Rapid Authentication of Intact Stingless Bee Honey (SBH) by Portable LED-Based Fluorescence Spectroscopy and Chemometrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Fluorescence Spectral Data Acquisition
2.3. Data Analysis
3. Results and Discussion
3.1. Spectral Analysis of SBH and Non-SBH Samples
3.2. Principal Component Analysis
3.3. Results of Classification: Model Development
3.4. Result of Classification: Model Evaluation
3.5. Result of Quantification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ávila, S.; Beux, M.R.; Ribani, R.H.; Zambiazi, R.C. Stingless bee honey: Quality parameters, bioactive compounds, health-promotion properties and modification detection strategies. Trends Food Sci. Technol. 2018, 81, 37–50. [Google Scholar] [CrossRef]
- Pimentel, T.C.; Rosset, M.; de Sousa, J.M.B.; de Oliveira, L.I.G.; Mafaldo, I.M.; Pintado, M.M.E.; de Souza, E.L.; Magnani, M. Stingless bee honey: An overview of health benefits and main market challenges. J. Food Biochem. 2022, 46, e13883. [Google Scholar] [CrossRef] [PubMed]
- Yaacob, M.; Rajab, N.F.; Shahar, S.; Sharif, R. Stingless bee honey and its potential value: A systematic review. Food Res. 2018, 2, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Biluca, F.C.; da Silva, B.; Caon, T.; Mohr, E.T.B.; Vieira, G.N.; Gonzaga, L.V.; Vitali, L.; Micke, G.; Fett, R.; Dalmarco, E.M.; et al. Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae). Food Res. Int. 2020, 129, 108756. [Google Scholar] [CrossRef]
- Dos Santos, A.C.; Biluca, F.C.; Braghini, F.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Phenolic composition and biological activities of stingless bee honey: An overview based on its aglycone and glycoside compounds. Food Res. Int. 2021, 147, 110553. [Google Scholar] [CrossRef] [PubMed]
- Shamsudin, S.; Selamat, J.; Shomad, M.A.; Aziz, M.F.A.; Akanda, M.J.H. Antioxidant properties and characterization of Heterotrigona itama honey from various botanical origins according to their polyphenol compounds. J. Food Qual. 2022, 2022, 2893401. [Google Scholar] [CrossRef]
- Ranneh, Y.; Ali, F.; Zarei, M.; Akim, A.M.; Hamid, H.A.; Khazaai, H. Malaysian stingless bee and Tualang honeys: A comparative characterization of total antioxidant capacity and phenolic profile using liquid chromatography-mass spectrometry. LWT 2018, 89, 1–9. [Google Scholar] [CrossRef]
- Marcinkevicius, K.; Gennari, G.; Salomón, V.; Vera, N.; Maldonado, L. Detection of adulterations in native stingless bees honey from Argentina using UV–Vis spectroscopy coupled with chemometrics. J. Food Meas. Charact. 2024, 18, 7283–7294. [Google Scholar] [CrossRef]
- Biswas, A.; Chaudhari, S.R. Exploring the role of NIR spectroscopy in quantifying and verifying honey authenticity: A review. Food Chem. 2024, 445, 138712. [Google Scholar] [CrossRef]
- Fakhlaei, R.; Selamat, J.; Khatib, A.; Razis, A.F.A.; Sukor, R.; Ahmad, S.; Babadi, A.A. The toxic impact of honey adulteration: A review. Foods 2020, 9, 1538. [Google Scholar] [CrossRef]
- Johnson, R.J.; Fuggle, S.V.; Mumford, L.; Bradley, J.A.; Forsythe, J.L.; Rudge, C.J.; Kidney Advisory Group of NHS Blood and Transplant. A new UK 2006 national kidney allocation scheme for deceased heart-beating donor kidneys. Transplantation 2010, 89, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Samat, S.; Enchang, F.K.; Hussein, F.N.; Ismail, W.I.W. Four-week consumption of Malaysian honey reduces excess weight gain and improves obesity-related parameters in high fat diet induced obese rats. Evid. Based Complement. Altern. Med. 2017, 2017, 1342150. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Amaral, J.S.; Oliveira, M.B.P.P.; Mafra, I. A comprehensive review on the main honey authentication issues: Production and origin. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1072–1100. [Google Scholar] [CrossRef]
- Shapiro, A.; Mu, W.; Roncal, C.; Cheng, K.-Y.; Johnson, R.J.; Scarpace, P.J. Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding. Am. J. Physiol. Regulat. Integr. Compar. Physiol. 2008, 295, R1370–R1375. [Google Scholar] [CrossRef]
- Brar, D.S.; Nanda, V. A comprehensive introduction to honey adulteration. In Advanced Techniques of Honey Analysis, 1st ed.; Nayik, G.A., Uddin, J., Nanda, V., Eds.; Academic Press: London, UK, 2024; Volume 1, pp. 63–91. [Google Scholar] [CrossRef]
- Bose, D.; Padmavati, M. Honey authentication: A review of the issues and challenges associated with honey adulteration. Food BioSci. 2024, 61, 105004. [Google Scholar] [CrossRef]
- White, J.W. Internal standard stable carbon isotope ratio method for determination of c-4 plant sugars in honey: Collaborative study, and evaluation of improved protein preparation procedure. J. AOAC Int. 1992, 75, 543–548. [Google Scholar] [CrossRef]
- Limm, W.; Karunathilaka, S.R.; Mossoba, M.M. Fourier transform infrared spectroscopy and chemometrics for the rapid screening of economically motivated adulteration of honey spiked with corn or rice syrup. J. Food Prot. 2023, 86, 100054. [Google Scholar] [CrossRef]
- Tsagkaris, A.S.; Koulis, G.A.; Danezis, G.P.; Martakos, I.; Dasenaki, M.; Georgiou, C.A.; Thomaidis, N.S. Honey authenticity: Analytical techniques, state of the art and challenges. RSC Adv. 2021, 11, 11273–11294. [Google Scholar] [CrossRef] [PubMed]
- Lao, M.R.; Bautista VII, A.T.; Mendoza, N.D.S.; Cervancia, C.R. Stable carbon isotope ratio analysis of Philippine honeys for the determination of adulteration with C4 sugars. Food Anal. Methods 2021, 14, 1443–1455. [Google Scholar] [CrossRef]
- Hao, S.; Yuan, J.; Wu, Q.; Liu, X.; Cui, J.; Xuan, H. Rapid identification of corn sugar syrup adulteration in wolfberry honey based on fluorescence spectroscopy coupled with chemometrics. Foods 2023, 12, 2309. [Google Scholar] [CrossRef]
- Berriel, V.; Perdomo, C. Determination of high fructose corn syrup concentration in Uruguayan honey by 13C analyses. LWT 2016, 73, 649–653. [Google Scholar] [CrossRef]
- Cárdenas-Escudero, J.; Galán-Madruga, D.; Cáceres, J.O. Rapid, reliable and easy-to-perform chemometric-less method for rice syrup adulterated honey detection using FTIR-ATR. Talanta 2023, 253, 123961. [Google Scholar] [CrossRef] [PubMed]
- David, M.; Magdas, D.A. Authentication of honey origin and harvesting year based on Raman spectroscopy and chemometrics. Talanta Open 2024, 10, 100342. [Google Scholar] [CrossRef]
- Wang, H.; Cao, X.; Han, T.; Pei, H.; Ren, H.; Stead, S. A novel methodology for real-time identification of the botanical origins and adulteration of honey by rapid evaporative ionization mass spectrometry. Food Control 2019, 106, 106753. [Google Scholar] [CrossRef]
- Wang, S.; Guo, Q.; Wang, L.; Lin, L.; Shi, H.; Cao, H.; Cao, B. Detection of honey adulteration with starch syrup by high performance liquid chromatography. Food Chem. 2015, 172, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Akyıldız, I.E.; Erdem, O.; Raday, S.; Daştan, T.; Acar, S.; Uzunöner, D.; Düz, G.; Damarlı, E. Elucidating the false positive tendency at AOAC 998.12 C-4 sugar test for pine honey samples: Modified sample preparation method for accurate δ13C measurement of honey proteome. J. Food Compos. Anal. 2022, 114, 104787. [Google Scholar] [CrossRef]
- Shehata, M.; Sophie Dodd, S.; Sara Mosca, S.; Matousek, P.; Parmar, B.; Kevei, Z.; Anastasiadi, M. Application of spatial offset Raman spectroscopy (SORS) and machine learning for sugar syrup adulteration detection in UK honey. Foods 2024, 13, 2425. [Google Scholar] [CrossRef]
- Hajj, R.E.; Skaff, W.; Estephan, N. Application of common components analysis to mid-infrared spectra for the authentication of Lebanese honey. J. Spectros. 2024, 2024, 3370665. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Li, M.; Han, D.; Liu, W. Determination of invert syrup adulterated in acacia honey by terahertz spectroscopy with different spectral features. J. Sci. Food Agric. 2020, 100, 1913–1921. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Yang, S.; Han, D. Terahertz time-domain attenuated total reflection spectroscopy applied to the rapid discrimination of the botanical origin of honeys. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 196, 123–130. [Google Scholar] [CrossRef]
- Bodor, Z.; Majadi, M.; Benedek, C.; Zaukuu, J.-L.Z.; Bálint, M.V.; Csobod, É.C.; Kovacs, Z. Detection of low-level adulteration of Hungarian honey using near infrared spectroscopy. Chemosensors 2023, 11, 89. [Google Scholar] [CrossRef]
- Peng, J.; Xie, W.; Jiang, J.; Zhao, Z.; Zhou, F.; Liu, F. Fast quantification of honey adulteration with laser-induced breakdown spectroscopy and chemometric methods. Foods 2020, 9, 341. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, Y.; Xia, J.; Xiong, Y.; Min, S. Quantitative analysis of honey adulteration by spectrum analysis combined with several high-level data fusion strategies. Vib. Spectrosc. 2020, 108, 103060. [Google Scholar] [CrossRef]
- de Souza, R.R.; de Sousa Fernandes, D.D.; Diniz, P.H.G.D. Honey authentication in terms of its adulteration with sugar syrups using UV–Vis spectroscopy and one-class classifiers. Food Chem. 2021, 365, 130467. [Google Scholar] [CrossRef] [PubMed]
- Valinger, D.; Longin, L.; Grbeš, F.; Benković, M.; Jurina, T.; Kljusurić, J.G.; Tušek, A.J. Detection of honey adulteration—The potential of UV-VIS and NIR spectroscopy coupled with multivariate analysis. LWT 2021, 145, 111316. [Google Scholar] [CrossRef]
- Nunes, A.; Azevedo, G.Z.; Rocha dos Santos, B.; de Liz, M.S.M.; Schneider, F.S.S.; Rodrigues, E.R.O.; Moura, S.; Maraschin, M. A guide for quality control of honey: Application of UV–vis scanning spectrophotometry and NIR spectroscopy for determination of chemical profiles of floral honey produced in southern Brazil. Food Humanit. 2023, 1, 1423–1435. [Google Scholar] [CrossRef]
- Dimakopoulou-Papazoglou, D.; Ploskas, N.; Koutsoumanis, K.; Katsanidis, E. Identification of geographical and botanical origin of Mediterranean honeys using UV-vis spectroscopy and multivariate statistical analysis. J. Food Meas. Charact. 2024, 18, 3923–3934. [Google Scholar] [CrossRef]
- Suhandy, D.; Yulia, M. The use of UV spectroscopy and SIMCA for the authentication of Indonesian honeys according to botanical, entomological and geographical origins. Molecules 2021, 26, 915. [Google Scholar] [CrossRef]
- Dimakopoulou-Papazoglou, D.; Ploskas, N.; Serrano, S.; Silva, C.S.; Valdramidis, V.; Koutsoumanis, K.; Katsanidis, E. Application of UV–Vis spectroscopy for the detection of adulteration in Mediterranean honeys. Eur. Food Res. Technol. 2023, 249, 3043–3053. [Google Scholar] [CrossRef]
- Mitra, P.K.; Karmakar, R.; Nandi, R.; Gupta, S. Low-cost rapid workflow for honey adulteration detection by UV–Vis spectroscopy in combination with factorial design, response surface methodology and supervised machine learning classifiers. Bioresource Technol. Rep. 2023, 21, 101327. [Google Scholar] [CrossRef]
- Nunes, A.; Azevedo, G.Z.; Rocha dos Santos, B.; Vanz Borges, C.; Lima, G.P.P.; Crocoli, C.; Moura, L.S.; Maraschin, M. Characterization of Brazilian floral honey produced in the States of Santa Catarina and São Paulo through ultraviolet-visible (UV–vis), near-infrared (NIR), and nuclear magnetic resonance (NMR) spectroscopy. Food Res. Int. 2022, 162, 111913. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.J.; Al-Ghamdi, A.; Khan, K.A.; Adgaba, N.; El-Ahmady, S.H.; Gad, H.A.; Roshan, A.; Meo, S.A.; Kolyali, S. Validation of botanical origins and geographical sources of some Saudi honeys using ultraviolet spectroscopy and chemometric analysis. Saudi J. Biol. Sci. 2018, 25, 377–382. [Google Scholar] [CrossRef]
- Ameer, K.; Murtaza, M.A.; Jiang, G.; Zhao, C.-C.; Siddique, F.; Kausar, T.; Mueen-ud-Din, G.; Mahmood, S. Fluorescence and ultraviolet-visible spectroscopy in the honey analysis. In Advanced Techniques of Honey Analysis, 1st ed.; Nayik, G.A., Uddin, J., Nanda, V., Eds.; Academic Press: London, UK, 2024; Volume 1, pp. 153–191. [Google Scholar] [CrossRef]
- Banaś, J.; Banaś, M. Combined application of fluorescence spectroscopy and principal component analysis in characterisation of selected herbhoneys. Molecules 2024, 29, 749. [Google Scholar] [CrossRef]
- Ropciuc, S.; Dranca, F.; Pauliuc, D.; Oroian, M. Honey authentication and adulteration detection using emission—excitation spectra combined with chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 293, 122459. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Kluwer Academic/Plenum: New York, NY, USA, 2007; pp. 63–94. [Google Scholar]
- Truong, H.T.D.; Reddy, P.; Reis, M.M.; Archer, R. Internal reflectance cell fluorescence measurement combined with multi-way analysis to detect fluorescence signatures of undiluted honeys and a fusion of fluorescence and NIR to enhance predictability. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 290, 122274. [Google Scholar] [CrossRef]
- Suhandy, D.; Al Riza, D.F.; Yulia, M.; Kusumiyati, K. Non-targeted detection and quantification of food adulteration of high-quality stingless bee honey (SBH) via a portable LED-based fluorescence spectroscopy. Foods 2023, 12, 3067. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Li, J.; Liu, X.; Yuan, J.; Yuan, W.; Tian, Y.; Xuan, H. Authentication of acacia honey using fluorescence spectroscopy. Food Control 2021, 130, 108327. [Google Scholar] [CrossRef]
- Becerril-Sánchez, A.L.; Quintero-Salazar, B.; Dublán-García, O.; Escalona-Buendía, H.B. Phenolic compounds in honey and their relationship with antioxidant activity, botanical origin, and color. Antioxidants 2021, 10, 1700. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, M.; Santander, E. Physicochemical and sensory analysis of honeys from eastern Formosa province (Argentina) and its relationship with their botanical origin. Food Chem. Adv. 2022, 1, 100026. [Google Scholar] [CrossRef]
- Julika, W.N.; Ajit, A.; Naila, A.; Sulaiman, A.Z. The effect of storage condition on physicochemical properties of some stingless bee honey collected in Malaysia local market. Mater. Today Proc. 2022, 57, 1396–1402. [Google Scholar] [CrossRef]
- Frausto-Reyes, C.; Casillas-Peñuelas, R.; Quintanar-Stephano, J.L.; Macías-López, E.; Bujdud-Pérez, J.M.; Medina-Ramírez, I. Spectroscopic study of honey from Apis mellifera from different regions in Mexico. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 178, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Lastra-Mejías, M.; Torreblanca-Zanca, A.; Aroca-Santos, R.; Cacilla, J.C.; Izquierdo, J.G.; Torrecilla, J.S. Characterization of an array of honeys of different types and botanical origins through fluorescence emission based on LEDs. Talanta 2018, 185, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Mehretie, S.; Al Riza, D.F.; Yoshito, S.; Kondo, N. Classification of raw Ethiopian honeys using front face fluorescence spectra with multivariate analysis. Food Control 2018, 84, 83–88. [Google Scholar] [CrossRef]
- Ruoff, K.; Luginbühl, W.; Künzli, R.; Bogdanov, S.; Bosset, J.O.; von der Ohe, K.; von der Ohe, W.; Amadò, R. Authentication of the botanical and geographical origin of honey by front-face fluorescence spectroscopy. J. Agric. Food Chem. 2006, 54, 6858–6866. [Google Scholar] [CrossRef] [PubMed]
- Parri, E.; Santinami, G.; Domenici, V. Front-face fluorescence of honey of different botanic origin: A case study from Tuscany (Italy). Appl. Sci. 2020, 10, 1776. [Google Scholar] [CrossRef]
- Mara, A.; Migliorini, M.; Ciulu, M.; Roberto Chignola, R.; Egido, C.; Núñez, O.; Sentellas, S.; Saurina, J.; Caredda, M.; Deroma, M.A.; et al. Elemental fingerprinting combined with machine learning techniques as a powerful tool for geographical discrimination of honeys from nearby regions. Foods 2024, 13, 243. [Google Scholar] [CrossRef]
- Masoomi, S.; Sharifi, H.; Hemmateenejad, B. A paper-based optical tongue for characterization of iranian honey: Identification of geographical/botanical origins and adulteration detection. Food Control 2024, 155, 110052. [Google Scholar] [CrossRef]
- Ibarra-Pérez, T.; Jaramillo-Martínez, R.; Correa-Aguado, H.C.; Ndjatchi, C.; Martínez-Blanco, M.R.; Héctor, A.; Guerrero-Osuna, H.A.; Mirelez-Delgado, F.D.; Casas-Flores, J.I.; Reveles-Martínez, R.; et al. A performance comparison of CNN models for bean phenology classification using transfer learning techniques. AgriEngineering 2024, 6, 841–857. [Google Scholar] [CrossRef]
- Ghafoor, N.A.; Sitkowska, B. MasPA: A machine learning application to predict risk of mastitis in cattle from AMS sensor data. AgriEngineering 2021, 3, 575–583. [Google Scholar] [CrossRef]
- Vitale, R.; Cocchi, M.; Biancolillo, A.; Ruckebusch, C.; Marini, F. Class modelling by soft independent modelling of class analogy: Why, when, how? A tutorial. Anal. Chim. Acta 2023, 1270, 341304. [Google Scholar] [CrossRef]
- Ballabio, D.; Consonni, V. Classification tools in chemistry. Part 1: Linear models. PLS-DA. Anal. Methods 2013, 5, 3790–3798. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, B.; Yang, J.; Zhou, J.; Xu, Y. Linear discriminant analysis. Nat. Rev. Methods Primers 2024, 4, 70. [Google Scholar] [CrossRef]
- Lasalvia, M.; Capozzi, V.; Perna, G. A comparison of PCA-LDA and PLS-DA techniques for classification of vibrational spectra. Appl. Sci. 2022, 12, 5345. [Google Scholar] [CrossRef]
- Kharbach, M.; Mansouri, M.A.; Taabouz, M.; Yu, H. Current application of advancing spectroscopy techniques in food analysis: Data handling with chemometric approaches. Foods 2023, 12, 2753. [Google Scholar] [CrossRef]
- Li, Y.; Fang, T.; Zhu, S.; Huang, F.; Chen, Z.; Wang, Y. Detection of olive oil adulteration with waste cooking oil via Raman spectroscopy combined with iPLS and SiPLS. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 189, 37–43. [Google Scholar] [CrossRef]
- Truong, H.T.D.; Al-Sarayreh, M.; Reddy, P.; Reis, M.M.; Archer, R. The potential of deep learning to counter the matrix effect for assessment of honey quality and monoflorality. Microchem. J. 2024, 204, 111200. [Google Scholar] [CrossRef]
- Babatunde, H.A.; Collins, J.; Lukman, R.; Saxton, R.; Andersen, T.; McDougal, O.M. SVR chemometrics to quantify β-lactoglobulin and α-lactalbumin in milk using MIR. Foods 2024, 13, 166. [Google Scholar] [CrossRef]
- El Mrabet, A.; El Orche, A.; Diane, A.; Alami, L.; Said, A.A.H.; Bouatia, M.; El Otmani, I.S. Application of multivariate data analysis methods for rapid detection and quantification of adulterants in lavender essential oil using infrared spectroscopy. Flavour. Fragr. J. 2024. [Google Scholar] [CrossRef]
- Aykas, D.P. Determination of possible adulteration and quality assessment in commercial honey. Foods 2023, 12, 523. [Google Scholar] [CrossRef]
- Ghosh, N.; Verma, Y.; Majumder, S.K.; Gupta, P.K. A fluorescence spectroscopic study of honey and cane sugar syrup. Food Sci. Technol. Res. 2005, 11, 59–62. [Google Scholar] [CrossRef]
- Yan, S.; Sun, M.; Wang, X.; Shan, J.; Xue, X. A novel, rapid screening technique for sugar syrup adulteration in honey using fluorescence spectroscopy. Foods 2022, 11, 2316. [Google Scholar] [CrossRef]
- Barbieri, D.; Gabriele, M.; Summa, M.; Colosimo, R.; Leonardi, D.; Domenici, V.; Pucci, L. Antioxidant, nutraceutical properties, and fluorescence spectral profiles of bee pollen samples from different botanical origins. Antioxidants 2020, 9, 1001. [Google Scholar] [CrossRef]
- Sergiel, I.; Pohl, P.; Biesaga, M.; Mironczyk, A. 2014. Suitability of three-dimensional synchronous fluorescence spectroscopy for fingerprint analysis of honey samples with reference to their phenolic profiles. Food Chem. 2014, 145, 319–326. [Google Scholar] [CrossRef]
- Lang, M.; Stober, F.; Uchtenthaler, H.K. Fluorescence emission spectra of plant leaves and plant constituents. Rad. Environ. Biophys. 1991, 30, 333–347. [Google Scholar] [CrossRef]
- Balcázar-Zumaeta, C.R.; Maicelo-Quintana, J.L.; Salón-Llanos, G.; Barrena, M.; Muñoz-Astecker, L.D.; Cayo-Colca, I.S.; Torrejón-Valqui, L.; Castro-Alayo, E.M. A novel technique using confocal Raman spectroscopy coupled with PLS-DA to identify the types of sugar in three tropical fruits. Appl. Sci. 2024, 14, 8476. [Google Scholar] [CrossRef]
- Suhandy, D.; Yulia, M. Classification of Lampung robusta specialty coffee according to differences in cherry processing methods using UV spectroscopy and chemometrics. Agriculture 2021, 11, 109. [Google Scholar] [CrossRef]
- Matwijczuk, A.; Budziak-Wieczorek, I.; Czernel, G.; Karcz, D.; Barańska, A.; Jedlińska, A.; Samborska, K. Classification of honey powder composition by FTIR spectroscopy coupled with chemometric analysis. Molecules 2022, 27, 3800. [Google Scholar] [CrossRef]
- Raypah, M.E.; Zhi, L.J.; Loon, L.Z.; Omar, A.F. Near-infrared spectroscopy with chemometrics for identification and quantification of adulteration in high-quality stingless bee honey. Chemom. Intell. Lab. Syst. 2022, 224, 104540. [Google Scholar] [CrossRef]
- Nayik, G.A.; Suhag, Y.; Majid, I.; Nanda, V. Discrimination of high altitude Indian honey by chemometric approach according to their antioxidant properties and macro minerals. J. Saudi Soc. Agric. Sci. 2018, 17, 200–207. [Google Scholar] [CrossRef]
- Li, Q.; Zeng, J.; Lin, L.; Zhang, J.; Zhu, J.; Yao, L.; Wang, S.; Yao, Z.; Wu, Z. Low risk of category misdiagnosis of rice syrup adulteration in three botanical origin honey by ATR-FTIR and general model. Food Chem. 2020, 332, 127356. [Google Scholar] [CrossRef]
- Wu, X.; Xu, B.; Ma, R.; Gao, S.; Niu, Y.; Zhang, X.; Du, Z.; Liu, H.; Zhang, Y. Botanical origin identification and adulteration quantification of honey based on Raman spectroscopy combined with convolutional neural network. Vib. Spectrosc. 2022, 123, 103439. [Google Scholar] [CrossRef]
- Li, S.; Zhang, X.; Shan, Y.; Su, D.; Ma, Q.; Wen, R.; Li, J. Qualitative and quantitative detection of honey adulterated with high-fructose corn syrup and maltose syrup by using near-infrared spectroscopy. Food Chem. 2017, 218, 231–236. [Google Scholar] [CrossRef]
- Ferreiro-González, M.; Espada-Bellido, E.; Guillén-Cueto, L.; Palma, M.; Barroso, C.G.; Barbero, G.F. Rapid quantification of honey adulteration by visible-near infrared spectroscopy combined with chemometrics. Talanta 2018, 188, 288–292. [Google Scholar] [CrossRef]
- Amiry, S.; Esmaiili, M.; Alizadeh, M. Classification of adulterated honeys by multivariate analysis. Food Chem. 2017, 224, 390–397. [Google Scholar] [CrossRef]
- Egido, C.; Saurina, J.; Sentellas, S.; Núñez, O. Honey fraud detection based on sugar syrup adulterations by HPLC-UV fingerprinting and chemometrics. Food Chem. 2024, 436, 137758. [Google Scholar] [CrossRef]
- Parrini, S.; Staglianò, N.; Bozzi, R.; Argenti, G. Can Grassland chemical quality be quantified using transform near-infrared spectroscopy? Animals 2022, 12, 86. [Google Scholar] [CrossRef]
- Williams, P.C.; Sobering, D.C. Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. J. Near Infrared Spectrosc. JNIRS 1993, 1, 25–32. [Google Scholar] [CrossRef]
- Benković, M.; Jurina, T.; Longin, L.; Grbeš, F.; Valinger, D.; Tušek, A.J.; Kljusurić, J.G. Qualitative and quantitative detection of acacia honey adulteration with glucose syrup using near-infrared spectroscopy. Separations 2022, 9, 312. [Google Scholar] [CrossRef]
- Anjos, O.; Campos, M.G.; Ruiz, P.C.; Antunes, P. Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chem. 2015, 169, 218–223. [Google Scholar] [CrossRef]
- Ciursă, P.; Pauliuc, D.; Dranca, F.; Ropciuc, S.; Oroian, M. Detection of honey adulterated with agave, corn, inverted sugar, maple and rice syrups using FTIR analysis. Food Control 2021, 130, 108266. [Google Scholar] [CrossRef]
- Chen, Q.; Qi, S.; Li, H.; Han, X.; Ouyang, Q.; Zhao, J. Determination of rice syrup adulterant concentration in honey using three-dimensional fluorescence spectra and multivariate calibrations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 131, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Mouazen, A.M.; Al-Walaan, N. Glucose adulteration in Saudi honey with visible and near infrared spectroscopy. Int. J. Food Prop. 2014, 17, 2263–2274. [Google Scholar] [CrossRef]
SIMCA Model | Calibration and Validation Samples | Principal Components (PCs) | The Cumulative Percentage Variance (CPV) (%) | |
---|---|---|---|---|
Calibration | Validation | |||
Authentic SBH | 60 | 3 | 98.3490 | 98.1350 |
Adulterated SBH | 72 | 4 | 99.3491 | 99.2453 |
Fake SBH | 60 | 4 | 99.0731 | 98.8279 |
Rice Syrup (RS) | 120 | 4 | 98.8600 | 98.7172 |
Model | Samples | Actual | Accuracy | ||||
---|---|---|---|---|---|---|---|
Authentic SBH | Adulterated SBH | Fake SBH | Rice Syrup | ||||
SIMCA | Predicted | Authentic SBH | 19 | 4 | 0 | 0 | 78.1% |
Adulterated SBH | 20 | 39 | 0 | 19 | |||
Fake SBH | 0 | 0 | 39 | 0 | |||
Rice Syrup | 0 | 0 | 0 | 56 | |||
PLS-DA | Predicted | Authentic SBH | 30 | 0 | 0 | 0 | 86.5% |
Adulterated SBH | 10 | 35 | 2 | 0 | |||
Fake SBH | 0 | 13 | 38 | 3 | |||
Rice Syrup | 0 | 0 | 0 | 77 | |||
LDA | Predicted | Authentic SBH | 36 | 11 | 0 | 1 | 85.6% |
Adulterated SBH | 2 | 25 | 0 | 2 | |||
Fake SBH | 2 | 0 | 40 | 0 | |||
Rice Syrup | 0 | 12 | 0 | 77 | |||
PCA-LDA | Predicted | Authentic SBH | 40 | 0 | 0 | 0 | 99.5% |
Adulterated SBH | 0 | 48 | 1 | 0 | |||
Fake SBH | 0 | 0 | 39 | 0 | |||
Rice Syrup | 0 | 0 | 0 | 80 |
Intervals | Region | R2 | RMSEC (%) | RMSECV (%) | RPD | RER |
---|---|---|---|---|---|---|
Full spectrum | 348.5–866.5 nm | 0.899 | 5.439 | 6.157 | 2.793 | 8.121 |
1 | 348.5–398.0 nm | 0.823 | 7.189 | 7.821 | 2.199 | 6.393 |
2 | 398.5–448.0 nm | 0.844 | 6.750 | 7.247 | 2.373 | 6.899 |
3 | 448.5–498.0 nm | 0.873 | 6.082 | 6.567 | 2.619 | 7.614 |
4 | 498.5–548.0 nm | 0.873 | 6.077 | 6.654 | 2.585 | 7.514 |
5 | 548.5–598.0 nm | 0.871 | 6.138 | 6.821 | 2.521 | 7.330 |
6 | 598.5–648.0 nm | 0.824 | 7.172 | 7.446 | 2.310 | 6.715 |
7 | 648.5–698.0 nm | 0.795 | 7.727 | 8.128 | 2.116 | 6.152 |
8 | 698.5–748.0 nm | 0.824 | 7.167 | 8.874 | 1.938 | 5.634 |
9 | 748.5–798.0 nm | 0.764 | 8.305 | 12.642 | 1.360 | 3.955 |
10 | 798.5–866.5 nm | 0.684 | 9.607 | 11.134 | 1.545 | 4.491 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suhandy, D.; Al Riza, D.F.; Yulia, M.; Kusumiyati, K.; Telaumbanua, M.; Naito, H. Rapid Authentication of Intact Stingless Bee Honey (SBH) by Portable LED-Based Fluorescence Spectroscopy and Chemometrics. Foods 2024, 13, 3648. https://doi.org/10.3390/foods13223648
Suhandy D, Al Riza DF, Yulia M, Kusumiyati K, Telaumbanua M, Naito H. Rapid Authentication of Intact Stingless Bee Honey (SBH) by Portable LED-Based Fluorescence Spectroscopy and Chemometrics. Foods. 2024; 13(22):3648. https://doi.org/10.3390/foods13223648
Chicago/Turabian StyleSuhandy, Diding, Dimas Firmanda Al Riza, Meinilwita Yulia, Kusumiyati Kusumiyati, Mareli Telaumbanua, and Hirotaka Naito. 2024. "Rapid Authentication of Intact Stingless Bee Honey (SBH) by Portable LED-Based Fluorescence Spectroscopy and Chemometrics" Foods 13, no. 22: 3648. https://doi.org/10.3390/foods13223648
APA StyleSuhandy, D., Al Riza, D. F., Yulia, M., Kusumiyati, K., Telaumbanua, M., & Naito, H. (2024). Rapid Authentication of Intact Stingless Bee Honey (SBH) by Portable LED-Based Fluorescence Spectroscopy and Chemometrics. Foods, 13(22), 3648. https://doi.org/10.3390/foods13223648