Research Progress on the Physicochemical Properties of Starch-Based Foods by Extrusion Processing
Abstract
:1. Introduction
2. The Latest Extrusion Processing Technology
2.1. High-Moisture Extrusion
2.2. Enzymatic Extrusion
2.3. Hot-Extrusion 3D Printing
2.4. Improved Extrusion Cooking Technology (IECT)
3. Effect of Extrusion Processing Technology on the Structure and Physicochemical Properties of Starch
3.1. Molecular Structure of Starch
3.2. Starch Gelatinization and Retrogradation
3.3. Starch Rheology
3.4. Starch Digestion
4. Application of Extrusion Processing Technology in Starch
4.1. Resistant Starch
4.2. Pre-Gelatinized Starch
4.3. Porous Starch
5. Effect of Extrusion Processing Technology on the Interaction of Starch-Based Food Components
5.1. Starch and Protein
5.2. Starch and Lipids
5.3. Starch and Non-Starch Polysaccharides
5.4. Starch and Polyphenol
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cabrera-Ramírez, A.H.; Cervantes-Ramírez, E.; Morales-Sánchez, E.; Rodriguez-García, M.E.; Reyes-Vega, M.D.; Gaytán-Martínez, M. Effect of Extrusion on the Crystalline Structure of Starch during RS5 Formation. Polysaccharides 2021, 2, 187–201. [Google Scholar] [CrossRef]
- Guan, C.; Long, X.; Long, Z.; Lin, Q.; Liu, C. Legumes flour: A review of the nutritional properties, physiological functions and application in extruded rice products. Int. J. Food Sci. Technol. 2023, 58, 300–314. [Google Scholar] [CrossRef]
- Asharuddin, S.M.; Othman, N.; Altowayti, W.A.H.; Abu Bakar, N.; Hassan, A. Recent advancement in starch modification and its application as water treatment agent. Environ. Technol. Innov. 2021, 23, 101637. [Google Scholar] [CrossRef]
- Soto, C.V.; Perez-Bravo, F.; Mariotti-Celis, M.S. Amount, stability, and digestibility of carbohydrates after the extrusion process: Impact on the glycemic index of flours commonly consumed in Chile. Rev. Chil. Nutr. 2023, 50, 233–241. [Google Scholar]
- Fan, J.M.; Yu, D.N.; Han, B.J.; Kou, M.X.; Niu, F.G.; Gu, Z.Y.; Pan, W.C. Effects of screw extrusion on digestibility and glycemic index of potato starch. J. Food Saf. Qual. 2018, 9, 3749–3754. [Google Scholar]
- Xiao, X.; Li, J.; Xiong, H.; Tui, W.; Zhu, Y.; Zhang, J. Effect of Extrusion or Fermentation on Physicochemical and Digestive Properties of Barley Powder. Front. Nutrition 2022, 8, 794355. [Google Scholar] [CrossRef]
- Brncic, M.; Karlovic, S.; Bosiljkov, T.; Tripalo, B.; Jezek, D.; Cugelj, I.; Obradovic, V. Enrichment of extruded snack products with whey proteins. Mljekarstvo 2008, 58, 275–295. [Google Scholar]
- Luo, S.; Chen, J.; He, J.; Li, H.; Jia, Q.; Hossen, M.A.; Dai, J.; Qin, W.; Liu, Y. Preparation of corn starch/rock bean protein edible film loaded with D-limonene particles and their application in glutinous rice cake preservation. Int. J. Biol. Macromol. 2022, 206, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, A.; Sharma, S.; Singh, B. Effect of pregelatination on rheology, cooking and antioxidant activity of pasta. J. Food Sci. Technol.-Mysore 2018, 55, 1756–1766. [Google Scholar] [CrossRef]
- Pismag, R.; Pico, J.; Fernandez, A.; Hoyos, J.L.; Martinez, M.M. α-Amylase reactive extrusion enhances the protein digestibility of saponin-free quinoa flour while preserving its total phenolic content. Innov. Food Sci. Emerg. Technol. 2023, 88, 103448. [Google Scholar] [CrossRef]
- Kadival, A.; Kour, M.; Meena, D.; Mitra, J. Extrusion-Based 3D Food Printing: Printability Assessment and Improvement Techniques. Food Bioprocess Technol. 2023, 16, 987–1008. [Google Scholar] [CrossRef]
- Torres, L.L.G.; El-Dash, A.A.; Carvalho, C.W.P.; Ascheri, J.L.R.; Germani, R.; Miguez, M. Moisture content and temperature effects on the processing of unripe banana flour (Musa acuminata, AAA group) by thermoplastic extrusion. Bol. Cent. Pesqui. Process. Alimentos 2005, 23, 273–290. [Google Scholar]
- Richter, J.K.; Montero, M.L.; Ikuse, M.; Wagner, C.E.; Ross, C.F.; Saunders, S.R.; Ganjyal, G.M. The interaction between wheat and pea protein influences the final chemical and sensory characteristics of extruded high moisture meat analogs. J. Food Sci. 2024, 89, 104–120. [Google Scholar] [CrossRef]
- Guo, Z.; Teng, F.; Huang, Z.; Lv, B.; Lv, X.; Babich, O.; Yu, W.; Li, Y.; Wang, Z.; Jiang, L. Effects of material characteristics on the structural characteristics and flavor substances retention of meat analogs. Food Hydrocoll. 2020, 105, 105752. [Google Scholar] [CrossRef]
- Choi, O.-J.; Zhao, C.-C.; Ameer, K.; Eun, J.-B. Effects of soy flour types and extrusion-cooking conditions on physicochemical, microstructural and sensory characteristics of puffed rice snack base. Int. J. Food Eng. 2021, 17, 473–483. [Google Scholar] [CrossRef]
- Jongsutjarittam, O.; Charoenrein, S. The effect of moisture content on physicochemical properties of extruded waxy and non-waxy rice flour. Carbohydr. Polym. 2014, 114, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Lin, J. Comparison between collet and cooking extrusions on physicochemical properties of whole grain barley. J. Food Process Eng. 2017, 40, e12480. [Google Scholar] [CrossRef]
- Cortazzo Menis, M.E.; Goss Milani, T.M.; Jordano, A.; Boscolo, M.; Conti-Silva, A.C. Extrusion of flavored corn grits: Structural characteristics, volatile compounds retention and sensory acceptability. LWT Food Sci. Technol. 2013, 54, 434–439. [Google Scholar] [CrossRef]
- Chang, C.; Yang, C.; Samanros, A.; Lin, J. Collet and cooking extrusion change the soluble and insoluble β-glucan contents of barley. J. Cereal Sci. 2015, 66, 18–23. [Google Scholar] [CrossRef]
- Kim, J.H.; Tanhehco, E.J.; Ng, P.K.W. Effect of extrusion conditions on resistant starch formation from pastry wheat flour. Food Chem. 2006, 99, 718–723. [Google Scholar] [CrossRef]
- Li, H.; Jiao, A.; Xu, X.; Wu, C.; Wei, B.; Hu, X.; Jin, Z.; Tian, Y. Simultaneous saccharification and fermentation of broken rice: An enzymatic extrusion liquefaction pretreatment for Chinese rice wine production. Bioprocess Biosyst. Eng. 2013, 36, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Duque, A.; Manzanares, P.; Ballesteros, I.; Negro, M.J.; Oliva, J.M.; Gonzalez, A.; Ballesteros, M. Sugar production from barley straw biomass pretreated by combined alkali and enzymatic extrusion. Bioresour. Technol. 2014, 158, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.; Huang, Y.T.; Jain, P.; Fan, B.; Tong, L.T.; Wang, F.Z. Enzymatic hydrolysis of soy protein to high moisture textured meat analogue with emphasis on antioxidant effects: As a tool to improve techno-functional property. Biocatal. Agric. Biotechnol. 2023, 50, 102700. [Google Scholar] [CrossRef]
- Wang, N.; Dai, J.; Miao, D.; Li, C.; Yang, X.; Shu, Q.; Zhang, Y.; Dai, Y.; Hou, H.; Xu, S. Influence of enzymatic modification on the basis of improved extrusion cooking technology (IECT) on the structure and properties of corn starch. Int. J. Biol. Macromol. 2023, 253, 127274. [Google Scholar] [CrossRef] [PubMed]
- Vanier, N.L.; Vamadevan, V.; Bruni, G.P.; Ferreira, C.D.; Pinto, V.Z.; Seetharaman, K.; Zavareze, E.d.R.; Elias, M.C.; Berrios, J.D.J. Extrusion of Rice, Bean and Corn Starches: Extrudate Structure and Molecular Changes in Amylose and Amylopectin. J. Food Sci. 2016, 81, E2932–E2938. [Google Scholar] [CrossRef]
- Enbo, X.; Zhengzong, W.; Aiquan, J.; Zhengyu, J. Effect of exogenous metal ions and mechanical stress on rice processed in thermal-solid enzymatic reaction system related to further alcoholic fermentation efficiency. Food Chem. 2018, 240, 965–973. [Google Scholar]
- Jingpeng, L.; Aiquan, J.; Li, D.; Rashed, M.M.A.; Zhengyu, J. Porous-structured extruded instant noodles induced by the medium temperature alpha-amylase and its effect on selected cooking properties and sensory characteristics. Int. J. Food Sci. Technol. 2018, 53, 2265–2272. [Google Scholar]
- Xu, E.; Wu, Z.; Long, J.; Jiao, A.; Jin, Z. Porous Starch-Based Material Prepared by Bioextrusion in the Presence of Zinc and Amylase-Magnesium Complex. ACS Sus. Chem. Eng. 2018, 6, 9572–9578. [Google Scholar] [CrossRef]
- Agunbiade, A.O.; Song, L.; Agunbiade, O.J.; Ofoedu, C.E.; Chacha, J.S.; Duguma, H.T.; Hossaini, S.M.; Rasaq, W.A.; Shorstkii, I.; Osuji, C.M.; et al. Potentials of 3D extrusion-based printing in resolving food processing challenges: A perspective review. J. Food Process Eng. 2022, 45, e13996. [Google Scholar] [CrossRef]
- Huan, C.; Fengwei, X.; Ling, C.; Bo, Z. Effect of rheological properties of potato, rice and corn starches on their hot-extrusion 3D printing behaviors. J. Food Eng. 2019, 244, 150–158. [Google Scholar]
- Chen, J.; Wang, Y.; Liu, J.; Xu, X. Preparation, characterization, physicochemical property and potential application of porous starch: A review. Int. J. Biol. Macromol. 2020, 148, 1169–1181. [Google Scholar] [CrossRef]
- Lille, M.; Nurmela, A.; Nordlund, E.; Metsa-Kortelainen, S.; Sozer, N. Applicability of protein and fiber-rich food materials in extrusion-based 3D printing. J. Food Eng. 2018, 220, 20–27. [Google Scholar] [CrossRef]
- Godoi, F.C.; Prakash, S.; Bhandari, B.R. 3D printing technologies applied for food design: Status and prospects. J. Food Eng. 2016, 179, 44–54. [Google Scholar] [CrossRef]
- Fanli, Y.; Min, Z.; Bhesh, B.; Yaping, L. Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT Food Sci. Technol. 2018, 87, 67–76. [Google Scholar]
- Camire, M.E.; Camire, A.; Krumhar, K. Chemical and nutritional changes in foods during extrusion. Crit. Rev. Food Sci. Nutr. 1990, 29, 35–57. [Google Scholar] [CrossRef]
- Liu, C.M.; Zhang, Y.J.; Lu, W. Preparation, physicochemical and texture properties of texturized rice produce by Improved Extrusion Cooking Technology. J. Cereal Sci. 2011, 54, 473–480. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, W.; Liu, C.; Luo, S.; Li, T.; Liu, Y.; Wu, D.; Zuo, Y. Retrogradation behaviour of high-amylose rice starch prepared by improved extrusion cooking technology. Food Chem. 2014, 158, 255–261. [Google Scholar] [CrossRef]
- Ye, J.; Hu, X.; Zhang, F.; Fang, C.; Liu, C.; Luo, C. Freeze-thaw stability of rice starch modified by Improved Extrusion Cooking Technology. Carbohyd. Polym. 2016, 151, 113–118. [Google Scholar] [CrossRef]
- Rafiq, A.; Sharma, S.; Singh, B. Regression analysis of gluten-free pasta from brown rice for characterization and in vitro digestibility. J. Food Process. Preserv. 2017, 41, e12830. [Google Scholar] [CrossRef]
- Li, M.; Hasjim, J.; Xie, F.; Halley, P.J.; Gilbert, R.G. Shear degradation of molecular, crystalline, and granular structures of starch during extrusion. Starch/Staerke 2014, 66, 595–605. [Google Scholar] [CrossRef]
- Pérez, S.; Bertoft, E. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch/Starker 2010, 62, 389–420. [Google Scholar] [CrossRef]
- Lai, L.S.; Kokini, J.L. Physicochemical changes and rheological properties of starch during extrusion. Biotechnol. Progress 1991, 7, 251–266. [Google Scholar] [CrossRef]
- Liu, W.C.; Halley, P.J.; Gilbert, R.G. Mechanism of Degradation of Starch, a Highly Branched Polymer, during Extrusion. Macromolecules 2010, 43, 2855–2864. [Google Scholar] [CrossRef]
- Htoon, A.; Shrestha, A.K.; Flanagan, B.M.; Lopez-Rubio, A.; Bird, A.R.; Gilbert, E.P.; Gidley, M.J. Effects of processing high amylose maize starches under controlled conditions on structural organisation and amylase digestibility. Carbohydr. Polym. 2009, 75, 236–245. [Google Scholar] [CrossRef]
- Sarawong, C.; Schoenlechner, R.; Sekiguchi, K.; Berghofer, E.; Ng, P.K.W. Effect of extrusion cooking on the physicochemical properties, resistant starch, phenolic content and antioxidant capacities of green banana flour. Food Chem. 2014, 143, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Amonsou, E.O. Impact of Starch Modification Processes on Resistant Starch of Root and Tuber Crops. Starch/Starker 2023, 75, 9–10. [Google Scholar] [CrossRef]
- Tellez-Morales, J.A.; Rodriguez-Miranda, J. Improved Extrusion Cooking Technology: A Mini Review of Starch Modification. J. Culin. Sci. Technol. 2023, 1–10. [Google Scholar] [CrossRef]
- Yan, X.; McClements, D.J.; Luo, S.; Liu, C.; Ye, J. Recent advances in the impact of gelatinization degree on starch: Structure, properties and applications. Carbohydr. Polym. 2024, 340, 122273. [Google Scholar] [CrossRef]
- Jiejie, W.; Mengfei, L.; Chun, W.; Yanjun, D.; Yue, S.; Xueling, L.; Heider, C.G.; Xian, W.; Jin, L. Effect of extrusion processing and addition of purple sweet potatoes on the structural properties and in vitro digestibility of extruded rice. Food Funct. 2021, 12, 739–746. [Google Scholar]
- Dupuis, J.H.; Liu, Q.; Yada, R.Y. Methodologies for Increasing the Resistant Starch Content of Food Starches: A Review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1219–1234. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Y.; Qian, H.; Zhang, H.; Qi, X. Effects of Different Processing Methods on Starch Properties. J. Food Sci. Bio. 2017, 36, 225–235. [Google Scholar]
- Ashwar, B.A.; Gani, A.; Shah, A.; Wani, I.A.; Masoodi, F.A. Preparation, health benefits and applications of resistant starch—A review. Starch/Starker 2016, 68, 287–301. [Google Scholar] [CrossRef]
- Stanciu, I. Rheology of Gums Used in the Food and Flour Industry for “Tortillas”. Orient. J. Chem. 2022, 38, 936–939. [Google Scholar] [CrossRef]
- Zhang, Z.; Liang, Y.; Zou, L.; Xu, Y.; Li, M.; Xing, B.; Zhu, M.; Hu, Y.; Ren, G.; Zhang, L.; et al. Individual or mixing extrusion of Tartary buckwheat and adzuki bean: Effect on quality properties and starch digestibility of instant powder. Front. Nutr. 2023, 10, 1113327. [Google Scholar] [CrossRef]
- Cheng, Y.; Yuqing, H.; Xiao, L.; Gao, W.; Kang, X.; Sui, J.; Cui, B. Impact of starch amylose and amylopectin on the rheological and 3D printing properties of corn starch. Int. J. Biol. Macromol. 2024, 278, 134403. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, M.; Xing, B.; Liang, Y.; Zou, L.; Li, M.; Fan, X.; Ren, G.; Zhang, L.; Qin, P. Effects of extrusion on structural properties, physicochemical properties and in vitro starch digestibility of Tartary buckwheat flour. Food Hydrocoll. 2023, 135, 108197. [Google Scholar] [CrossRef]
- Bede, D.; Lou, Z.X. Recent Developments in Resistant Starch as a Functional Food. Starch/Starker 2021, 73, 3–4. [Google Scholar] [CrossRef]
- McClure, J.; Ahn-Jarvis, J.; Wilde, P.; Saibene, D.; Linter, B.; Warren, F. The effects of extrusion processing on the digestibility and functionality of pulse starches. J. Acad. Nutr. Dietetics 2020, 120, A55. [Google Scholar] [CrossRef]
- Su Sin, K.; Xinglin, J.; Jing, Z.; Sopade, P.A. Extrusion of a model sorghum-barley blend: Starch digestibility and associated properties. J. Cereal Sci. 2017, 75, 314–323. [Google Scholar]
- Ruihan, H.; Kai, H.; Xiao, G.; Sen, L.; Hongwei, C.; Ying, Z.; Xiao, L.; Yize, B.; Jia, W. Effect of defatting and extruding treatment on the physicochemical and storage properties of quinoa (Chenopodium quinoa Wild) flour. LWT Food Sci. Technol. 2021, 147, 111612. [Google Scholar]
- Liu, Y.; Chen, J.; Luo, S.; Li, C.; Ye, J.; Liu, C.; Gilbert, R.G. Physicochemical and structural properties of pregelatinized starch prepared by improved extrusion cooking technology. Carbohydr. Polym. 2017, 175, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Von Borries-Medrano, E.; Jaime-Fonseca, M.R.; Aguilar-Mendez, M.A.; Garcia-Cruz, H.I. Addition of galactomannans and citric acid in corn starch processed by extrusion: Retrogradation and resistant starch studies. Food Hydrocoll. 2018, 83, 485–496. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Bao, J.S. Recent Advances in Modification Approaches, Health Benefits, and Food Applications of Resistant Starch. Starch/Starker 2023, 75, 9–10. [Google Scholar] [CrossRef]
- Kantrong, H.; Charunuch, C.; Limsangouan, N.; Pengpinit, W. Influence of process parameters on physical properties and specific mechanical energy of healthy mushroom-rice snacks and optimization of extrusion process parameters using response surface methodology. Int. J. Food Sci. Technol. 2018, 55, 3462–3472. [Google Scholar] [CrossRef]
- Guha, M.; Ali, S.Z. Changes in rheological properties of rice flour during extrusion and cooking. J. Texture Stud. 2011, 42, 451–458. [Google Scholar] [CrossRef]
- Schuchmann, H.P.; Danner, T. Product engineering in the case of extruded instant powders. Chem. Ing. Tech. 1999, 71, 441–446. [Google Scholar] [CrossRef]
- He, R.; Li, M.; Huang, B.; Zou, X.; Li, S.; Sang, X.; Yang, L. Comparative analysis of multi-angle structural alterations and cold-water solubility of kudzu starch modifications using different methods. Int. J. Biol. Macromol. 2024, 264, 130522. [Google Scholar] [CrossRef]
- Zhang, G.; Ni, C.; Ding, Y.; Zhou, H.; Caizhi, O.; Wang, Q.; Wang, J.; Cheng, J. Effects of Low Moisture Extrusion on the Structural and Physicochemical Properties of Adlay (Coix lacryma-jobi L.) Starch-Based Polymers. Process Biochem. 2020, 96, 30–37. [Google Scholar] [CrossRef]
- Garcia-Valle, D.E.; Agama-Acevedo, E.; del Carmen Nunez-Santiago, M.; Alvarez-Ramirez, J.; Bello-Perez, L.A. Extrusion pregelatinization improves texture, viscoelasticity and in vitro starch digestibility of mango and amaranth flours. J. Funct. Foods. 2021, 80, 104441. [Google Scholar] [CrossRef]
- Jiangping, Y.; Shunjing, L.; Ao, H.; Jun, C.; Chengmei, L.; McClements, D.J. Synthesis and characterization of citric acid esterified rice starch by reactive extrusion: A new method of producing resistant starch. Food Hydrocoll. 2019, 92, 135–142. [Google Scholar]
- Perera, A.; Meda, V.; Tyler, R.T. Resistant starch: A review of analytical protocols for determining resistant starch and of factors affecting the resistant starch content of foods. Food Res. Int. 2010, 43, 1959–1974. [Google Scholar] [CrossRef]
- Cervantes-Ramirez, J.E.; Cabrera-Ramirez, A.H.; Morales-Sanchez, E.; Rodriguez-Garcia, M.E.; de la Luz Reyes-Vega, M.; Ramirez-Jimenez, A.K.; Contreras-Jimenez, B.L.; Gaytan-Martinez, M. Amylose-lipid complex formation from extruded maize starch mixed with fatty acids. Carbohydr. Polym. 2020, 246, 116555. [Google Scholar] [CrossRef]
- Masatcioglu, T.M.; Sumer, Z.; Koksel, H. An innovative approach for significantly increasing enzyme resistant starch type 3 content in high amylose starches by using extrusion cooking. J. Cereal Sci. 2017, 74, 95–102. [Google Scholar] [CrossRef]
- van den Einde, R.M.; van der Goot, A.J.; Boom, R.M. Understanding molecular weight reduction of starch during heating-shearing processes. J. Food Sci. 2003, 68, 2396–2404. [Google Scholar] [CrossRef]
- Liu, Q.; Jiao, A.; Yang, Y.; Wang, Y.; Li, J.; Xu, E.; Yang, G.; Jin, Z. The combined effects of extrusion and recrystallization treatments on the structural and physicochemical properties and digestibility of corn and potato starch. LWT Food Sci. Technol. 2021, 151, 112238. [Google Scholar] [CrossRef]
- He, H.; Chi, C.; Xie, F.; Li, X.; Liang, Y.; Chen, L. Improving the in vitro digestibility of rice starch by thermomechanically assisted complexation with guar gum. Food Hydrocoll. 2020, 102, 105637. [Google Scholar] [CrossRef]
- Feng, Y.-Y.; Mu, T.-H.; Zhang, M.; Ma, M.-M. Effects of different polysaccharides and proteins on dough rheological properties, texture, structure and in vitro starch digestibility of wet sweet potato vermicelli. Int. J. Biol. Macromol. 2020, 148, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.-R.; Wang, Y.-S.; Chen, Y.; Mu, H.-Y.; Chen, H.-H. Understanding the digestibility of wheat starch-caffeic acid complexes prepared by hot-extrusion 3D printing technology. Food Hydrocoll. 2023, 141, 108692. [Google Scholar] [CrossRef]
- Saadat, S.; Akhtar, S.; Ismail, T.; Sharif, M.K.; Shabbir, U.; Ahmad, N.; Ali, A. Multibean bars prepared from extruded legume flour to address protein energy malnutrition. Ital. J. Food Sci. 2020, 32, 167–180. [Google Scholar]
- Martinez, M.M.; Marcos, P.; Gomez, M. Texture development in gluten-free bread: Effects of different enzymes and extruded flour. J. Texture Stud. 2013, 44, 480–489. [Google Scholar] [CrossRef]
- Seetapan, N.; Limparyoon, N.; Yooberg, R.; Leelawat, B.; Charunuch, C. Influence of addition of extruded rice flour on preparation and quality of fresh gluten-free yellow alkaline noodles. J. Cereal Sci. 2019, 90, 102828. [Google Scholar] [CrossRef]
- Han, X.-M.; Xing, J.-J.; Han, C.; Guo, X.-N.; Zhu, K.-X. The effects of extruded endogenous starch on the processing properties of gluten-free Tartary buckwheat noodles. Carbohydr. Polym. 2021, 267, 118170. [Google Scholar] [CrossRef]
- Martinez, M.M.; Oliete, B.; Roman, L.; Gomez, M. Effect of the addition of extruded flour on rice bread quality. J. Food Qual. 2014, 37, 83–94. [Google Scholar] [CrossRef]
- Li, Q.; Liu, S.; Obadi, M.; Jiang, Y.; Zhao, F.; Jiang, S.; Xu, B. The impact of starch degradation induced by pre-gelatinization treatment on the quality of noodles. Food Chem. 2020, 302, 125267. [Google Scholar] [CrossRef]
- Albarracin, M.; Dyner, L.; Silvia Giacomino, M.; Weisstaub, A.; Zuleta, A.; Drago, S.R. Modification of nutritional properties of whole rice flours (Oryza sativa L.) by soaking, germination, and extrusion. J. Food Biochem. 2019, 43, e12854. [Google Scholar]
- Fonseca, L.M.; Halal, S.L.M.E.; Dias, A.R.G.; Zavareze, E.D.R. Physical modification of starch by heat-moisture treatment and annealing and their applications: A review. Carbohydr. Polym. 2021, 274, 118665. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Zhu, X.-F.; Nan, B.-X.; Jiang, R.-Z.; Wang, H.-L. Effect of extruded starches on the structure, farinograph characteristics and baking behavior of wheat dough. Food Chem. 2021, 348, 129017. [Google Scholar] [CrossRef] [PubMed]
- Schweiggert, U.; Hofmann, S.; Reichel, M.; Schieber, A.; Carle, R. Enzyme-assisted liquefaction of ginger rhizomes (Zingiber officinale Rosc.) for the production of spray-dried and paste-like ginger condiments. Int. J. Food Eng. 2008, 84, 28–38. [Google Scholar]
- Ho, C.K.; Altman, S.J.; Jones, H.D.T.; Khalsa, S.S.; McGrath, L.K.; Clem, P.G. Analysis of micromixers to reduce biofouling on reverse-osmosis membranes. Environ. Prog. 2008, 27, 195–203. [Google Scholar] [CrossRef]
- Allen, K.E.; Carpenter, C.E.; Walsh, M.K. Influence of protein level and starch type on an extrusion-expanded whey product. Int. J. Food Sci. Tech. 2007, 42, 953–960. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Y.; Yang, Y.; Yu, X.; Xu, L.; Jiao, A.; Jin, Z. Structure, physicochemical properties and in vitro digestibility of extruded starch-lauric acid complexes with different amylose contents. Food Hydrocoll. 2023, 136, 108239. [Google Scholar] [CrossRef]
- Liu, Q.; Shi, J.; Jin, Z.; Jiao, A. Development and characterization of resistant starch produced by an extrusion-debranching strategy with a high starch concentration. Food Hydrocoll. 2023, 136, 108276. [Google Scholar] [CrossRef]
- He, H.; Zhang, X.; Liao, W.; Shen, J. Characterization and in vitro digestion of rice starch/konjac glucomannan complex prepared by screw extrusion and its impact on gut microbiota. Food Hydrocoll. 2023, 135, 108156. [Google Scholar] [CrossRef]
- Ti, H.; Zhang, R.; Zhang, M.; Wei, Z.; Chi, J.; Deng, Y.; Zhang, Y. Effect of extrusion on phytochemical profiles in milled fractions of black rice. Food Chem. 2015, 178, 186–194. [Google Scholar] [CrossRef]
- Seth, D.; Badwaik, L.S.; Ganapathy, V. Effect of feed composition, moisture content and extrusion temperature on extrudate characteristics of yam-corn-rice based snack food. J. Food Sci. Tech. 2015, 52, 1830–1838. [Google Scholar] [CrossRef] [PubMed]
- Chi, C.; Li, X.; Zhang, Y.; Chen, L.; Li, L. Understanding the mechanism of starch digestion mitigation by rice protein and its enzymatic hydrolysates. Food Hydrocoll. 2018, 84, 473–480. [Google Scholar] [CrossRef]
- Tellez-Morales, J.A.; Herman-Lara, E.; Gomez-Aldapa, C.A.; Rodriguez-Miranda, J. Techno-functional properties of the starch-protein interaction during extrusion-cooking of a model system (corn starch and whey protein isolate). LWT Food Sci. Technol. 2020, 132, 109789. [Google Scholar] [CrossRef]
- Chen, B.; Yu, C.; Liu, J.; Yang, Y.; Shen, X.; Liu, S.; Tang, X. Physical properties and chemical forces of extruded corn starch fortified with soy protein isolate. Int. J. Food Sci. Technol. 2017, 52, 2604–2613. [Google Scholar] [CrossRef]
- de Mesa, N.J.E.; Alavi, S.; Singh, N.; Shi, Y.-C.; Dogan, H.; Sang, Y. Soy protein-fortified expanded extrudates: Baseline study using normal corn starch. Int. J. Food Eng. 2009, 90, 262–270. [Google Scholar] [CrossRef]
- Philipp, C.; Oey, I.; Silcock, P.; Beck, S.M.; Buckow, R. Impact of protein content on physical and microstructural properties of extruded rice starch-pea protein snacks. Int. J. Food Eng. 2017, 212, 165–173. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Sokhansanj, S.; Bandyopadhyay, S.; Bawa, A.S. Changes in Moisture, Protein, and Fat Content of Fish and Rice Flour Coextrudates during Single-Screw Extrusion Cooking. Food Bioprocess Technol. 2013, 6, 403–415. [Google Scholar] [CrossRef]
- Cai, C.; Tian, Y.; Sun, C.; Jin, Z. Resistant structure of extruded starch: Effects of fatty acids with different chain lengths and degree of unsaturation. Food Chem. 2022, 374, 131510. [Google Scholar] [CrossRef]
- Wang, S.; Chao, C.; Cai, J.; Niu, B.; Copeland, L.; Wang, S. Starch-lipid and starch-lipid-protein complexes: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1056–1079. [Google Scholar] [CrossRef]
- Meng, S.; Ma, Y.; Cui, J.; Sun, D.-W. Preparation of corn starch-fatty acid complexes by high-pressure homogenization. Starch/Staerke 2014, 66, 809–817. [Google Scholar] [CrossRef]
- Rashid, S.; Rakha, A.; Anjum, F.M.; Ahmed, W.; Sohail, M. Effects of extrusion cooking on the dietary fibre content and Water Solubility Index of wheat bran extrudates. Int. J. Food Sci. Technol. 2015, 50, 1533–1537. [Google Scholar] [CrossRef]
- Dobranowski, P.A.; Stintzi, A. Resistant starch, microbiome, and precision modulation. Gut Microbes 2021, 13, 1926842. [Google Scholar] [CrossRef]
- He, H.; Bian, H.; Xie, F.; Chen, L. Different effects of pectin and κ-carrageenan on the multiscale structures and in vitro digestibility of extruded rice starch. Food Hydrocoll. 2021, 111, 106216. [Google Scholar] [CrossRef]
- Ren, Y.; Rong, L.; Shen, M.; Liu, W.; Xiao, W.; Luo, Y.; Xie, J. Interaction between rice starch and Mesona chinensis Benth polysaccharide gels: Pasting and gelling properties. Carbohydr. Polym. 2020, 240, 116316. [Google Scholar] [CrossRef]
- Vasanthan, T.; Jiang, G.S.; Yeung, J.; Li, J.H. Dietary fiber profile of barley flour as affected by extrusion cooking. Food Chem. 2002, 77, 35–40. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhang, L.; Liao, W.; Liu, J.; Yuan, F.; Gao, Y. Effect of xanthan gum co-extruded with OSA starch on its solubility and rheological properties. LWT Food Sci. Technol. 2021, 147, 111588. [Google Scholar] [CrossRef]
- Villarroel, P.; Gómez, C.; Vera, C.; Torres, J. Resistant starch: Technological characteristics and physiological interests. Rev. Chil. Nutr. 2018, 45, 271–278. [Google Scholar] [CrossRef]
- Zhang, R.; Khan, S.A.; Chi, J.; Wei, Z.; Zhang, Y.; Deng, Y.; Liu, L.; Zhang, M. Different effects of extrusion on the phenolic profiles and antioxidant activity in milled fractions of brown rice. LWT Food Sci. Technol. 2018, 88, 64–70. [Google Scholar] [CrossRef]
- Hossain, A.; Jayadeep, A. Impact of extrusion on the content and bioaccessibility of fat soluble nutraceuticals, phenolics and antioxidants activity in whole maize. Food Res. Int. 2022, 161, 111821. [Google Scholar] [CrossRef]
- Yakubov, G.E.; Macakova, L.; Wilson, S.; Windust, J.H.C.; Stokes, J.R. Aqueous lubrication by fractionated salivary proteins: Synergistic interaction of mucin polymer brush with low molecular weight macromolecules. Tribol. Int. 2015, 89, 34–45. [Google Scholar] [CrossRef]
- Xu, E.; Wu, Z.; Jiao, A.; Long, J.; Li, J.; Jin, Z. Dynamics of rapid starch gelatinization and total phenolic thermomechanical destruction moderated via rice bio-extrusion with alpha-amylase activation. RSC Adv. 2017, 7, 19464–19478. [Google Scholar] [CrossRef]
- Xu, E.; Ma, S.; Wu, Z.; Wang, W.; Zhang, X.; Tian, J.; Li, D.; Zhou, J.; Liu, D. Bifunctional Fe3O4 nanoparticles as magnet and inducer in bioextruded fabrication of starch-based composite with hierarchical pore architecture. Int. J. Biol. Macromol. 2021, 190, 876–886. [Google Scholar] [CrossRef]
- Chen, S.; Zong, J.; Jiang, L.; Ma, C.; Li, H.; Zhang, D. Improvement of resveratrol release performance and stability in extruded microparticle by the α-amylase incorporation. Int. J. Food Eng. 2020, 274, 109842. [Google Scholar] [CrossRef]
Physicochemical Properties of Starch | Mechanism | Main Result | Application | References |
---|---|---|---|---|
Starch gelatinization | Weakening of hydrogen bonds | The starch particles quickly absorbed water and swelled, and the gelatinization temperature of starch decreased due to the effects of heat, shear force, and pressure. | Expanded product | [46,48,49] |
Breakage of starch particle structure | ||||
Extraction of amylose | ||||
Starch retrogradation | Reorganization of hydrogen bonds between amylose and amylopectin molecules | The molecular chain of starch modified by extrusion interacted with the water ion, thus delaying the retrogradation of starch. | Fast-food product | [50,51,52] |
Cross-linking of starch molecules | ||||
Formation of local crystalline regions | ||||
Starch rheology | Breaking of glycoside bond inside starch molecule | Starch viscosity reduction | Instant powder | [53,54,55] |
Starch digestion | Damage to the integrity of starch particles | The degradation of starch molecules led to the formation of surface cracks, pits, and holes. | Easy-to-digest food for the elderly | [56] |
Increased contact area between starch and amylase | ||||
Breakdown of covalent hydrogen bond and crystal structure of starch particles | The content of resistant starch increased, and the digestibility of starch decreased. | Low-glycemic-index, starchy foods | [57,58,59] | |
Rearrangement of starch molecules | ||||
Combination of starch with other substances (e.g., fatty acids, proteins, polyphenols) |
Food Component | Primary Force | Structural Change | Result | References |
---|---|---|---|---|
Protein | Covalent bond Electrostatic interaction Hydrogen bond van der Waals Hydrophobic interactions | Hydrolysis of proteins | Improved protein quality Improvement of protein digestibility | [71,85,86] |
Unfolding and rearrangement of denatured structures | ||||
Cross-linking and polymerization between proteins and starches | ||||
Lipids | Hydrogen bond van der Waals | Decomposition of lipids | Reduced free fat content The content of resistant starch increased | [73,90] |
Embedded in the spiral hydrophobic chamber of the starch molecule | ||||
Formation of a starch–fat complex | ||||
Non-starch polysaccharides | Hydrogen bond van der Waals Hydrophobic interactions | Interacts with starch particles through hydroxyl groups | The apparent viscosity of NSP–starch complexes increases Inhibited starch digestion Regulated glycemic index | [91,92] |
Promotes the formation of a more orderly network structure | ||||
Increased binding to water | ||||
Enhances the stability of the composite system | ||||
Attaches to the starch surface | ||||
Forms a physical barrier | ||||
Resistance to mechanical shear damage during starch processing | ||||
Polyphenol | Hydrogen bond Electrostatic interaction Hydrophobic interactions | Loosening of the overall structure of starch | Decrease in free phenol content Retention of active nutrients | [93,94] |
Breaking of molecular chains | ||||
Production of starch degradation products with large exposure to hydroxyl groups | ||||
Provides more sites for the coupling of exogenous phenols to starch |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, C.; Hu, H.; Chen, B.; Lin, Q.; Ji, H.; Jin, Z. Research Progress on the Physicochemical Properties of Starch-Based Foods by Extrusion Processing. Foods 2024, 13, 3677. https://doi.org/10.3390/foods13223677
Qiu C, Hu H, Chen B, Lin Q, Ji H, Jin Z. Research Progress on the Physicochemical Properties of Starch-Based Foods by Extrusion Processing. Foods. 2024; 13(22):3677. https://doi.org/10.3390/foods13223677
Chicago/Turabian StyleQiu, Chao, Han Hu, Baicun Chen, Qianzhu Lin, Hangyan Ji, and Zhengyu Jin. 2024. "Research Progress on the Physicochemical Properties of Starch-Based Foods by Extrusion Processing" Foods 13, no. 22: 3677. https://doi.org/10.3390/foods13223677
APA StyleQiu, C., Hu, H., Chen, B., Lin, Q., Ji, H., & Jin, Z. (2024). Research Progress on the Physicochemical Properties of Starch-Based Foods by Extrusion Processing. Foods, 13(22), 3677. https://doi.org/10.3390/foods13223677