Cluster and Principal Component Analyses of the Bioactive Compounds and Antioxidant Activity of Celery (Apium graveolens L.) Under Different Fertilization Schemes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Sample Preparation
2.3. Experimental Design
2.4. Production Conditions
2.5. Analysis
2.5.1. Dry Weight
2.5.2. Extract Preparation
2.5.3. Total Phenolic Content (TPC)
2.5.4. Total Flavonoid Content (TF)
2.5.5. 2,2-Diphenyl-1-picryl-hydrazyl (DPPH)
2.5.6. Fiber
2.5.7. Fats
2.5.8. Proteins
2.5.9. Total Sugars
2.5.10. Starch
2.5.11. Statistical Analysis
3. Results and Discussion
3.1. Dry Weight (DW)
3.2. Total Phenolic Content (TPC)
3.3. Total Flavonoid (TF) Compounds
3.4. DPPH (IC50)
3.5. PCA
3.6. Cluster Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gauri, M.; Javed Ali, S.; Shahid Khan, M. A review of Apium graveolens (Karafs) with special reference to Unani medicine. Int. Arch. Integr. Med. 2015, 2, 131–136. [Google Scholar]
- Khairullah, A.R.; Solikhah, T.I.; Ansori AN, M.; Hidayatullah, A.R.; Hartadi, E.B.; Ramandinianto, S.C.; Fadholly, A. Review on the Pharmacological and Health Aspects of Apium Graveolens or Celery: An Update. Syst. Rev. Pharm. 2021, 12, 606–612. [Google Scholar]
- Kooti, W.; Daraei, N. A Review of the Antioxidant Activity of Celery (Apium graveolens L). J. Evid. Based Complement. Altern. Med. 2017, 22, 1029–1034. [Google Scholar] [CrossRef] [PubMed]
- Khare, C.P. Indian Medicinal Plants; Springer Science: London, UK, 2008. [Google Scholar]
- Nickavar, B.; Kamalinejad, M.; Izadpanah, H. In vitro free radical scavenging activity of five Salvia species. Pak. J. Pharma. Sci. 2007, 20, 291–294. [Google Scholar]
- Chaterjee, R.; Thirumdasu, R.K. Nutrient management in organic vegetable production. Int. J. Food Agric. Vet. Sci. 2014, 4, 156–170. [Google Scholar]
- Ahmed, Z.A. Effect of NPK and Bio Fertilization on Growth and Oil Yield of Celery (Apium graveolens L.) and Dill (Anethum graveolens L.) Plants. J. Plant Prod. 2017, 8, 247–251. [Google Scholar] [CrossRef]
- Naguib, A.E.-M.M.; El-Baz, F.K.; Salama, Z.A.; Hanaa, H.A.E.B.; Ali, H.F.; Gaafar, A.A. Enhancement of phenolics, flavonoids and glucosinolates of Broccoli (Brassica olaracea var. italica) as antioxidants in response to organic and bio-organic fertilizers. J. Saudi Soc. Agric. Sci. 2012, 11, 135–142. [Google Scholar] [CrossRef]
- Abou El-Magd, M.M.; El-Bassiony, A.M.; Fawzy, Z.F. Effect of organic manure with or without chemical fertilizer on growth, yield and quality of some varieties of broccoli plants. J. Appl. Sci. Res. 2006, 2, 791–798. [Google Scholar]
- Pang, X.P.; Letey, J. Organic farming: Challenge of timing nitrogen availability to crop nitrogen requirements. Soil Sci. Soc. Am. J. 2000, 64, 247–253. [Google Scholar] [CrossRef]
- Evanylo, G.; Sherony, C.; Spargo, J.; Starner, D.; Brosius, M.; Kathryn Haering, K. Soil and water environmental effects of fertilizer-, manure-, and compost-based fertility practices in an organic vegetable cropping system. Agric. Ecosyst. Environ. 2008, 127, 50–58. [Google Scholar] [CrossRef]
- Tognetti, C.; Laos, F.; Mazzarino, M.J.; Hernandez, M.T. Composting vs. vermicomposting: A comparison of end product quality. Compost. Sci. Util. 2005, 13, 6–13. [Google Scholar] [CrossRef]
- Bhardwaj, M.L.; Raj, H.; Koul, B.L. Yield response and economics of organic sources of nutrients as substitute to inorganic sources in tomato (Lycopersicon esculentum), okra (Hibiscus esculentus), cabbage (Brassica oleracea var capitata) and cauliflower (B. oleracea var botrytis). Indian J. Agric. Sci. 1999, 70, 653–656. [Google Scholar]
- Dhakal, M.; Shakya, S.M.; Bhattarai, S. Yield and Quality of Broccoli (Brassica oleracea L. var. italica Plenck.) cv. Calabrese Affected by Nitrogen and Farm Yard Manure in Chitwan, Nepal. J. Plant Health 2016, 1, 102. [Google Scholar]
- Moyin-Jesu, E. Use of plant residues for improving soil fertility, pod nutrients, root growth and pod weight of okra (Abelmuschus esculentum L.). Bioresour. TechnoL. 2007, 98, 2057–2064. [Google Scholar] [CrossRef]
- Warman, P.R.; Havard, K.A. Yield, vitamin and mineral content of organically and conventionally grown carrots and cabbage. Agric. Ecosyst. Environ. 1997, 61, 155–162. [Google Scholar] [CrossRef]
- Pavla, B.; Pokluda, R. Influence of alternative organic fertilizers on the antioxidant capacity in head cabbage and cucumber. Not. Bot. Horti Agrobot. Cluj 2008, 36, 63–67. [Google Scholar]
- Khabarov, N.; Obersteiner, M. Global Phosphorus Fertilizer Market and National Policies: A Case Study Revisiting the 2008 Price Peak. Front. Nutr. 2007, 4, 22. [Google Scholar] [CrossRef]
- Council Directive 91/676/EEC of 12 December 1991 Concerning the Protection of Waters Against Pollution Caused by Nitrates from Agricultural Sources. Available online: https://eur-lex.europa.eu/eli/dir/1991/676/oj (accessed on 22 October 2024).
- Ordinance on Methods of Taking Samples and Performing Chemical and Physical Analyzes for Quality Control of Fruit and Vegetable Products (Official Gazette of SFRY, 29/83). Available online: http://demo.paragraf.rs/demo/combined/Old/t/t2004_09/t09_0137.htm (accessed on 22 October 2024).
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am. J. EnoL. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Harborne, A.J. Phytochemical Methods a Guide to Modern Techniques of Plant Analysis; Springer Science & Business Media: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Espin, J.C.; Soler-Rivas CWichers, H.J. Characterization of the total free radical scavenger capacity of vegetable oils and oil fractions using 2,2-diphenyl-1picrylhydrazyl radical. J. Agric. Food Chem. 2000, 48, 648–656. [Google Scholar] [CrossRef]
- Vračar, L. Manual for Quality Control of Fresh and Processed Fruits, Vegetables and Mushrooms and Refreshing Non-Alcoholic Beverages; Faculty of Technology Novi Sad: Novi Sad, Republic of Serbia, 2001. [Google Scholar]
- Luque de Castro, M.D.; Priego-Capote, F. Soxhlet extraction: Past and present panacea, a review. J. Chromatogr. A 2010, 1217, 2383–2389. [Google Scholar] [CrossRef]
- Marcó, A.; Rubio, R.; Compañó, R.; Casals, I. Comparison of the Kjeldahl method and a combustion method for total nitrogen determination in animal feed. Talanta 2002, 57, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Ehdaie, B.; Alloush, G.A.; Madore, M.A.; Waines, J.G. Genotypic variation for stem reserves and mobilization in wheat: I. Postanthesis changes in internode dry matter. Crop. Sci. 2006, 46, 735–746. [Google Scholar] [CrossRef]
- Bange, M.P.; Milroy, S.P. Growth and dry matter partitioning of diverse cotton genotypes. Field Crop. Res. 2004, 87, 73–87. [Google Scholar] [CrossRef]
- Vojnović, Đ.; Maksimović, I.; Koprivica, G.; Tepić Horecki, A.; Milić, A.; Adamović, B.; Šumić, Z.; Ilin, Ž. Optimizing greenhouse cucumber fertigation through grafting: Improving yield, bioactive compounds, and antioxidant activity. Horticulturae 2024, 10, 1135. [Google Scholar] [CrossRef]
- Navarro, A.S.; Romero JA, S.; Sanjuan MD, C.S.; Bernardeau MA, B.; Delgado Iniesta, M.J. Medium-term influence of organic fertilization on the quality and yield of a celery crop. Agronomy 2020, 10, 1418. [Google Scholar] [CrossRef]
- Číž, M.; Čížová, H.; Denev, P.; Kratchanova, M.; Slavov, A.; Lojek, A. Different methods for control and comparison of the antioxidant properties of vegetables. Food Control. 2010, 21, 518–523. [Google Scholar] [CrossRef]
- Priecina, L.; Karklina, D. Natural antioxidant changes in fresh and dried spices and vegetables. Int. J. Nutr. Food Eng. 2014, 8, 492–496. [Google Scholar]
- Marinova, D.; Ribarova, F.; Atanassova, M. Total phenolic and total flavonoids in Bulgarian fruits and vegetables. JU Chem. Me TaL. 2005, 40, 255–260. [Google Scholar]
- Đurović, V.; Mandić, L.; Igrošanac, M.; Radovanović, M.; Pešaković, M.; Mladenović, J.; Đukić, D. Celery (Apium graveolens L.) as a source of phytochemicals with antioxidant and antibacterial effects. In Proceedings of the 1st International Symposium on Biotechnology, Čačak, Serbia, 17–18 March 2023; pp. 317–322. [Google Scholar]
- Golubkina, N.A.; Kharchenko, V.A.; Moldovan, A.I.; Koshevarov, A.A.; Zamana, S.; Nadezhkin, S.; Soldatenko, A.; Sekara, A.; Tallarita, A.; Caruso, G. Yield, Growth, Quality, Biochemical Characteristics and Elemental Composition of Plant Parts of Celery Leafy, Stalk and Root Types Grown in the Northern Hemisphere. Plants 2020, 9, 484. [Google Scholar] [CrossRef]
- Singh, J.; Upadhyay, A.K.; Bahadur, A.; Singh, B.; Singh, K.P.; Rai, M. Antioxidant phytochemicals in cabbage (Brassica oleracea L. var. capitata). Sci. Hortic. 2006, 108, 233–237. [Google Scholar] [CrossRef]
- Nicoletto, C.; Santagata, S.; Sambo, P. Effect of Compost Application on Qualitative Traits in Cabbage. Acta Hortic. 2013, 1005, 389–396. [Google Scholar] [CrossRef]
- Amarowicz, R.; Cwalina-Ambroziak, B.; Janiak, M.A.; Bogucka, B. Effect of N Fertilization on the Content of Phenolic Compounds in Jerusalem Artichoke (Helianthus tuberosus L.) Tubers and Their Antioxidant Capacity. Agronomy 2020, 10, 1215. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Z.; Cui, R.; Su, L.; Sun, X.; Borras-Hidalgo, O.; Li, K.; Wei, J.; Yue, Q.; Zhao, L. Effects of nitrogen application on phytochemical component levels and anticancer and antioxidant activities of Allium fistulosum. PeerJ 2021, 9, e11706. [Google Scholar] [CrossRef] [PubMed]
- Al Subeihi, A.A.; Awal, A.; Ahmed, M.W.; Ahmed, M.; Alam, T.; Khan, M.S.I.; Islam, M.A. Effects of organic and chemical fertilizers on the content of major phenolic compounds of carrot. Poll Res. 2022, 41, 347–352. [Google Scholar] [CrossRef]
- de Oliveira Pereira, F.; dos Santos Pereira, R.; de Souza Rosa, L.; Teodoro, A.J. Organic and conventional vegetables: Comparison of the physical and chemical characteristics and antioxidant activity. Afr. J. BiotechnoL. 2016, 15, 1746–1755. [Google Scholar]
- Czech, A.; Szmigielski, M.; Sembratowicz, I. Nutritional value and antioxidant capacity of organic and conventional vegetables of the genus Allium. Sci. Rep. 2022, 12, 18713. [Google Scholar] [CrossRef]
- Vojnović, Đ.; Maksimović, I.; Tepić Horecki, A.; Karadžić Banjac, M.; Kovačević, S.; Daničić, T.; Podunavac-Kuzmanović, S.; Ilin, Ž. Onion (Allium cepa L.) Yield and Quality Depending on Biostimulants and Nitrogen Fertilization—A Chemometric Perspective. Processes 2023, 11, 684. [Google Scholar] [CrossRef]
- Kundu, M. Effects of Organic and Inorganic Fertilizers on Yield and Antioxidant Properties of Lettuce Grown in a Rooftop Garden. Master’s Thesis, Faculty of Agricultural Sher-e-Bangla Agricultural University, Dhaka, Bangladesh, 2021; pp. 1–63. [Google Scholar]
- Aminifard, M.H.; Aroiee, H.; Azizi, M.; Nemati, H.; Jaafar, H.Z. Effect of compost on antioxidant components and fruit quality of sweet pepper (Capsicum annuum L.). J. Central Eur. Agric. 2013, 14, 47–56. [Google Scholar] [CrossRef]
- Hallmann, E.; Rembiałkowska, E. Characterisation of Antioxidant Compounds in Sweet Bell Pepper (Capsicum annuum L.) under Organic and Conventional Growing Systems. J. Sci. Food Agric. 2012, 92, 2409–2415. [Google Scholar] [CrossRef]
- Wang, S.Y.; Lin, S.S. Composts as soil supplement enhanced plant growth and fruit quality of strawberry. J. Plant Nutr. 2002, 25, 2243–2259. [Google Scholar] [CrossRef]
- Daneshvar, H.; Babalar, M.; Díaz-Pérez, J.C.; Nambeesan, S.; Delshad, M.; Tabrizi, L. Evaluation of organic and mineral fertilizers on plant growth, minerals, and postharvest quality of celery (Apium graveolens L.). J. Plant Nutr. 2023, 46, 1712–1729. [Google Scholar] [CrossRef]
- Godlewska, K.; Pacyga, P.; Michalak, I.; Biesiada, A.; Szumny, A.; Pachura, N.; Piszcz, U. Field-scale evaluation of botanical extracts effect on the yield, chemical composition and antioxidant activity of celeriac (Apium graveolens L. var. rapaceum). Molecules 2020, 25, 4212. [Google Scholar] [CrossRef] [PubMed]
Organic Fertilizer | N | P2O5 | K2O | Moisture | Organic Matter | Organic Carbon |
---|---|---|---|---|---|---|
Sheep manure | 1.76 | 1.01 | 2.64 | 75.94 | 67.24 | 24.09 |
Supercompost | 2.21 | 3.05 | 0.13 | 77.29 | 41.71 | 15.19 |
Cattle manure | 2.25 | 3.83 | 2.22 | 58.08 | 48.95 | 16.25 |
Poultry manure | 1.00 | 1.56 | 1.69 | 53.45 | 28.02 | 14.90 |
Molasses | 2.00 | / | 5.0 | / | / | 16.50 |
pH | CaCO3 (%) | Humus (%) | Total N (%) | Al-P2O5 (mg/100 g) | AL-K2O (mg/100 g) | |
---|---|---|---|---|---|---|
KCl | H2O | |||||
7.39 | 8.38 | 6.36 | 2.25 | 0.167 | 13.98 | 19.83 |
Sample | DW | TPC | TF | DPPH (IC50) |
---|---|---|---|---|
1R | 9.61 ± 0.49 a | 142.5 ± 15.7 a | 37.0 ± 4.2 ab | 153.9 ± 34.6 b |
2R | 9.49 ± 0.45 a | 133.9 ± 11.4 a | 48.5 ± 0.5 abc | 85.6 ± 8.8 a |
3R | 10.02 ± 0.64 a | 112.5 ± 13.3 a | 35.6 ± 3.5 a | 148.2 ± 2.5 b |
4R | 10.23 ± 0.57 a | 115.3 ± 6.0 a | 39.6 ± 5.7 ab | 211.8 ± 1.1 c |
5R | 9.70 ± 0.47 a | 118.7 ± 14.3 a | 49.8 ± 5.3 bc | 99.1 ± 0.1 a |
6R | 10.52 ± 0.01 a | 117.3 ± 3.8 a | 47.8 ± 4.5 abc | 102.7 ± 12.3 a |
7R | 9.96 ± 0.29 a | 123.4 ± 3.4 a | 53.6 ± 6.8c | 274.1 ± 2.1 d |
Average | 9.93 ± 0.52 | 123.4 ± 3.8 | 44.6 ± 7.8 | 153.7 ± 66.1 |
F | 1.870 | 3.066 | 6.647 | 68.513 |
p | 0.157 | 0.039 | 0.002 | 0.000 |
1L | 13.56 ± 0.37 b | 449.9 ± 56.6 a | 264.1 ± 37.1 ab | 2.44 ± 0.30 ab |
2L | 12.51 ± 0.67 ab | 433.3 ± 32.8 a | 246.7 ± 3.1 a | 3.37 ± 0.03 c |
3L | 12.31 ± 1.06 ab | 456.4 ± 38.2 a | 241.5 ± 0.3 a | 2.84 ± 0.36 bc |
4L | 12.04 ± 0.70 ab | 447.8 ± 10.0 a | 249.2 ± 13.1 a | 3.31 ± 0.28 c |
5L | 12.85 ± 0.52 ab | 462.7 ± 15.0 a | 264.0 ± 10.5 ab | 2.17 ± 0.09 a |
6L | 12.44 ± 0.37 ab | 494.7 ± 5.0 a | 309.4 ± 4.0 b | 2.15 ± 0.04 a |
7L | 11.33 ± 0.12 a | 480.5 ± 30.5 a | 234.6 ± 19.7 a | 2.32 ± 0.04 ab |
Average | 12.43 ± 0.83 | 460.7 ± 33.1 | 258.5 ± 27.7 | 2.66 ± 0.52 |
F | 3.795 | 1.297 | 6.234 | 18.415 |
p | 0.02 | 0.320 | 0.002 | 0.002 |
Sample | Fiber (g/100 g DW) | Total Fat (g/100 g DW) | Protein (g/100 g DW) | Total Sugar (g/100 g DW) | Starch (g/100 g DW) |
---|---|---|---|---|---|
1R | 17.96 ± 1.30 ab | 2.56 ± 0.92 b | 12.94 ± 0.04 a | 7.48 ± 0.08 a | 12.20 ± 1.73 a |
2R | 20.84 ± 3.16 b | 2.69 ± 0.76 b | 14.77 ± 1.69 a | 8.73 ± 0.12 ab | 12.32 ± 1.77 a |
3R | 18.10 ± 0.62 ab | 2.47 ± 1.50 b | 13.40 ± 2.01 a | 11.32 ± 0.38 bc | 10.86 ± 1.16 a |
4R | 17.30 ± 0.37 ab | 3.36 ± 2.39 c | 13.32 ± 1.84 a | 16.94 ± 2.41 d | 10.63 ± 0.29 a |
5R | 16.91 ± 0.61 ab | 1.98 ± 0.29 a | 12.08 ± 0.77 a | 9.15 ± 0.16 ab | 12.48 ± 0.31 a |
6R | 16.41 ± 1.97 a | 1.86 ± 0.99 a | 13.33 ± 0.96 a | 12.60 ± 1.34 c | 12.57 ± 0.95 a |
7R | 16.04 ± 0.57 a | 1.90 ± 0.44 a | 11.29 ± 1.53 a | 8.41 ± 0.17 ab | 11.20 ± 0.12 a |
Average | 17.64 ± 1.99 | 2.41 ± 0.53 | 13.02 ± 1.58 | 10.66 ± 3.24 | 11.75 ± 1.21 |
F | 3.198 | 28.616 | 1.803 | 29.086 | 1.666 |
p | 0.034 | 0.000 | 0.170 | 0.000 | 0.202 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milić, A.; Adamović, B.; Nastić, N.; Tepić Horecki, A.; Pezo, L.; Šumić, Z.; Pavlić, B.; Živanov, M.; Pavković, N.; Vojnović, Đ. Cluster and Principal Component Analyses of the Bioactive Compounds and Antioxidant Activity of Celery (Apium graveolens L.) Under Different Fertilization Schemes. Foods 2024, 13, 3652. https://doi.org/10.3390/foods13223652
Milić A, Adamović B, Nastić N, Tepić Horecki A, Pezo L, Šumić Z, Pavlić B, Živanov M, Pavković N, Vojnović Đ. Cluster and Principal Component Analyses of the Bioactive Compounds and Antioxidant Activity of Celery (Apium graveolens L.) Under Different Fertilization Schemes. Foods. 2024; 13(22):3652. https://doi.org/10.3390/foods13223652
Chicago/Turabian StyleMilić, Anita, Boris Adamović, Nataša Nastić, Aleksandra Tepić Horecki, Lato Pezo, Zdravko Šumić, Branimir Pavlić, Milorad Živanov, Nemanja Pavković, and Đorđe Vojnović. 2024. "Cluster and Principal Component Analyses of the Bioactive Compounds and Antioxidant Activity of Celery (Apium graveolens L.) Under Different Fertilization Schemes" Foods 13, no. 22: 3652. https://doi.org/10.3390/foods13223652
APA StyleMilić, A., Adamović, B., Nastić, N., Tepić Horecki, A., Pezo, L., Šumić, Z., Pavlić, B., Živanov, M., Pavković, N., & Vojnović, Đ. (2024). Cluster and Principal Component Analyses of the Bioactive Compounds and Antioxidant Activity of Celery (Apium graveolens L.) Under Different Fertilization Schemes. Foods, 13(22), 3652. https://doi.org/10.3390/foods13223652