.6. Fatty Acids Analysis
3. Results and Discussion
3.1. Bioprocess Modeling and Optimization
3.2. Prediction and Desirability Profiling
3.3. Batch Bioreactor Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- Morabito, C.; Bournaud, C.; Maës, C.; Schuler, M.; Aiese Cigliano, R.; Dellero, Y.; Maréchal, E.; Amato, A.; Rébeillé, F. The Lipid Metabolism in Thraustochytrids. Prog. Lipid Res. 2019, 76, 101007. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yu, X.; Liu, Q.; Zhang, Y.; Wang, Q. Lipid Production of Schizochytrium sp. HBW10 Isolated from Coastal Waters of Northern China Cultivated in Food Waste Hydrolysate. Microorganisms 2023, 11, 2714. [Google Scholar] [CrossRef]
- Fossier Marchan, L.; Lee Chang, K.J.; Nichols, P.D.; Mitchell, W.J.; Polglase, J.L.; Gutierrez, T. Taxonomy, Ecology and Biotechnological Applications of Thraustochytrids: A Review. Biotechnol. Adv. 2018, 36, 26–46. [Google Scholar] [CrossRef]
- Ventura, S.P.M.; Nobre, B.P.; Ertekin, F.; Hayes, M.; Garciá-Vaquero, M.; Vieira, F.; Koc, M.; Gouveia, L.; Aires-Barros, M.R.; Palavra, A.M.F. Extraction of Value-Added Compounds from Microalgae. In Microalgae-Based Biofuels and Bioproducts from Feedstock Cultivation to End-Products; Woodhead Publishing Series in Energy: Cambridge, UK, 2017; pp. 461–483. [Google Scholar] [CrossRef]
- Robertson, R.C.; Guihéneuf, F.; Schmid, M.; Stengel, D. Algae-Derived Polyunsaturated Fatty Acids: Implications for Human Health. In Polyunsaturated Fatty Acids: Sources, Antioxidant Properties and Health Benefits; Catalá, A., Ed.; Nova Sciences: Hauppauge, NY, USA, 2013. [Google Scholar]
- Finco, A.M.D.O.; Mamani, L.D.G.; Carvalho, J.C.D.; de Melo Pereira, G.V.; Thomaz-Soccol, V.; Soccol, C.R. Technological Trends and Market Perspectives for Production of Microbial Oils Rich in Omega-3. Crit. Rev. Biotechnol. 2017, 37, 656–671. [Google Scholar] [CrossRef]
- Orozco Colonia, B.S.; Vinícius de Melo Pereira, G.; Soccol, C.R. Omega-3 Microbial Oils from Marine Thraustochytrids as a Sustainable and Technological Solution: A Review and Patent Landscape. Trends Food Sci. Technol. 2020, 99, 244–256. [Google Scholar] [CrossRef]
- Oliveira, M.R.B.; Sunhiga Filho, R.F.; Mattos, E.D.C.; Pereira, E.B.; Baptista, A.S. PRODUÇÃO DE ETANOL A PARTIR DE MELAÇO DE CANA. Rev. Estud. Ambient. 2019, 21, 38. [Google Scholar] [CrossRef]
- Rodríguez-España, M.; Mendoza-Sánchez, L.G.; Magallón-Servín, P.; Salgado-Cervantes, M.A.; Acosta-Osorio, A.A.; García, H.S. Supercritical Fluid Extraction of Lipids Rich in DHA from Schizochytrium sp. J. Supercrit. Fluids 2022, 179, 105391. [Google Scholar] [CrossRef]
- Eckerle, G.J.; Pacheco, L.A.; Olson, K.C.; Jaeger, J.R. Effects of Corn Steep Liquor Supplementation on Voluntary Selection of Tallgrass Prairie Hay Contaminated with Sericea Lespedeza and Uncontaminated Tallgrass Prairie Hay (2012); New Prairie Press: Manhattan, KS, USA, 2012; pp. 58–61. [Google Scholar] [CrossRef]
- Colonia, B.S.O. Bioprospecting Marine Thraustochytrids Highly Producers of Polyunsaturated Fatty Acids: Environmental Microbiomes, High-Throughput Screening and Bioreactor Lipid Production. Master’s Thesis, Federal University of Parana, Curitiba, Brazil, 2021. [Google Scholar]
- Lorenz Miller, G. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Colonia, B.S.O.; de Melo Pereira, G.V.; Mendonça Rodrigues, F.; de Souza Miranda Muynarsk, E.; da Silva Vale, A.; Cesar de Carvalho, J.; Thomaz Soccol, V.; de Oliveira Penha, R.; Ricardo Soccol, C. Integrating Metagenetics and High-Throughput Screening for Bioprospecting Marine Thraustochytrids Producers of Long-Chain Polyunsaturated Fatty Acids. Bioresour. Technol. 2021, 333, 125176. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Kwak, M.; Seo, J.W.; Ju, J.H.; Heo, S.Y.; Park, S.M.; Hong, W.K. Enhanced Production of Carotenoids Using a Thraustochytrid Microalgal Strain Containing High Levels of Docosahexaenoic Acid-Rich Oil. Bioprocess Biosyst. Eng. 2018, 41, 1355–1370. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jin, W.; Qin, Y.; Zhou, X.; Chen, Y.; Sun, J.; Ansar, S.; Jiang, G. Recycle of Sugarcane Molasses by Aurantiochytrium sp. for High-Value Docosahexaenoic Acid. Biotechnol. Bioprocess Eng. 2024, 29, 915–928. [Google Scholar] [CrossRef]
- Półbrat, T.; Konkol, D.; Korczyński, M. Optimization of Docosahexaenoic Acid Production by Schizochytrium sp.—A Review. Biocatal. Agric. Biotechnol. 2021, 35, 102076. [Google Scholar] [CrossRef]
- Ren, L.J.; Li, J.; Hu, Y.W.; Ji, X.J.; Huang, H. Utilization of Cane Molasses for Docosahexaenoic Acid Production by Schizochytrium sp. CCTCC M209059. Korean J. Chem. Eng. 2013, 30, 787–789. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, J.; Zhao, J.; Gao, Z.; Zhang, C.; Chen, M. Regulation of Lipid Accumulation in Schizochytrium sp. ATCC 20888 in Response to Different Nitrogen Sources. Eur. J. Lipid Sci. Technol. 2017, 119, 1600393. [Google Scholar] [CrossRef]
- Manikan, V.; Kalil, M.S.; Hamid, A.A. Response Surface Optimization of Culture Medium for Enhanced Docosahexaenoic Acid Production by a Malaysian Thraustochytrid. Sci. Rep. 2015, 5, 8611. [Google Scholar] [CrossRef]
- Nazir, Y.; Halim, H.; Al-Shorgani, N.K.N.; Manikan, V.; Hamid, A.A.; Song, Y. Efficient Conversion of Extracts from Low-Cost, Rejected Fruits for High-Valued Docosahexaenoic Acid Production by Aurantiochytrium sp. SW1. Algal Res. 2020, 50, 101977. [Google Scholar] [CrossRef]
- Bandaiphet, C.; Prasertsan, P. Effect of Aeration and Agitation Rates and Scale-up on Oxygen Transfer Coefficient, KLa in Exopolysaccharide Production from Enterobacter Cloacae WD7. Carbohydr. Polym. 2006, 66, 216–228. [Google Scholar] [CrossRef]
- Sirirak, K.; Powtongsook, S.; Suanjit, S.; Jaritkhuan, S. Effectiveness of Various Bioreactors for Thraustochytrid Culture and Production (Aurantiochytruim Limacinum BUCHAXM 122). PeerJ 2021, 9, e11405. [Google Scholar] [CrossRef]
- Ding, J.; Fu, Z.; Zhu, Y.; He, J.; Ma, L.; Bu, D. Enhancing Docosahexaenoic Acid Production of Schizochytrium sp. by Optimizing Fermentation Using Central Composite Design. BMC Biotechnol. 2022, 22, 39. [Google Scholar] [CrossRef] [PubMed]
Independent Variables | −1.68 | −1 | 0 | +1 | +1.68 |
---|---|---|---|---|---|
Sugarcane molasses (g/L) | 66 | 80 | 100 | 120 | 134 |
Corn steep liquor (g/L) | 2 | 8 | 17 | 26 | 32 |
Residual yeast cream (g/L) | 2.6 | 4 | 6 | 8 | 9.4 |
Kinetic Determinations | Equation |
---|---|
Maximum specific growth rate (h−1) | (2) |
Doubling time of cells (h) | (3) |
Maximum biomass productivity (g∙L−1∙h−1) | (4) |
Total biomass productivity (g∙L−1∙h−1) | (5) |
Overall biomass productivity (g∙h−1) | (6) |
Maximum substrate consumption productivity(g∙L−1∙h−1) | (7) |
Total substrate consumption productivity (g∙L−1∙h−1) | (8) |
Overall substrate consumption productivity (g∙h−1) | (9) |
Maximum product formation productivity (g∙L−1∙h−1) | (10) |
Total product formation productivity (g∙L−1∙h−1) | (11) |
Overall product formation productivity (g∙h−1) | (12) |
Specific substrate consumption rate (h−1) | (13) |
Specific product formation rate (h−1) | (14) |
Biomass-substrate yield (gbiomass∙gsubstrate−1) | YX/S = (15) |
Product-substrate yield (gproduct∙gsubstrate−1) | YP/S (16) |
Product-biomass yield (gproduct∙gbiomass−1) | YP/X (17) |
Run | Independent Variables | Response Variables | ||||
---|---|---|---|---|---|---|
Sugarcane Molasses (g/L) | Corn Steep Liquor (g/L) | Residual Yeast Cream (g/L) | Biomass (g/L) | Lipid Content (%) | Lipids (g/L) | |
1 | 80.0 | 8.0 | 4.0 | 6.00 | 9.07% | 0.54 |
2 | 80.0 | 8.0 | 8.0 | 11.00 | 21.29% | 2.34 |
3 | 80.0 | 26.0 | 4.0 | 17.60 | 15.79% | 2.78 |
4 | 80.0 | 26.0 | 8.0 | 15.40 | 14.93% | 2.30 |
5 | 120.0 | 8.0 | 4.0 | 6.60 | 7.79% | 0.51 |
6 | 120.0 | 8.0 | 8.0 | 8.80 | 6.93% | 0.61 |
7 | 120.0 | 26.0 | 4.0 | 14.40 | 14.50% | 2.09 |
8 | 120.0 | 26.0 | 8.0 | 17.40 | 10.79% | 1.88 |
9 | 66.0 | 17.0 | 6.0 | 15.40 | 29.14% | 4.49 |
10 | 134.0 | 17.0 | 6.0 | 16.00 | 24.07% | 3.85 |
11 | 100.0 | 2.0 | 6.0 | 6.40 | 14.71% | 0.94 |
12 | 100.0 | 32.0 | 6.0 | 17.40 | 13.29% | 2.31 |
13 | 100.0 | 17.0 | 2.6 | 13.00 | 24.07% | 3.13 |
14 | 100.0 | 17.0 | 9.4 | 16.20 | 14.07% | 2.28 |
15 (C) | 100.0 | 17.0 | 6.0 | 14.00 | 18.79% | 2.63 |
16 (C) | 100.0 | 17.0 | 6.0 | 15.00 | 19.64% | 2.95 |
17 (C) | 100.0 | 17.0 | 6.0 | 14.60 | 18.14% | 2.65 |
18 (C) | 100.0 | 17.0 | 6.0 | 15.60 | 17.71% | 2.76 |
Media Composition | 250 mL Shake Flask | 10 L STBR |
---|---|---|
SCM: Sugarcane molasses (g/L) | 66 | 90 |
CSL: Corn steep liquor (g/L) | 24.5 | 25 |
RYC: Residual yeast cream (g/L) | 6 | 15 |
SS: Sea salts (g/L) | 10 | 10 |
MSG: Monosodium glutamate (g/L) | - | 2 |
Fermentation conditions | ||
Operation mode | Batch | Batch |
Working volume | 50 ml | 7 L |
Headspace volume | 200 ml | 3 L |
Agitation speed (rpm) | 120 | 400–800 |
Impeller type | - | Rushton |
Aeration rate (vvm) | - | 0.5–1.0 |
Dissolved oxygen (DO) | - | 30% |
Temperature (°C) | 28 | 25–28 |
pH of liquid media | 6 | 5.5–6.0 |
Inoculum rate (%) | 10 | 10 |
Cultivation time (h) | 120 | 120 |
Kinetic Parameters | 250 mL Shake Flask | 10 L STBR |
---|---|---|
μmax (day−1) | 0.59 | 0.66 |
τd (h) | 28.41 | 25.11 |
rx max (g/L.h) | 0.23 | 0.64 |
rx total (g/L.h) | 0.12 | 0.28 |
rx overall (g/h) | 0.01 | 1.94 |
rs max (g/L.h) | 0.51 | 0.74 |
rs total (g/L.h) | 0.33 | 0.43 |
rs overall (g/h) | 0.02 | 3.03 |
rp max (g/L.h) | 0.09 | 0.35 |
rp total (g/L.h) | 0.04 | 0.12 |
rp overall (g/h) | 0.002 | 0.87 |
QS max (h−1) | 0.12 | 0.09 |
QP max (h−1) | 0.01 | 0.02 |
Xi: Initial biomass (g/L) | 2.36 | 5.98 |
Xf: Final biomass (g/L) | 17.30 | 39.29 |
ΔX: Biomass (g/L) | 14.94 | 33.31 |
Si: Initial substrate (g/L) | 43.27 | 60.25 |
Sf: Final substrate (g/L) | 3.65 | 8.25 |
ΔS: Residual substrate (g/L) | 39.62 | 52.00 |
Pi: Initial product (g/L) | 0.08 | 0.10 |
Pf: Final product (g/L) | 4.41 | 14.98 |
ΔP: Product (g/L) | 4.33 | 14.88 |
YX/S (gbiomass/gsubstrate) | 0.38 | 0.64 |
YP/S (gproduct/gsubstrate) | 0.11 | 0.29 |
YP/X (gproduct/gbiomass) | 0.29 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Reis, G.A.; Orozco Colonia, B.S.; Martínez-Burgos, W.J.; Ocán-Torres, D.; Rodrigues, C.; de Melo Pereira, G.V.; Soccol, C.R. Sustainable Omega-3 Lipid Production from Agro-Industrial By-Products Using Thraustochytrids: Enabling Process Development, Optimization, and Scale-Up. Foods 2024, 13, 3646. https://doi.org/10.3390/foods13223646
dos Reis GA, Orozco Colonia BS, Martínez-Burgos WJ, Ocán-Torres D, Rodrigues C, de Melo Pereira GV, Soccol CR. Sustainable Omega-3 Lipid Production from Agro-Industrial By-Products Using Thraustochytrids: Enabling Process Development, Optimization, and Scale-Up. Foods. 2024; 13(22):3646. https://doi.org/10.3390/foods13223646
Chicago/Turabian Styledos Reis, Guilherme Anacleto, Brigitte Sthepani Orozco Colonia, Walter Jose Martínez-Burgos, Diego Ocán-Torres, Cristine Rodrigues, Gilberto Vinícius de Melo Pereira, and Carlos Ricardo Soccol. 2024. "Sustainable Omega-3 Lipid Production from Agro-Industrial By-Products Using Thraustochytrids: Enabling Process Development, Optimization, and Scale-Up" Foods 13, no. 22: 3646. https://doi.org/10.3390/foods13223646
APA Styledos Reis, G. A., Orozco Colonia, B. S., Martínez-Burgos, W. J., Ocán-Torres, D., Rodrigues, C., de Melo Pereira, G. V., & Soccol, C. R. (2024). Sustainable Omega-3 Lipid Production from Agro-Industrial By-Products Using Thraustochytrids: Enabling Process Development, Optimization, and Scale-Up. Foods, 13(22), 3646. https://doi.org/10.3390/foods13223646