Study on the Structural Changes of Boneless Chicken Claw Collagen and Its Effect on Water Retention Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Experimental Reagents
2.1.2. Instruments and Equipment
2.2. Experimental Methods
2.2.1. Preparation of Chicken Claws Under Different Expansion Rates
2.2.2. Extraction of Collagen from Boneless Chicken Claws
2.2.3. Determination of Scanning Electron Microscopy
2.2.4. Determination of UV Spectrum
2.2.5. Determination by Fourier Infrared Spectroscopy
2.2.6. Determination of Circular Dichroism
2.2.7. Determination of Surface Hydrophobicity
2.2.8. LF-NMR Moisture Migration Determination
2.2.9. Analysis of Data
3. Results and Discussion
3.1. Microstructure Analysis
3.2. Spectroscopy
3.3. Infrared Spectrum
3.4. Circular Dichroism Analysis
3.5. Surface Hydrophobicity Analysis
3.6. LF-NMR Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Zhang, L. Analysis on China’s Broiler Market in 2020 and Its Future Outlook. Agric. Outlook 2021, 17, 3–8. [Google Scholar]
- Jia, Z.; Xiao, H.; Peng, M. Marine Litter’s Effects on the Quality of Livestock Meat Product. J. Coast. Res. 2020, 103, 775–779. [Google Scholar]
- de Mendonça Silva, A.M.; Gonçalves, A.A. Effect of aqueous ozone on microbial and physicochemical quality of Nile tilapia processing. J. Food Process. Preserv. 2017, 41, e13298. [Google Scholar] [CrossRef]
- Mrázek, P.; Gál, R.; Mokrejš, P.; Krejčí, O.; Orsavová, J. Thermal stability of prepared chicken feet gelatine gel in comparison with commercial gelatines. Potravin. Slovak J. Food Sci. 2020, 14, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Santana, J.C.C.; Gardim, R.B.; Almeida, P.F.; Borini, G.B.; Quispe, A.P.B.; Llanos, S.A.V.; Heredia, J.A.; Zamuner, S.; Gamarra, F.M.C.; Farias, T.M.B.; et al. Valorization of Chicken Feet By-Product of the Poultry Industry: High Qualities of Gelatin and Biofilm from Extraction of Collagen. Polymers 2020, 12, 529. [Google Scholar] [CrossRef]
- Ratna; Cut, U.; Yusmanizar; Sri, A.; Rahmiati; Arip, M.A. Development of biocomposite edible film food packaging based on gelatin from chicken claw waste. Case Stud. Chem. Environ. Eng. 2023, 8, 100371. [Google Scholar] [CrossRef]
- Sompie, M.; Tinangon, R.M.; Surtijono, S.E.; Said, M.I. Effect of long-time immersion in edible film solution from local chicken claw on the physical and chemical properties of chicken meat. IOP Conf. Ser. Earth Environ. Sci. 2020, 492, 012056. [Google Scholar] [CrossRef]
- Araújo, Í.B.; Lima, D.A.; Pereira, S.F.; Madruga, M.S. Quality of low-fat chicken sausages with added chicken feet collagen. Poult. Sci. 2019, 98, 1064–1074. [Google Scholar] [CrossRef]
- Zheng, Q.; Cao, W.; Han, Y.; Zhang, F.; Chen, Z.; Lin, H.; Zheng, H. Characteristics of collagens from body wall of Sticho- pus horrens prepared by different extraction methods. Food Ferment. Ind. 2023, 49, 145–152. [Google Scholar] [CrossRef]
- Huang, J.; Deng, Q.; Xue, M.; Ren, X.; Wu, Y.; Sun, L.; Fang, Z.; Wen, W. Characterization of collagens from scale of Lutjanus erythropterus by different extraction methods. Food Ferment. Ind. 2024, 50, 210–218. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, K.; Yi, Y.; Wang, Y.; Zhang, M.; Liu, X.; Ding, C. Extraction and Characterization of Collagen from Halocynthia Roretzi. Food Sci. Technol. 2023, 48, 210–216. [Google Scholar] [CrossRef]
- Wen, Q.; Chen, B.; Wang, S.; Tong, Y.; Wen, F.; Zhou, J.; Chen, Y. Isolation and characterization of collagens from skin of snakehead fish. Food Ferment. Ind. 2024, 50, 219–224. [Google Scholar] [CrossRef]
- Chin, K.B.; Go, M.Y.; Xiong, Y.L. Konjac flour improved textural and water retention properties of transglutaminase-mediated, heat-induced porcine myofibrillar protein gel: Effect of salt level and transglutaminase incubation. Meat Sci. 2008, 81, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Lopez, H.; Rodriguez-Morales, S.; Enriquez-Paredes, L.M.; Villarreal-Gomez, L.J.; Olivera-Castillo, L.; Cortes-Santiago, Y.; Lopez, L.M. Comparison of collagen characteristic from the skin and swim bladder of Gulf corvina (Cynoscion othonopterus). Tissue Cell 2021, 72, 101593. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Ma, L.; Ma, M.; Zheng, H.; Sun, Y. Ultrasonic-assisted extraction and physicochemical characteristics of collagen from rabbit-skin. Food Mach. 2017, 33, 169–173. [Google Scholar] [CrossRef]
- Dou, R.; Zhao, C.; Yan, Z.; Sang, Y.; Sun, J.; Kang, C. Effect of Ultrasonication on Extractionand Physico-chemical Properties of Acid Soluble Collagens from the Skin of Sturgeon. J. Chin. Inst. Food Sci. Technol. 2023, 23, 125–135. [Google Scholar] [CrossRef]
- Kaewdang, O.; Benjakul, S.; Kaewmanee, T.; Kishimura, H. Characteristics of collagens from the swim bladders of yellowfin tuna (Thunnus albacares). Food Chem. 2014, 155, 264–270. [Google Scholar] [CrossRef]
- Vasanthi, C.; Venkataramanujam, V.; Dushyanthan, K. Effect of cooking temperature and time on the physico-chemical, histological and sensory properties of female carabeef (buffalo) meat. Meat Sci. 2006, 76, 274–280. [Google Scholar] [CrossRef]
- Matmaroh, K.; Benjakul, S.; Prodpran, T.; Encarnacion, A.B.; Kishimura, H. Characteristics of acid soluble collagen and pepsin soluble collagen from scale of spotted golden goatfish (Parupeneus heptacanthus). Food Chem. 2011, 129, 1179–1186. [Google Scholar] [CrossRef]
- Wang, F.; Guo, X.-Y.; Zhang, D.-N.; Wu, Y.; Wu, T.; Chen, Z.-G. Ultrasound-assisted extraction and purification of taurine from the red algae Porphyra yezoensis. Ultrason. Sonochemistry 2015, 24, 36–42. [Google Scholar] [CrossRef]
- Vidal, A.R.; Duarte, L.P.; Schmidt, M.M.; Cansian, R.L.; Fernandes, I.A.; Mello, R.d.O.; Demiate, I.M.; Dornelles, R.C.P. Extraction and characterization of collagen from sheep slaughter by-products. Waste Manag. 2020, 102, 838–846. [Google Scholar] [CrossRef] [PubMed]
- Ma, M. Research on the Rapid Gelatinization Mechanism of Rabbit Skin Collagen and the Changes of Collagen Structure during Gelatin Preparation. Master’s Thesis, Southwest University, Chongqing, China, 2018. [Google Scholar]
- Jia, Y. Biological Properties of Collagen Extracted from Black Carp and Study of Thermal Denaturation. Master’s Thesis, Wuhan Polytechnic University, Wuhan City, China, 2013. [Google Scholar]
- Bhuimbar, M.V.; Bhagwat, P.K.; Dandge, P.B. Extraction and characterization of acid soluble collagen from fish waste: Development of collagen-chitosan blend as food packaging film. J. Environ. Chem. Eng. 2019, 7, 102983. [Google Scholar] [CrossRef]
- Liu, F.; Lin, W.; Li, L.; Wu, Y.; Yang, S.; Huang, H.; Yang, X. Physicochemical properties of Trachinotus ovatus myosin under difterent treatment conditions. Food Ferment. Ind. 2020, 46, 37–43. [Google Scholar] [CrossRef]
- Feng, L.; Feng, J.; Li, C. Extraction and Structural Characteristics of Type I Collagen from Rhopilema esculenta. Sci. Technol. Food Ind. 2021, 42, 15–21. [Google Scholar] [CrossRef]
- Akita, M.; Nishikawa, Y.; Shigenobu, Y.; Ambe, D.; Morita, T.; Morioka, K.; Adachi, K. Correlation of proline, hydroxyproline and serine content, denaturation temperature and circular dichroism analysis of type I collagen with the physiological temperature of marine teleosts. Food Chem. 2020, 329, 126775. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Wang, L.; He, Y.; Wang, Z.; Xu, J.; Ma, H. Hydrolysis kinetics and antioxidant activity of collagen under simulated gastrointestinal digestion. J. Funct. Foods 2014, 11, 493–499. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, S.; Luo, Y.; Feng, L. Effects of Temperature on the Structure and Surface Hydrophobicity of Mixed Myofibrillar Proteins. Meat Res. 2017, 31, 6–10. [Google Scholar]
- Ulrichs, T.; Drotleff, A.M.; Ternes, W. Determination of heat-induced changes in the protein secondary structure of reconstituted livetins (water-soluble proteins from hen’s egg yolk) by FTIR. Food Chem. 2015, 172, 909–920. [Google Scholar] [CrossRef]
- Tang, X.; Cai, M.; Wei, Z.; Ren, A.; Liu, Y.; Lao, Q. Analysis of moisture change of pleurotu seryngii during hot air-microwave combined drying process by low field nuclear magnetic resonance technique. Cereals Oils 2023, 36, 90–94. [Google Scholar]
- Sun, J.; Li, R.; Zhu, H. Water Changes of Purple Sweet Potato Slices Using Low-field NMR during Vacuum FreezeDrying. Sci. Technol. Food Ind. 2021, 42, 9–14. [Google Scholar] [CrossRef]
- Zeng, Y.; Liu, Y.; Zhang, J.; Xi, H.; Hu, R. Effects of far infrared r adiation temperature on themoisture transfer of kiwifruit slices. Food Mach. 2019, 35, 143–147. [Google Scholar] [CrossRef]
- Qin, Y.; Duan, Z.; Wei, Z.; Zhou, S.; Tang, X. Effects of microwave power on moisture migration and quality of persimmon slices during microwave interrmittent drying. Food Mach. 2021, 37, 1–5. [Google Scholar] [CrossRef]
Wave Crest/cm−1 | 0% | 10% | 20% | 30% | 40% | 50% |
---|---|---|---|---|---|---|
AmideA | 3417 | 3343 | 3341 | 3345 | 3418 | 3325 |
AmideB | 2924 | 2928 | 2928 | 2927 | 2926 | 2925 |
Amide I | 1660 | 1658 | 1658 | 1659 | 1657 | 1657 |
Amide II | 1548 | 1550 | 1550 | 1550 | 1547 | 1549 |
Amide III | 1244 | 1242 | 1241 | 1241 | 1243 | 1240 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Z.; He, Y.; Zhang, J.; Zhao, Z.; Nie, Y.; Zhao, X. Study on the Structural Changes of Boneless Chicken Claw Collagen and Its Effect on Water Retention Performance. Foods 2024, 13, 3682. https://doi.org/10.3390/foods13223682
Tang Z, He Y, Zhang J, Zhao Z, Nie Y, Zhao X. Study on the Structural Changes of Boneless Chicken Claw Collagen and Its Effect on Water Retention Performance. Foods. 2024; 13(22):3682. https://doi.org/10.3390/foods13223682
Chicago/Turabian StyleTang, Zheng, Yiguo He, Jing Zhang, Zhifeng Zhao, Yiming Nie, and Xingxiu Zhao. 2024. "Study on the Structural Changes of Boneless Chicken Claw Collagen and Its Effect on Water Retention Performance" Foods 13, no. 22: 3682. https://doi.org/10.3390/foods13223682
APA StyleTang, Z., He, Y., Zhang, J., Zhao, Z., Nie, Y., & Zhao, X. (2024). Study on the Structural Changes of Boneless Chicken Claw Collagen and Its Effect on Water Retention Performance. Foods, 13(22), 3682. https://doi.org/10.3390/foods13223682