The Effect of Thermal Processes on the Organoleptic and Nutraceutical Quality of Tomato Fruit (Solanum lycopersicum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Plant Material
2.3. Heat Treatments
2.4. Dry Matter, Color Measurements, Soluble Solid Content (SSC), and Titratable Acidity (TA)
2.5. Determination of Lycopene Content
2.6. Determination of Total Phenolic Content (TPC)
2.7. Determination of Total Ascorbic Acid Content (AscA)
2.8. Antioxidant Activity Determination
2.9. Sample Preparation for 1H NMR Analysis
2.10. NMR Spectroscopy and Identification of Lycopene Isomers
2.11. Quantification of 5Z-Lycopene
2.12. Cell Cultures
2.13. Animal Procedures
2.14. Preparation of Tomato Extracts for Experiments on Endothelial Cells and Isolated Rat Aorta
2.15. Measurement of Intracellular ROS Production in Endothelial Cells
2.16. Preventive Effects Against Noradrenaline (NA)-Induced Vasoconstriction in Isolated Rat Aortic Rings
2.17. Statistical Analysis
3. Results
3.1. Tomato Organoleptic and Nutraceutical Quality
3.2. Dentification of E and Z Isomers of Lycopene in Tomato Fruit
3.3. Quantification of 5Z-Lycopene in Tomato Fruit
3.4. Preventive Effects of Tomato Extracts Against Intracellular ROS Production in Endothelial Cells
3.5. Preventive Effects Against NA-Induced Vasoconstriction in Isolated Rat Aortic Rings
4. Discussion
4.1. The Impact of Thermal Processes on the Organoleptic and Nutraceutical Quality of Tomato Fruit
4.2. The Impact of Thermal Processes on the Preventive Effects of Tomato Fruit Extracts Against Oxidative Stress in Endothelial Cells and Vasoconstriction in Aortic Rings
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C.; Li, M.; Duan, X.; Abu-Izneid, T.; Rauf, A.; Khan, Z.; Mitra, S.; Emran, T.B.; Aljohani, A.S.M.; Alhumaydhi, F.A.; et al. Phytochemical and nutritional profiling of tomatoes; impact of processing on bioavailability-a comprehensive review. Food Rev. Int. 2023, 39, 5986–6010. [Google Scholar] [CrossRef]
- Izzo, L.; Castaldo, L.; Lombardi, S.; Gaspari, A.; Grosso, M.; Ritieni, A. Bioaccessibility and Antioxidant Capacity of Bioactive Compounds from Various Typologies of Canned Tomatoes. Front. Nutr. 2022, 9, 849163. [Google Scholar] [CrossRef] [PubMed]
- Lima, G.P.P.; Gómez, H.A.G.; Seabra Junior, S.; Maraschin, M.; Tecchio, M.A.; Borges, C.V. Functional and Nutraceutical Compounds of Tomatoes as Affected by Agronomic Practices, Postharvest Management, and Processing Methods: A Mini-Review. Front. Nutr. 2022, 9, 868492. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yu, L.; Pehrsson, P.R. Are Processed Tomato Products as Nutritious as Fresh Tomatoes? Scoping Review on the Effects of Industrial Processing on Nutrients and Bioactive Compounds in Tomatoes. Adv. Nutr. 2022, 13, 138–151. [Google Scholar] [CrossRef]
- Timmis, A.; Vardas, P.; Townsend, N.; Torbica, A.; Katus, H.; De Smedt, D.; Gale, C.P.; Maggioni, A.P.; Petersen, S.E.; Huculeci, R.; et al. European Society of Cardiology: Cardiovascular Disease Statistics. Eur. Heart J. 2022, 43, 716–799. [Google Scholar] [CrossRef] [PubMed]
- Murcia-Lesmes, D.; Dominguez-Lopez, I.; Laveriano-Santos, E.P.; Tresserra-Rimbau, A.; Castro-Barquero, S.; Estruch, R.; Vazquez-Ruiz, Z.; Ruiz-Canela, M.; Razquin, C.; Corella, D.; et al. Association between Tomato Consumption and Blood Pressure in an Older Population at High Cardiovascular Risk: Observational Analysis of PREDIMED Trial. Eur. J. Prev. Cardiol. 2023, 31, 922–934. [Google Scholar] [CrossRef]
- Michalickova, D.; Belovic, M.; Ilic, N.; Kotur-Stevuljevic, J.; Slanar, O.; Sobajic, S. Comparison of Polyphenol-Enriched Tomato Juice and Standard Tomato Juice for Cardiovascular Benefits in Subjects with Stage 1 Hypertension: A Randomized Controlled Study. Plant Foods Hum. Nutr. 2019, 74, 122–127. [Google Scholar] [CrossRef]
- Odai, T.; Terauchi, M.; Okamoto, D.; Hirose, A.; Miyasaka, N. Unsalted Tomato Juice Intake Improves Blood Pressure and Serum Low-Density Lipoprotein Cholesterol Level in Local Japanese Residents at Risk of Cardiovascular Disease. Food Sci. Nutr. 2019, 7, 2271–2279. [Google Scholar] [CrossRef]
- Dalbeni, A.; Treggiari, D.; Tagetti, A.; Bevilaqua, M.; Bonafini, S.; Montagnana, M.; Scaturro, G.; Minuz, P.; Fava, C. Positive Effects of Tomato Paste on Vascular Function after a Fat Meal in Male Healthy Subjects. Nutrients 2018, 10, 1310. [Google Scholar] [CrossRef]
- Sahlin, E.; Savage, G.P.; Lister, C.E. Investigation of the Antioxidant Properties of Tomatoes after Processing. J. Food Compos. Anal. 2004, 17, 635–647. [Google Scholar] [CrossRef]
- Dolinsky, M.; Agostinho, C.; Ribeiro, D.; Rocha, G.D.S.; Barroso, S.G.; Ferreira, D.; Polinati, R.; Ciarelli, G.; Fialho, E. Effect of Different Cooking Methods on the Polyphenol Concentration and Antioxidant Capacity of Selected Vegetables. J. Culin. Sci. Technol. 2016, 14, 1–12. [Google Scholar] [CrossRef]
- Honda, M.; Takahashi, N.; Kuwa, T.; Takehara, M.; Inoue, Y.; Kumagai, T. Spectral Characterisation of Z-Isomers of Lycopene Formed During Heat Treatment and Solvent Effects on the E/Z Isomerisation Process. Food Chem. 2015, 171, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Honda, M.; Murakami, K.; Watanabe, Y.; Higashiura, T.; Fukaya, T.; Wahyudiono, K.; Kanda, H.; Goto, M. The E/Z Isomer Ratio of Lycopene in Foods and Effect of Heating with Edible Oils and Fats on Isomerization of (all-E)-Lycopene. Eur. J. Lipid Sci. Technol. 2017, 119, 1600389. [Google Scholar] [CrossRef]
- Honda, M.; Liang, K.; Ichihashi, K.; Takada, W.; Goto, M. Enriched (Z)-Lycopene in Tomato Extract via Co-Extraction of Tomatoes and Foodstuffs Containing Z-Isomerization-Accelerating Compounds. Catalysts 2021, 11, 462. [Google Scholar] [CrossRef]
- Liang, L.C.; Yang, T.A.; Easa, A.M.; Zzaman, W. Effect of Conventional and Superheated Steam Roasting on the Total Phenolic Content, Total Flavonoid Content and DPPH Radical Scavenging Activities of Black Cumin Seeds. Pertanika J. Trop. Agric. Sci. 2018, 41, 663–676. [Google Scholar]
- Ceccanti, C.; Pellegrini, E.; Guidi, L. Effect of Superheated Steam and Conventional Steam Roasting on Nutraceutical Quality of Several Vegetables. LWT-Food Sci. Technol. 2021, 149, 112014. [Google Scholar] [CrossRef]
- Shaharuddin, S.; Husen, R.; Othman, A. Nutritional Values of Baccaurea pubera and Comparative Evaluation of SHS Treatment on Its Antioxidant Properties. J. Food Sci. Technol. 2021, 58, 2360–2367. [Google Scholar] [CrossRef] [PubMed]
- Uthumporn, U.; Woo, W.L.; Tajul, A.; Fazilah, A.Y. Physico-Chemical and Nutritional Evaluation of Cookies with Different Levels of Eggplant Flour Substitution. CyTA J. Food 2015, 13, 220–226. [Google Scholar] [CrossRef]
- Idrus, N.F.M.; Zzaman, W.; Yang, T.A.; Easa, A.M.; Sharifudin, M.S.; Noorakmar, B.W.; Jahurul, M.H.A. Effect of Superheated-Steam Roasting on Physicochemical Properties of Peanut (Arachis hypogea) Oil. Food Sci. Biotechnol. 2017, 26, 911–920. [Google Scholar] [CrossRef]
- Karimi, F. Applications of Superheated Steam for the Drying of Food Products. Int. Agrophys. 2010, 24, 195–204. [Google Scholar]
- Fang, J.J.; Liu, C.X.; Law, C.L.; Mujumdar, A.S.; Xiao, H.W.; Zhang, C.J. Superheated Steam Processing: An Emerging Technology to Improve Food Quality and Safety. Crit. Rev. Food Sci. Nutr. 2023, 63, 8720–8736. [Google Scholar] [CrossRef] [PubMed]
- Adejo, G.O. Antioxidant, Total Lycopene, Ascorbic Acid and Microbial Load Estimation in Powdered Tomato Varieties Sold in Dutsin-Ma Market. Open Access Libr. J. 2015, 2, e1768. [Google Scholar] [CrossRef]
- Gisbert-Mullor, R.; Ceccanti, C.; Gara Padilla, Y.; López-Galarza, S.; Calatayud, Á.; Conte, G.; Guidi, L. Effect of grafting on the production, physico-chemical characteristics and nutritional quality of fruit from pepper landraces. Antioxidants 2020, 9, 501. [Google Scholar] [CrossRef] [PubMed]
- Ceccanti, C.; Landi, M.; Guidi, L.; Pardossi, A.; Incrocci, L. Seasonal Fluctuations of Crop Yield, Total Phenolic Content and Antioxidant Activity in Fresh or Cooked Borage (Borago officinalis L.), Mallow (Malva sylvestris L.) and Buck’s-Horn Plantain (Plantago coronopus L.) Leaves. Horticulturae 2022, 8, 253. [Google Scholar] [CrossRef]
- Garcìa-Martinez, L.; Ceccanti, C.; Negro, C.; De Bellis, L.; Incrocci, L.; Pardossi, A.; Guidi, L. Effect of drying methods on phenolic compounds and antioxidant activity of Urtica dioica L. leaves. Horticulturae 2021, 7, 10. [Google Scholar] [CrossRef]
- Ceccanti, C.; De Bellis, L.; Guidi, L.; Negro, C.; Pardossi, A.; Incrocci, L. Effect of blanching and boiling on the secondary metabolism of cultivated cardoon stalks: A case study of the tuscany region (Italy). Metabolites 2022, 12, 728. [Google Scholar] [CrossRef] [PubMed]
- El Horri, H.; Vitiello, M.; Ceccanti, C.; Lo Piccolo, E.; Lauria, G.; De Leo, M.; Braca, A.; Incrocci, L.; Guidi, L.; Massai, R.; et al. Ultraviolet-to-Blue Light Conversion Film Affects Both Leaf Photosynthetic Traits and Fruit Bioactive Compound Accumulation in Fragaria × ananassa. Agronomy 2024, 14, 1491. [Google Scholar] [CrossRef]
- Hong, R.S.; Hwang, K.H.; Kim, S.; Cho, H.E.; Lee, H.J.; Hong, J.T.; Moon, D.C. Survey of ERETIC2 NMR for Quantification. J. Korean Magn. Reson. Soc. 2013, 17, 98–104. [Google Scholar] [CrossRef]
- Malz, F.; Jancke, H. Validation of Quantitative NMR. J. Pharm. Biomed. Anal. 2005, 38, 813–823. [Google Scholar] [CrossRef]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. J. Cereb. Blood Flow Metab. 2020, 40, 1769–1777. [Google Scholar] [CrossRef] [PubMed]
- Martelli, A.; Flori, L.; Gorica, E.; Piragine, E.; Saviano, A.; Annunziata, G.; Di Minno, M.N.D.; Ciampaglia, R.; Calcaterra, I.; Maione, F.; et al. Vascular Effects of the Polyphenolic Nutraceutical Supplement Taurisolo®: Focus on the Protection of the Endothelial Function. Nutrients 2021, 13, 1540. [Google Scholar] [CrossRef] [PubMed]
- Martelli, A.; Piragine, E.; Citi, V.; Testai, L.; Pagnotta, E.; Ugolini, L.; Lazzeri, L.; Di Cesare Mannelli, L.; Manzo, O.L.; Bucci, M.; et al. Erucin Exhibits Vasorelaxing Effects and Antihypertensive Activity by H2S-Releasing Properties. Br. J. Pharmacol. 2020, 177, 824–835. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 20 March 2024).
- Takehara, M.; Nishimura, M.; Kuwa, T.; Inoue, Y.; Kitamura, C.; Kumagai, T.; Honda, M. Characterization and Thermal Isomerization of (All-E)-Lycopene. J. Agric. Food Chem. 2014, 62, 264–269. [Google Scholar] [CrossRef]
- Naviglio, D.; Caruso, T.; Iannece, P.; Aragòn, A.; Santini, A. Characterization of High Purity Lycopene from Tomato Wastes Using a New Pressurized Extraction Approach. J. Agric. Food Chem. 2008, 56, 6227–6231. [Google Scholar] [CrossRef] [PubMed]
- Tiziani, S.J.; Schwartz, S.; Vodovotz, Y. Profiling of Carotenoids in Tomato Juice by One- and Two-Dimensional NMR. J. Agric. Food Chem. 2006, 54, 6094–6100. [Google Scholar] [CrossRef]
- Toydemir, G.; Subasi, B.G.; Hall, R.D.; Beekwilder, J.; Boyacioglu, D.; Capanoglu, E. Effect of Food Processing on Antioxidants, Their Bioavailability and Potential Relevance to Human Health. Food Chem. 2022, 14, 100334. [Google Scholar] [CrossRef]
- Astuti, D.S.; Salengke, S.; Laga, A.; Bilangd, M.M.; Mochtar, H.; Warisf, A. Characteristics of pH, Total Acid, Total Soluble Solid on Tomato Juice by Ohmic Heating Technology. Int. J. Sci. Basic Appl. Res. 2018, 39, 21–28. [Google Scholar]
- Koltun, S.J.; MacIntosh, A.J.; Goodrich-Schneider, R.M.; Klee, H.J.; Hutton, S.F.; Junoy, L.J.; Sarnoski, P.J. Effects of Thermal Processing on Flavor and Consumer Perception Using Tomato Juice Produced from Florida Grown Fresh Market Cultivars. J. Food Process. Preserv. 2022, 46, e16164. [Google Scholar] [CrossRef]
- Nath, P.; Pandey, N.; Samota, M.; Sharma, K.; Kale, S.; Kannaujia, P.; Sethi, S.; Chauhan, O.P. Browning Reactions in Foods. In Advances in Food Chemistry: Food Components, Processing and Preservation; Springer Nature: Singapore, 2022; pp. 117–159. [Google Scholar] [CrossRef]
- Mieszczakowska-Frąc, M.; Celejewska, K.; Płocharski, W. Impact of innovative technologies on the content of vitamin C and its bioavailability from processed fruit and vegetable products. Antioxidants 2021, 10, 54. [Google Scholar] [CrossRef]
- Sehfreshat, R.; Nema, P.K.; Kaur, B.P. Quality Evaluation and Drying Characteristics of Mango Cubes Dried Using Low-Pressure Superheated Steam, Vacuum and Hot Air Drying Methods. LWT—Food Sci. Technol. 2018, 92, 548–555. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Y.; Yu, W.; Jiang, Z.; Qu, J.; Li, K. Lycopene Protects Against LPS-Induced Proinflammatory Cytokine Cascade in HUVECs. Pharmazie 2013, 68, 681–684. [Google Scholar] [PubMed]
- Nambi, V.E.; Gupta, R.K.; Kumar, S.; Sharma, P.C. Degradation Kinetics of Bioactive Components, Antioxidant Activity, Colour and Textural Properties of Selected Vegetables during Blanching. J. Food Sci. Technol. 2016, 53, 3073–3082. [Google Scholar] [CrossRef] [PubMed]
- Mashitoa, F.M.; Manhivi, V.; Slabbert, R.M.; Shai, J.L.; Sivakumar, D. Changes in Antinutrients, Phenolics, Antioxidant Activities and In Vitro α-Glucosidase Inhibitory Activity in Pumpkin Leaves (Cucurbita moschata) during Different Domestic Cooking Methods. Food Sci. Biotechnol. 2021, 30, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Sicari, V.; Loizzo, M.R.; Silva, A.S.; Romeo, R.; Spampinato, G.; Tundis, R.; Leporini, M.; Musarella, C.M. The Effect of Blanching on Phytochemical Content and Bioactivity of Hypochaeris and Hyoseris Species (Asteraceae), Vegetables Traditionally Used in Southern Italy. Foods 2021, 10, 32. [Google Scholar] [CrossRef]
- Chang, K.A.; Ley, S.L.; Lee, M.Y.; Yaw, H.Y.; Lee, S.W.; Chew, L.Y.; Neo, Y.P.; Kong, K.W. Determination of Nutritional Constituents, Antioxidant Properties, and α-Amylase Inhibitory Activity of (Chayote) Shoot from Different Extraction Solvents and Cooking Methods. LWT—Food Sci. Technol. 2021, 151, 112177. [Google Scholar] [CrossRef]
- Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S.; Rupasinghe, H.P.V. Effect of Different Cooking Methods on Polyphenols, Carotenoids and Antioxidant Activities of Selected Edible Leaves. Antioxidants 2018, 7, 1177. [Google Scholar] [CrossRef]
- Honda, M.; Igami, H.; Kawana, T.; Hayashi, K.; Takehara, M.; Inoue, Y.; Kitamura, C. Photosensitized E/Z Isomerization of (All-E)-Lycopene Aiming at Practical Applications. J. Agric. Food Chem. 2014, 62, 11353–11356. [Google Scholar] [CrossRef]
- Guo, W.H.; Tu, C.Y.; Hu, C.H. Cis–Trans Isomerizations of β-Carotene and Lycopene: A Theoretical Study. J. Phys. Chem. 2008, 112, 12158–12167. [Google Scholar] [CrossRef]
- Yoon, H.S. Effect of Oxygen on Isomerization of β-Carotene during Thermal Treatment. Biocatal. Agric. Biotechnol. 2015, 4, 555–558. [Google Scholar] [CrossRef]
- Srivastava, S.; Srivastava, A.K. Lycopene: Chemistry, Biosynthesis, Metabolism and Degradation under Various Abiotic Parameters. J. Food Sci. Technol. 2015, 52, 41–53. [Google Scholar] [CrossRef]
- Nishino, M.; Miuchi, T.; Sakata, M.; Nishida, A.; Murata, Y.; Nakamura, Y. Photostability of Lycopene Dispersed in an Aqueous Solution. Biosci. Biotechnol. Biochem. 2011, 75, 1389–1391. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Deng, Z.; Zheng, L.; Zhang, B.; Luo, T.; Li, H. Interaction between Flavonoids and Carotenoids on Ameliorating Oxidative Stress and Cellular Uptake in Different Cells. Foods 2021, 10, 3096. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liang, J.; Li, M.; Lin, M.; Mai, L.; Huang, X.; Liang, J.; Hu, Y.; Huang, Y. Modulation of miRNAs by vitamin C in H2O2-exposed human umbilical vein endothelial cells. Int. J. Mol. Med. 2020, 46, 2150–2160. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Huang, D.; Li, S. Lycopene Alleviates Oxidative Stress-Induced Cell Injury in Human Vascular Endothelial Cells by Encouraging the SIRT1/Nrf2/HO-1 Pathway. Clin. Exp. Hypertens. 2023, 45, 2205051. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, L.; Zhang, B.; Deng, Z.; Li, H. Synergistic protection of quercetin and lycopene against oxidative stress via SIRT1-Nox4-ROS axis in HUVEC cells. Curr. Res. Food Sci. 2022, 5, 1985–1993. [Google Scholar] [CrossRef]
- Cesare, M.M.; Felice, F.; Conti, V.; Cerri, L.; Zambito, Y.; Romi, M.; Cai, G.; Cantini, C.; Di Stefano, R. Impact of Peels Extracts from an Italian Ancient Tomato Variety Grown under Drought Stress Conditions on Vascular Related Dysfunction. Molecules 2021, 26, 4289. [Google Scholar] [CrossRef]
Thermal Process | Time (s) | Temperature (°C) | Relative Humidity (%) | Residual Oxygen (%) |
---|---|---|---|---|
TS | 1602 ± 240 | 75 ± 5 | 91.6 ± 0.2 | - |
BL | 10 | 100 | 100 | - |
SHS | 420 | 100 | 93.7 ± 0.5 | 1.4 |
Peak N | Chemical Shift (ppm) | Assignment | Multiplicity a | J (Hz) | Reference |
---|---|---|---|---|---|
1 | 5.11 | H-2 H-2′ | m | - | [35,36] |
2 | 2.11 | H-3 H-3′ | m | - | [35,36] |
3 | 2.11 | H-4 H-4′ | m | - | [35,36] |
4 | 5.95 | H-6 H-6′ | d | 11 | [35,36] |
5 | 6.49 | H-7 H-7′ | dd | (15.1, 11.0) | [35] |
6 | 6.25 | H-8 H-8′ | d | - b | [35] |
7 | 6.19 | H-10 H-10′ | d | 11.5 | [35] |
8 | 6.63 | H-11 H-11′ | dd | - b | [35] |
9 | 6.36 | H-12 H-12′ | d | 14.9 | [35] |
10 | 6.25 | H-14 H-14′ | m | - | [35] |
11 | 6.61 | H-15 H-15′ | s | - | [35] |
12 | 1.688 | CH3-16 CH3-16′ | s | - | [35,36] |
13 | 1.615 | CH3-17 CH3-17′ | s | - | [35,36] |
14 | 1.819 | CH3-18 CH3-18′ | s | - | [35,36] |
15 | 1.969 | CH3-19 CH3-19′ | s | [35,36] | |
16 | 1.969 | CH3-20 CH3-20′ | s | - | [35,36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narra, F.; Brigante, F.I.; Piragine, E.; Solovyev, P.; Benedetti, G.; Araniti, F.; Bontempo, L.; Ceccanti, C.; Martelli, A.; Guidi, L. The Effect of Thermal Processes on the Organoleptic and Nutraceutical Quality of Tomato Fruit (Solanum lycopersicum L.). Foods 2024, 13, 3678. https://doi.org/10.3390/foods13223678
Narra F, Brigante FI, Piragine E, Solovyev P, Benedetti G, Araniti F, Bontempo L, Ceccanti C, Martelli A, Guidi L. The Effect of Thermal Processes on the Organoleptic and Nutraceutical Quality of Tomato Fruit (Solanum lycopersicum L.). Foods. 2024; 13(22):3678. https://doi.org/10.3390/foods13223678
Chicago/Turabian StyleNarra, Federica, Federico Ivan Brigante, Eugenia Piragine, Pavel Solovyev, Giada Benedetti, Fabrizio Araniti, Luana Bontempo, Costanza Ceccanti, Alma Martelli, and Lucia Guidi. 2024. "The Effect of Thermal Processes on the Organoleptic and Nutraceutical Quality of Tomato Fruit (Solanum lycopersicum L.)" Foods 13, no. 22: 3678. https://doi.org/10.3390/foods13223678
APA StyleNarra, F., Brigante, F. I., Piragine, E., Solovyev, P., Benedetti, G., Araniti, F., Bontempo, L., Ceccanti, C., Martelli, A., & Guidi, L. (2024). The Effect of Thermal Processes on the Organoleptic and Nutraceutical Quality of Tomato Fruit (Solanum lycopersicum L.). Foods, 13(22), 3678. https://doi.org/10.3390/foods13223678