Macadamia (Macadamia integrifolia) Oil Prevents High-Fat Diet-Induced Lipid Accumulation and Oxidative Stress by Activating the AMPK/Nrf2 Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of MO
2.3. Animal Experimental Design
2.4. Biochemical Analysis of Serum and Liver
2.4.1. Determination of Serum Biochemical Indicators
2.4.2. Determination of ROS in Liver
2.4.3. Evaluation of Oxidative Stress Indicators in Serum and Liver
2.5. Morphological Observation of Liver and Testicular Adipose Tissue
2.5.1. Hematoxylin/Eosin (HE) Staining of the Testicular Adipose Tissue
2.5.2. Oil Red O Staining of Liver Tissue
2.6. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Analysis
2.7. WB Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effects of MO on BW and Organ Index
3.2. Effects of MO on Serum Biochemical Indicators
3.3. The Effects of MO on ROS in the Liver
3.4. The Effects of MO on Oxidative Stress Indicators in the Serum and Liver
3.5. The Effects of MO on Histological Changes in the Liver
3.6. The Effects of MO on Histological Changes in the Adipose
3.7. The Effects of MO on the AMPK/Nrf2 Pathway
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhargava, S.; de la Puente-Secades, S.; Schurgers, L.; Jankowski, J. Lipids and lipoproteins in cardiovascular diseases: A classification. Trends Endocrin. Met. 2022, 33, 409–423. [Google Scholar] [CrossRef] [PubMed]
- Soppert, J.; Lehrke, M.; Marx, N.; Jankowski, J.; Noels, H. Lipoproteins and lipids in cardiovascular disease: From mechanistic insights to therapeutic targeting. Adv. Drug Deliv. Rev. 2020, 159, 4–33. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhong, K.; Zheng, Y.; Xia, X.; Lin, X.; Kowark, A.; Wang, X.; Zhang, D.; Duan, X. Postoperative delirium risk in patients with hyperlipidemia: A prospective cohort study. J. Clin. Anesth. 2024, 98, 111573. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Wu, H.; Wang, X.; Wen, L.; Cui, B.; Cheng, Y. Comprehensive review of plant-derived anti-hyperlipidemia peptides: Production, anti-hyperlipidemia mechanism, and structure-activity relationship study. Food Chem. 2024, 461, 140715. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Nie, T.; Zhang, P.; Ma, J.; Shan, A. Hesperidin attenuates hepatic lipid accumulation in mice fed high-fat diet and oleic acid induced HepG2 via AMPK activation. Life Sci. 2022, 296, 120428. [Google Scholar] [CrossRef]
- Gao, S.; Hu, G.; Li, D.; Sun, M.; Mou, D. Anti-hyperlipidemia effect of sea buckthorn fruit oil extract through the AMPK and Akt signaling pathway in hamsters. J. Funct. Foods 2020, 66, 103837. [Google Scholar] [CrossRef]
- Sharma, P.; Agnihotri, N. Fish oil and corn oil induced differential effect on beiging of visceral and subcutaneous white adipose tissue in high-fat-diet-induced obesity. J. Nutr. Biochem. 2020, 84, 108458. [Google Scholar] [CrossRef]
- Lee, E.; Oh, H.; Kang, B.; Kang, M.; Kim, D.; Kim, Y.; Lee, J.; Ji, J.; Lim, S.; Kang, Y. Lipid-lowering effects of medium-chain triglyceride-enriched coconut oil in combination with licorice extracts in experimental hyperlipidemic mice. J. Agric. Food Chem. 2018, 66, 10447–10457. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, X.; Gao, H.; Chen, C.; Deng, Q.; Huang, Q.; Ma, J.; Wan, Z.; Yang, J.E.; Huang, F. Micronutrients-fortified rapeseed oil improves hepatic lipid accumulation and oxidative stress in rats fed a high-fat diet. Lipids Health Dis. 2013, 12, 28. [Google Scholar] [CrossRef]
- Piccinin, E.; Cariello, M.; De Santis, S.; Ducheix, S.; Sabbà, C.; Ntambi, J.; Moschetta, A. Role of oleic acid in the ggut-liver aaxis: From diet to the regulation of its synthesis via stearoyl-CoA desaturase 1 (SCD1). Nutrients 2019, 11, 2283. [Google Scholar] [CrossRef]
- Shuai, X.; Dai, T.; Chen, M.; Liu, C.; Ruan, R.; Liu, Y.; Chen, J. Characterization of lipid compositions, minor components and antioxidant capacities in macadamia (Macadamia integrifolia) oil from four major areas in China. Food Biosci. 2022, 50, 102009. [Google Scholar] [CrossRef]
- Shuai, X.; Dai, T.; McClements, D.; Ruan, R.; Du, L.; Liu, Y.; Chen, J. Hypolipidemic effects of macadamia oil are related to AMPK activation and oxidative stress relief: In vitro and in vivo studies. Food Res. Int. 2023, 168, 112772. [Google Scholar] [CrossRef] [PubMed]
- Shuai, X.; Dai, T.; Chen, M.; Liang, R.; Du, L.; Chen, J.; Liu, C. Comparative study on the extraction of macadamia (Macadamia integrifolia) oil using different processing methods. LWT-Food Sci. Technol. 2022, 154, 112614. [Google Scholar] [CrossRef]
- Zeng, Y.; Xiong, L.; Tang, H.; Chen, L.; Yu, Q.; Li, L.; Chen, F.; Li, L.; Zheng, Y.; Sun, J.; et al. Norboldine improves cognitive impairment and pathological features in Alzheimer’s disease by activating AMPK/GSK3β/Nrf2 signaling pathway. J. Ethnopharmacol. 2024, 333, 118498. [Google Scholar] [CrossRef]
- Liu, C.; Shi, J.; Wang, J.; Dai, Y.; Raghavan, V. Effects of different processing degrees of plant-based meat on the blood biochemical level, inflammation and intestinal microorganisms in mice. Food Res. Int. 2023, 173, 113398. [Google Scholar] [CrossRef]
- He, L.; Wu, B.; Shi, J.; Du, J.; Zhao, Z. Regulation of feeding and energy homeostasis by clock-mediated gart in drosophila. Cell Rep. 2023, 42, 112912. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.; Zeng, L.; Yang, F.; Hu, Z.; Luo, Y.; Zhou, Y.; Tang, Y.; Luo, F. Network pharmacology combined with molecular docking and molecular dynamic simulation to reveal the potential mechanism of lentinan ameliorating hyperlipidemia. Food Biosci. 2024, 60, 104306. [Google Scholar] [CrossRef]
- Chen, K.; Hu, M.; Tang, M.; Gao, C.; Wang, H.; Man, S.; Lu, F. Oligosaccharide and short-chain fatty acid: A double-edged sword in obese mice by regulating food intake and fat synthesis. Food Res. Int. 2022, 159, 111619. [Google Scholar] [CrossRef]
- Yang, C.; Xu, Z.; Huang, Q.; Wang, X.; Huang, F.; Deng, Q. Targeted microbiome metabolomics reveals flaxseed oil supplementation regulated the gut microbiota and farnesoid X receptor pathway in high-fat diet mice. Food Sci. Hum. Well. 2023, 12, 2324–2335. [Google Scholar] [CrossRef]
- Ji, S.; You, Y.; Peng, B.; Zhong, T.; Kuang, Y.; Li, S.; Du, L.; Chen, L.; Sun, X.; Dai, J.; et al. Multi-omics analysis reveals the metabolic regulators of duodenal low-grade inflammation in a functional dyspepsia model. Front. Immunol. 2022, 13, 944591. [Google Scholar] [CrossRef]
- Yang, D.; Shen, J.; Tang, C.; Lu, Z.; Lu, F.; Bie, X.; Meng, F.; Zhao, H. Prevention of high-fat-diet-induced obesity in mice by soluble dietary fiber from fermented and unfermented millet bran. Food Res. Int. 2024, 179, 113974. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Qin, X.; Yi, T.; Liu, Z.; Li, C.; Tan, S.; Zhang, S.; Xie, T.; Xie, J.; Wu, P.; et al. Integration of pharmacodynamics, metabolomics and network pharmacology to elucidate the effect of Prunella vulgaris seed oil in the treatment of hyperlipidemia. Arab. J. Chem. 2024, 17, 105486. [Google Scholar] [CrossRef]
- Talawar, S.; Mohan Kumar, A.; Bhaskaragoud, G.; Mohan Kumar, B.; Suresh Kumar, G. Wheat bran oil concentrate induced AMPK activation, insulin and lipid homeostasis alleviates adipokines and cytokine in high fat fed C57BL6 mice. J. Agric. Food Res. 2020, 2, 100080. [Google Scholar] [CrossRef]
- Chen, Y.; Kennedy, D.; Ramakrishnan, D.; Yang, M.; Huang, W.; Li, Z.; Xie, Z.; Chadwick, A.; Sahoo, D.; Silverstein, R. Oxidized LDL-bound CD36 recruits an Na+K+-ATPase-Lyn complex in macrophages that promotes atherosclerosis. Sci. Signal. 2015, 8, ra91. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Li, M.; Chen, C.; Hong, T.; Yang, J.; Huang, X.; Geng, F.; Hu, J.; Nie, S. Tea polyphenol and epigallocatechin gallate ameliorate hyperlipidemia via regulating liver metabolism and remodeling gut microbiota. Food Chem. 2023, 404, 134591. [Google Scholar] [CrossRef]
- Feng, S.; Xu, X.; Tao, S.; Chen, T.; Zhou, L.; Huang, Y.; Yang, H.; Yuan, M.; Ding, C. Comprehensive evaluation of chemical composition and health-promoting effects with chemometrics analysis of plant derived edible oils. Food Chem. X 2022, 14, 100341. [Google Scholar] [CrossRef] [PubMed]
- Meddeb, W.; Rezig, L.; Zarrouk, A.; Nury, T.; Vejux, A.; Prost, M.; Bretillon, L.; Mejri, M.; Lizard, G. Cytoprotective activities of milk thistle seed oil used in traditional tunisian medicine on 7-ketocholesterol and 24S-hydroxycholesterol-induced toxicity on 158N murine oligodendrocytes. Antioxidants 2018, 7, 95. [Google Scholar] [CrossRef]
- Debbabi, M.; Zarrouk, A.; Bezine, M.; Meddeb, W.; Nury, T.; Badreddine, A.; Karym, E.; Sghaier, R.; Bretillon, L.; Guyot, S.; et al. Comparison of the effects of major fatty acids present in the Mediterranean diet (oleic acid, docosahexaenoic acid) and in hydrogenated oils (elaidic acid) on 7-ketocholesterol-induced oxiapoptophagy in microglial BV-2 cells. Chem. Phys. Lipids 2017, 207, 151–170. [Google Scholar] [CrossRef]
- Liu, D.; Ji, J.; Li, J.; Shaikh, F.; Ye, M. Lipid-lowering effect of extracellular polyphenol extracts from Lachnum singerianum in high-fat-diet-fed mice. J. Food Process. Pres. 2022, 46, e16581. [Google Scholar] [CrossRef]
- Zhu, Z.; Lin, Z.; Jiang, R.; Jiang, Y.; Zhao, M.; Liu, X. Hypolipidemic effect of Youcha in hyperlipidemia rats induced by high-fat diet. Food Funct. 2017, 8, 1680–1687. [Google Scholar] [CrossRef]
- Han, H.; Ma, H.; Rong, S.; Chen, L.; Shan, Z.; Xu, J.; Zhang, Y.; Liu, L. Flaxseed oil containing flaxseed oil ester of plant sterol attenuates high-fat diet-induced hepatic steatosis in apolipoprotein-E knockout mice. J. Funct. Foods 2015, 13, 169–182. [Google Scholar] [CrossRef]
- Cao, Y.; Araki, M.; Nakagawa, Y.; Deisen, L.; Lundsgaard, A.; Kanta, J.; Holm, S.; Johann, K.; Brings Jacobsen, J.; Jähnert, M.; et al. Dietary medium-chain fatty acids reduce hepatic fat accumulation via activation of a CREBH-FGF21 axis. Mol. Metab. 2024, 87, 101991. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, X.; Su, S.; Yuan, Y.; Liu, W.; Zhu, M.; Zheng, Q.; Zeng, X.; Fu, F.; Lu, Y.; et al. Oleic acid improves hepatic lipotoxicity injury by alleviating autophagy dysfunction. Exp. Cell Res. 2023, 429, 113655. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.; Sang, Y.; Wang, X.; Wang, S. Metabonomics and the gut microbiome analysis of the effect of 6-shogaol on improving obesity. Food Chem. 2023, 404, 134734. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.; Jun, J.; Jeong, I.; Ahn, K.; Chung, H. Comparison of the efficacy of rosuvastatin mmonotherapy 20 mg with rosuvastatin 5 mg and ezetimibe 10 mg combination therapy on lipid parameters in patients with type 2 diabetes mellitus. Diabetes Metab. J. 2019, 43, 582–589. [Google Scholar] [CrossRef]
- Bhatt, V.; Khayati, K.; Hu, Z.; Lee, A.; Kamran, W.; Su, X.; Guo, J. Autophagy modulates lipid metabolism to maintain metabolic flexibility for Lkb1-deficient Kras-driven lung tumorigenesis. Genes Dev. 2019, 33, 150–165. [Google Scholar] [CrossRef]
- Dong, Y.; Stewart, T.; Bai, L.; Li, X.; Xu, T.; Iliff, J.; Shi, M.; Zheng, D.; Yuan, L.; Wei, T.; et al. Coniferaldehyde attenuates Alzheimer’s pathology via activation of Nrf2 and its targets. Theranostics 2020, 10, 179–200. [Google Scholar] [CrossRef]
- Cai, X.; Liu, Z.; Dong, X.; Wang, Y.; Zhu, L.; Li, M.; Xu, Y. Hypoglycemic and lipid lowering effects of theaflavins in high-fat diet-induced obese mice. Food Funct. 2021, 12, 9922–9931. [Google Scholar] [CrossRef]
- Mahmoud, M.; Ali, N.; Mahdi, I.; Mouhtady, O.; Mostafa, I.; El-Shazly, A.; Abdelfattah, M.; Hasan, R.; Sobeh, M. Coriander essential oil attenuates dexamethasone-induced acute liver injury through potentiating Nrf2/HO-1 and ameliorating apoptotic signaling. J. Funct. Foods 2023, 103, 105484. [Google Scholar] [CrossRef]
- Yi, R.; Deng, L.; Mu, J.; Li, C.; Tan, F.; Zhao, X. The impact of antarctic ice microalgae polysaccharides on D-galactose-induced oxidative damage in mice. Front. Nutr. 2021, 8, 651088. [Google Scholar] [CrossRef]
- Xiong, W.; Li, Y.; Yao, Y.; Xu, Q.; Wang, L. Antioxidant mechanism of a newly found phenolic compound from adlay (NDPS) in HepG2 cells via Nrf2 signalling. Food Chem. 2022, 378, 132034. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yuan, Y.; Zuo, J.; Tao, J. Composition and antioxidant activity of Paeonia lactiflora petal flavonoid extract and underlying mechanisms of the protective effect on H2O2-induced oxidative damage in BRL3A cells. Hortic. Plant J. 2023, 9, 335–344. [Google Scholar] [CrossRef]
Gene | Primer | Sequence (5′-3′) | PCR Products |
---|---|---|---|
Mus GAPDH | Forward | ATGGGTGTGAACCACGAGA | 229 bp |
Reverse | CAGGGATGATGTTCTGGGCA | ||
Mus HO-1 | Forward | GCAACAAGCAGAACCCAGTC | 363 bp |
Reverse | TTCGGGAAGGTAAAAAAAGC | ||
Mus γ-GCS | Forward | CACATCTACCACGCAGTC | 172 bp |
Reverse | GGTTGGGGTTTGTCCTC | ||
Mus Nrf2 | Forward | CAGTGCTCCTATGCGTGAA | 109 bp |
Reverse | GCGGCTTGAATGTTTGTCT | ||
Mus SREBP-1c | Forward | ACTTCTGGAGACATCGCAAAC | 279 bp |
Reverse | GGTAGACAACAGCCGCATC | ||
Mus FAS | Forward | CCTGCCTCTGGTGCTTGCT | 138 bp |
Reverse | GGGCCTCCTTGATATAATCCTT | ||
Mus PPAR-γ | Forward | ACCACTCGCATTCCTTT | 264 bp |
Reverse | CACAGACTCGGCACTCA | ||
Mus ACC | Forward | CTGTATGAGAAAGGCTATG | 149 bp |
Reverse | AAGAGGTTAGGGAAGTCA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Zhang, Y.; Li, L.; Wei, C.; Dai, T.; Li, Y.; Shuai, X.; Du, L. Macadamia (Macadamia integrifolia) Oil Prevents High-Fat Diet-Induced Lipid Accumulation and Oxidative Stress by Activating the AMPK/Nrf2 Pathway. Foods 2024, 13, 3672. https://doi.org/10.3390/foods13223672
Zhang M, Zhang Y, Li L, Wei C, Dai T, Li Y, Shuai X, Du L. Macadamia (Macadamia integrifolia) Oil Prevents High-Fat Diet-Induced Lipid Accumulation and Oxidative Stress by Activating the AMPK/Nrf2 Pathway. Foods. 2024; 13(22):3672. https://doi.org/10.3390/foods13223672
Chicago/Turabian StyleZhang, Ming, Yuhan Zhang, Lingdong Li, Changbin Wei, Taotao Dai, Ya Li, Xixiang Shuai, and Liqing Du. 2024. "Macadamia (Macadamia integrifolia) Oil Prevents High-Fat Diet-Induced Lipid Accumulation and Oxidative Stress by Activating the AMPK/Nrf2 Pathway" Foods 13, no. 22: 3672. https://doi.org/10.3390/foods13223672
APA StyleZhang, M., Zhang, Y., Li, L., Wei, C., Dai, T., Li, Y., Shuai, X., & Du, L. (2024). Macadamia (Macadamia integrifolia) Oil Prevents High-Fat Diet-Induced Lipid Accumulation and Oxidative Stress by Activating the AMPK/Nrf2 Pathway. Foods, 13(22), 3672. https://doi.org/10.3390/foods13223672