Ultraviolet-B Radiation Stimulates Flavonoid Biosynthesis and Antioxidant Systems in Buckwheat Sprouts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation of Buckwheat Sprouts
2.2. Physiological Metabolism
2.3. Total Phenolic and Total Flavonoid Contents
2.4. Antioxidant Capacity
2.5. Antioxidant Enzyme Activity
2.6. Flavones Synthetase Activity
2.7. Chlorophyll Content
2.8. RNA Extraction, Reverse Transcription, and Relative Gene Expression Levels
2.9. Statistical Analysis
3. Results
3.1. The Growth Status, MDA Content, and H2O2 Content
3.2. Total Phenolics and Total Flavonoid Content
3.3. Antioxidant Capacity
3.4. Antioxidant Enzyme Activity and Relative Expression Level of the Corresponding Gene
3.5. Critical Enzyme Activities and Relative Expression Levels of Corresponding Genes for Flavone Synthesis
3.6. Chlorophyll Content and Expression Levels of UV-B-Related Genes
3.7. Correlation Between Indicators
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, H.; Guleria, S.; Kimta, N.; Dhalaria, R.; Nepovimova, E.; Dhanjal, D.S.; Alomar, S.Y.; Kuca, K. Amaranth and buckwheat grains: Nutritional profile, development of functional foods, their pre-clinical cum clinical aspects and enrichment in feed. Curr. Res. Food Sci. 2024, 9, 100836. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Villaluenga, C.; Peñas, E.; Hernández-Ledesma, B. Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem. Toxicol. 2020, 137, 111178. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lyv, Y.; Zhou, S.; Yu, S.; Zhou, J. Microbial cell factories for the production of flavonoids-barriers and opportunities. Bioresour. Technol. 2022, 360, 127538. [Google Scholar] [CrossRef] [PubMed]
- Huda, M.N.; Lu, S.; Jahan, T.; Ding, M.; Jha, R.; Zhang, K.; Zhang, W.; Georgiev, M.I.; Park, S.U.; Zhou, M. Treasure from garden: Bioactive compounds of buckwheat. Food Chem. 2021, 335, 127653. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.R.; Deng, J.C.; Li, Q.Y.; Cao, Y.J.; Lin, Y.C.; Bai, W.D.; Liu, B.; Rao, P.F.; Ni, L.; Lv, X.C. Protective mechanism of common buckwheat (Fagopyrum esculentum Moench.) against nonalcoholic fatty liver disease associated with dyslipidemia in mice fed a high-fat and high-cholesterol diet. J. Agric. Food Chem. 2020, 68, 6530–6543. [Google Scholar] [CrossRef]
- Wang, J.; Yu, X.; Jiang, Y.; Wang, Y.; Li, Y.; Han, S. Effects of a fermented buckwheat flower and leaf extract on the blood glucose and lipid profile of type 2 diabetic db/db mice. J. Tradit. Chin. Med. 2020, 40, 197–203. [Google Scholar]
- Peng, W.P.; Wang, N.; Wang, S.M.; Wang, J.Z.; Bian, Z.X. Effects of microwave and exogenous l-phenylalanine treatment on phenolic constituents, antioxidant capacity and enzyme inhibitory activity of Tartary buckwheat sprouts. Food Sci. Biotechnol. 2023, 32, 11–19. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, J.; Yin, Y.Q. Germination promotes flavonoid accumulation of finger millet (Eleusine coracana L.): Response surface optimization and investigation of accumulation mechanism. Plants 2024, 13, 2191. [Google Scholar] [CrossRef]
- Yin, Y.; Hu, J.; Yang, Z.; Fang, W.; Yang, J. Effects of methyl jasmonate and NaCl treatments on the resveratrol accumulation and defensive responses in germinated peanut (Arachis hypogaea L.). Plant Physiol. Biochem. 2023, 194, 664–673. [Google Scholar] [CrossRef]
- Sawai, Y. Effect of light intensity on flavonoid contents of common and tartary buckwheat sprouts. J. Jpn. Soc. Food Sci. Technol. 2016, 63, 382–387. [Google Scholar] [CrossRef]
- Qin, P.Y.; Wei, A.C.; Zhao, D.G.; Yao, Y.; Yang, X.X.; Dun, B.Q.; Ren, G.X. Low concentration of sodium bicarbonate improves the bioactive compound levels and antioxidant and α-glucosidase inhibitory activities of tartary buckwheat sprouts. Food Chem. 2017, 224, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Sim, U.; Sung, J.; Lee, H.; Heo, H.; Jeong, H.S.; Lee, J. Effect of calcium chloride and sucrose on the composition of bioactive compounds and antioxidant activities in buckwheat sprouts. Food Chem. 2020, 312, 126075. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Sung, J.; Yang, J.; Kim, Y.; Jeong, H.S.; Lee, J. Effect of sucrose on the functional composition and antioxidant capacity of buckwheat (Fagopyrum esculentum M.) sprouts. J. Func. Foods 2018, 43, 70–76. [Google Scholar] [CrossRef]
- Nam, T.G.; Kim, D.O.; Eom, S.H. Effects of light sources on major flavonoids and antioxidant activity in common buckwheat sprouts. Food Sci. Biotechnol. 2018, 27, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Nam, T.G.; Lim, Y.J.; Eom, S.H. Flavonoid accumulation in common buckwheat (Fagopyrum esculentum) sprout tissues in response to light. Hortic. Environ. Biotechnol. 2018, 59, 19–27. [Google Scholar] [CrossRef]
- Peng, W.P.; Wang, N.; Wang, S.M.; Wang, J.Z.; Bian, Z.X. Effect of co-treatment of microwave and exogenous l-phenylalanine on the enrichment of flavonoids in Tartary buckwheat sprouts. J. Sci. Food Agric. 2023, 103, 2014–2022. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.C.; Sun, J.T. Changes in phenolic content, phenylalanine ammonia-lyase (PAL) activity, and antioxidant capacity of two buckwheat sprouts in relation to germination. J. Funct. Foods 2014, 7, 298–304. [Google Scholar] [CrossRef]
- Huang, C.M.; Quan, X.L.; Yin, Y.Q.; Ding, X.L.; Yang, Z.F.; Zhu, J.Y.; Fang, W.M. Enrichment of flavonoids in short-germinated back soybeans (Glycine max L.) induced by slight acid treatment. Foods 2024, 13, 868. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, R.J.; Yang, Z.F.; Fang, W.M. Methyl jasmonate and Zinc Sulfate induce secondary metabolism and phenolic acid biosynthesis in barley seedlings. Plants 2024, 13, 1512. [Google Scholar] [CrossRef]
- Ma, H.; Xu, X.M.; Wang, S.M.; Wang, J.Z.; Peng, W.P. Effects of microwave irradiation on the expression of key flavonoid biosynthetic enzyme genes and the accumulation of flavonoid products in Fagopyrum tataricum sprouts. J. Cereal. Sci. 2021, 101, 103275. [Google Scholar] [CrossRef]
- Cun, S.; Zhang, C.; Chen, J.; Qian, L.; Sun, H.; Song, B. Effects of UV-B radiation on pollen germination and tube growth: A global meta-analysis. Sci. Total Environ. 2024, 915, 170097. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Singh, D.; Lingwan, M.; Yadukrishnan, P.; Masakapalli, S.K.; Datta, S. Light signaling and UV-B-mediated plant growth regulation. J. Integr. Plant Biol. 2020, 62, 1270–1292. [Google Scholar] [CrossRef] [PubMed]
- Jadidi, M.; Mumivand, H.; Nia, A.E.; Shayganfar, A.; Maggi, F. UV-A and UV-B combined with photosynthetically active radiation change plant growth, antioxidant capacity and essential oil composition of Pelargonium graveolens. BMC Plant Biol. 2023, 23, 555. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Xu, W.; Wang, P.; Gu, Z.; Zhang, H.; Yang, R. UV-B- triggered H2O2 production mediates isoflavones synthesis in germinated soybean. Food Chem. X 2022, 14, 100331. [Google Scholar] [CrossRef]
- Yin, Y.; Tian, X.; Yang, J.; Yang, Z.; Tao, J.; Fang, W. Melatonin mediates isoflavone accumulation in germinated soybeans (Glycine max L.) under ultraviolet-B stress. Plant Physiol. Biochem. 2022, 175, 23–32. [Google Scholar] [CrossRef]
- McLay, E.R.; Pontaroli, A.C.; Wargent, J.J. UV-B Induced flavonoids contribute to reduced biotrophic disease susceptibility in lettuce seedlings. Front. Plant Sci. 2020, 11, 594681. [Google Scholar] [CrossRef]
- Yang, W.; Qian, G.T.; Chen, Y.L.; Liu, T.X.; Wan, H.H.; Wang, S.F.; Meng, X.X.; Chen, W.Q.; Atia tul, W.; Su, Y.; et al. Profiling of polyphenols for in-depth understanding of tartary buckwheat sprouts: Correlation between cultivars and active components, dynamic changes and the effects of ultraviolet B stress. Food Chem. X 2022, 14, 100295. [Google Scholar] [CrossRef]
- Tsurunaga, Y.; Takahashi, T.; Katsube, T.; Kudo, A.; Kuramitsu, O.; Ishiwata, M.; Matsumoto, S. Effects of UV-B irradiation on the levels of anthocyanin, rutin and radical scavenging activity of buckwheat sprouts. Food Chem. 2013, 141, 552–556. [Google Scholar] [CrossRef]
- Abdelaal, K.A.; Mazrou, Y.S.A.; Hafez, Y.M. Silicon foliar application mitigates salt stress in sweet pepper plants by enhancing water status, photosynthesis, antioxidant enzyme activity and fruit Yield. Plants 2020, 9, 733. [Google Scholar] [CrossRef]
- Kan, J.; Liu, Y.; Hui, Y.Y.; Wan, B.; Liu, J.; Qian, C.L.; Jin, C.H. 2-aminoindan-2-phosphonic acid alleviates oxidative browning in fresh-cut lily bulbs. J. Food Process. Preserv. 2022, 46, e16449. [Google Scholar] [CrossRef]
- Du, G.R.; Li, M.J.; Ma, F.W.; Liang, D. Antioxidant capacity and the relationship with polyphenol and Vitamin C in Actinidia fruits. Food Chem. 2009, 113, 557–562. [Google Scholar] [CrossRef]
- Basu, P.; Maier, C. In vitro antioxidant activities and polyphenol contents of seven commercially available fruits. Pharmacogn. Res. 2016, 8, 258–264. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, P.; Chen, Z.; Gu, Z.; Yang, R. NaCl stress on physio-biochemical metabolism and antioxidant capacity in germinated hulless barley (Hordeum vulgare L.). J. Sci. Food Agric. 2019, 99, 1755–1764. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.B.; Tang, W.; Zhou, X.L.; Wu, Y. Combined effects of blue and ultraviolet lights on the accumulation of flavonoids in tartary buckwheat sprouts. Pol. J. Food Nutr. Sci. 2016, 66, 93–98. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Qiu, T.; Duan, C.; Chen, L.; Zhao, S.; Zhang, X.; Fang, L. Microplastics addition reduced the toxicity and uptake of cadmium to Brassica chinensis L. Sci. Total Environ. 2022, 852, 158353. [Google Scholar] [CrossRef]
- Tian, X.; Liu, C.; Yang, Z.; Zhu, J.; Fang, W.; Yin, Y. Crosstalk between ethylene and melatonin activates isoflavone biosynthesis and antioxidant systems to produce high-quality soybean sprouts. Plant Sci. 2024, 347, 112197. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Yiming, Z.; Hong, W.; Linlin, C.; Xiaoli, Z.; Wen, T.; Xinli, S. Evolution of nutrient ingredients in tartary buckwheat seeds during germination. Food Chem. 2015, 186, 244–248. [Google Scholar] [CrossRef]
- Milić Komić, S.; Živanović, B.; Dumanović, J.; Kolarž, P.; Sedlarević Zorić, A.; Morina, F.; Vidović, M.; Veljović Jovanović, S. Differential antioxidant response to supplemental UV-B irradiation and sunlight in three Basil Varieties. Int. J. Mol. Sci. 2023, 24, 15350. [Google Scholar] [CrossRef]
- Sáenz-de la, O.D.; Morales, L.O.; Strid, Å.; Feregrino-Perez, A.A.; Torres-Pacheco, I.; Guevara-González, R.G. Antioxidant and drought-acclimation responses in UV-B-exposed transgenic Nicotiana tabacum displaying constitutive overproduction of H2O2. Photochem. Photobiol. Sci. 2023, 22, 2373–2387. [Google Scholar] [CrossRef]
- Takshak, S.; Agrawal, S.B. Defense potential of secondary metabolites in medicinal plants under UV-B stress. J. Photochem. Photobiol. B 2019, 193, 51–88. [Google Scholar] [CrossRef] [PubMed]
- Yun, C.; Zhao, Z.; Ri, I.; Gao, Y.; Shi, Y.; Miao, N.; Gu, L.; Wang, W.; Wang, H. How does UV-B stress affect secondary metabolites of Scutellaria baicalensis in vitro shoots grown at different 6-benzyl aminopurine concentrations? Physiol. Plant. 2022, 174, e13778. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Li, D.; Tang, Z.; Wei, H.; Zhang, Y.; Yang, J.; Zhao, C.; Liu, Y.; Wang, W. Supplementary UV-B radiation effects on photosynthetic characteristics and important secondary metabolites in Eucommia ulmoides leaves. Int. J. Mol. Sci. 2023, 24, 8168. [Google Scholar] [CrossRef] [PubMed]
- Del-Castillo-Alonso, M.; Monforte, L.; Tomás-Las-Heras, R.; Ranieri, A.; Castagna, A.; Martínez-Abaigar, J.; Núñez-Olivera, E. Secondary metabolites and related genes in Vitis vinifera L. cv. Tempranillo grapes as influenced by ultraviolet radiation and berry development. Physiol. Plant. 2021, 173, 709–724. [Google Scholar] [CrossRef] [PubMed]
- Sheng, K.; Shui, S.; Yan, L.; Liu, C.; Zheng, L. Effect of postharvest UV-B or UV-C irradiation on phenolic compounds and their transcription of phenolic biosynthetic genes of table grapes. J. Food Sci. Technol. 2018, 55, 3292–3302. [Google Scholar] [CrossRef]
- Rai, G.K.; Mishra, S.; Chouhan, R.; Mushtaq, M.; Chowdhary, A.A.; Rai, P.K.; Kumar, R.R.; Kumar, P.; Perez-Alfocea, F.; Colla, G.; et al. Plant salinity stress, sensing, and its mitigation through WRKY. Front. Plant Sci. 2023, 14, 1238507. [Google Scholar] [CrossRef]
- Ahammed, G.J.; Li, Z.; Chen, J.; Dong, Y.; Qu, K.; Guo, T.; Wang, F.; Liu, A.; Chen, S.; Li, X. Reactive oxygen species signaling in melatonin-mediated plant stress response. Plant Physiol. Biochem. 2024, 207, 108398. [Google Scholar] [CrossRef]
- Sakihama, Y.; Cohen, M.F.; Grace, S.C.; Yamasaki, H. Plant phenolic antioxidant and prooxidant activities: Phenolics-induced oxidative damage mediated by metals in plants. Toxicology 2002, 177, 67–80. [Google Scholar] [CrossRef]
- Abdelrahim, M.S.; Abdel-Baky, A.M.; Bayoumi, S.A.L.; Backheet, E.Y. Antioxidant and antidiabetic flavonoids from the leaves of Dypsis pembana (HEMoore) Beentje & J.Dransf., Arecaceae: In vitro and molecular docking studies. BMC Complement. Med. Ther. 2023, 23, 440. [Google Scholar] [CrossRef]
- Liu, C.L.; Chen, Y.S.; Yang, J.H.; Chiang, B.H. Antioxidant activity of tartary (Fagopyrum tataricum (L.) Gaertn.) and common (Fagopyrum esculentum Moench) buckwheat sprouts. J. Agric. Food Chem. 2008, 56, 173–178. [Google Scholar] [CrossRef]
- Lee, L.S.; Choi, E.J.; Kim, C.H.; Sung, J.M.; Kim, Y.B.; Seo, D.H.; Choi, H.W.; Choi, Y.S.; Kum, J.S.; Park, J.D. Contribution of flavonoids to the antioxidant properties of common and tartary buckwheat. J. Cereal. Sci. 2016, 68, 181–186. [Google Scholar] [CrossRef]
- Gu, M.; Yang, J.; Tian, X.; Fang, W.; Xu, J.; Yin, Y. Enhanced total flavonoid accumulation and alleviated growth inhibition of germinating soybeans by GABA under UV-B stress. RSC Adv. 2022, 12, 6619–6630. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liu, G.; Guo, T.; Xie, C.; Wang, P.; Yang, R. UV-B radiation enhances isoflavone accumulation and antioxidant capacity of soybean calluses. Front. Nutr. 2023, 10, 1139698. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Lan, Y.; Xing, J.; Li, Y.; Liu, L.; Wang, Y. AfCHIL, a Type IV Chalcone isomerase, enhances the biosynthesis of naringenin in metabolic engineering. Front. Plant Sci. 2022, 13, 891066. [Google Scholar] [CrossRef] [PubMed]
- Gai, Q.Y.; Fu, J.X.; Lu, Y.; Yao, L.; Cao, R.Z.; He, X.J.; Feng, X.; Fu, Y.J.; Jiao, J. Health-promoting phenolic compound accumulation, antioxidant response, endogenous salicylic acid generation, and biosynthesis gene expression in germinated pigeon pea seeds treated with UV-B radiation. J. Agric. Food Chem. 2022, 70, 5680–5690. [Google Scholar] [CrossRef]
- Guo, Z.; Lv, J.; Zhang, H.; Hu, C.; Qin, Y.; Dong, H.; Zhang, T.; Dong, X.; Du, N.; Piao, F. Red and blue light function antagonistically to regulate cadmium tolerance by modulating the photosynthesis, antioxidant defense system and Cd uptake in cucumber (Cucumis sativus L.). J. Hazard. Mater. 2022, 429, 128412. [Google Scholar] [CrossRef]
- Blanch, G.P.; Gómez-Jiménez, M.C.; Del Castillo, M.L.R. Exogenous salicylic acid improves phenolic content and antioxidant activity in table grapes. Plant Foods Hum. Nutr. 2020, 75, 177–183. [Google Scholar] [CrossRef]
Gene | Forward Primer (5′–3′) | Reverse Primer (5′–3′) |
---|---|---|
Actin | TCGTGAGAAGATGACCCAGA | CCGAGTCCAGCACAATACCT |
PAL | TCTCCAGAAGCCGAAACAAG | AGCCTTGTTCCTGGATACAT |
C4H | AACACACTACTCTCAGTTGC | ATTGGGTGATCGAGACTCTT |
4CL | CTCTTTCACGTCCACGGTTT | GATGATTTGGTGGATGGTGG |
CHS | CGTCAAGCGTTTCATGATGT | CAAGGCTTGTGTTGACATGG |
CHI | ACTTTGAGGAATCCGCTGTGAC | AGGGCTTCAACATGGTGATCTGTA |
F3H | CAAGGCTTGTGTTGACATGG | GACAGTGATCCAGGTCTTGC |
CAT | GAGTTTGGTTCCCTTGCTT | TTCATACACTTCACTGGCGT |
SOD | ATGGTGCTCCTGACGATG | CCACTGCCCTTCCAATAAT |
POD | GTTCTGGTTGGGCTTGG | TTGTCCTCGTCTGTTGGTC |
TCP15 | GATAGGCTTGGCTATGATAGGCC | CAAACACAAATCTCGATGTGGGT |
HLH1 | TGTACGGATGTGGTTGAAACAT | TGTTCGTGAGCTGATGAACAAAGT |
MYB11 | GGTGGTCAATCAGCTCAGCCCA | TCGGTCCTACCTGGGAAGGCGAGC |
MYB17 | AGGAGGCAAGGTGGTTGTGGA | CATACCCATTAGCAAAGGAGAAA |
Categories | DPPH Clearance Rate % | ABTS Clearance Rate % | FRAP Clearance Rate % | |
---|---|---|---|---|
1 d | CK | 34.25 ± 3.08 c | 40.72 ± 1.23 b | 13.03 ± 0.93 c |
UV-B | 46.94 ± 2.77 B * | 45.29 ± 0.47 B * | 13.59 ± 1.23 C | |
3 d | CK | 59.56 ± 0.57 a | 55.61 ± 1.01 a | 34.91 ± 3.70 a |
UV-B | 75.72 ±0.82 A * | 67.42 ± 2.61 A * | 45.85 ± 2.43 A * | |
5 d | CK | 44.56 ± 0.49 b | 29.59 ± 3.40 c | 24.71 ± 0.90 b |
UV-B | 49.33 ± 0.46 B * | 41.53 ± 1.55 C * | 28.54 ± 2.61 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, X.; Hu, M.; Yang, J.; Yin, Y.; Fang, W. Ultraviolet-B Radiation Stimulates Flavonoid Biosynthesis and Antioxidant Systems in Buckwheat Sprouts. Foods 2024, 13, 3650. https://doi.org/10.3390/foods13223650
Tian X, Hu M, Yang J, Yin Y, Fang W. Ultraviolet-B Radiation Stimulates Flavonoid Biosynthesis and Antioxidant Systems in Buckwheat Sprouts. Foods. 2024; 13(22):3650. https://doi.org/10.3390/foods13223650
Chicago/Turabian StyleTian, Xin, Meixia Hu, Jia Yang, Yongqi Yin, and Weiming Fang. 2024. "Ultraviolet-B Radiation Stimulates Flavonoid Biosynthesis and Antioxidant Systems in Buckwheat Sprouts" Foods 13, no. 22: 3650. https://doi.org/10.3390/foods13223650
APA StyleTian, X., Hu, M., Yang, J., Yin, Y., & Fang, W. (2024). Ultraviolet-B Radiation Stimulates Flavonoid Biosynthesis and Antioxidant Systems in Buckwheat Sprouts. Foods, 13(22), 3650. https://doi.org/10.3390/foods13223650