Physiochemical, Bio, Thermal, and Non-Thermal Processing of Major and Minor Millets: A Comprehensive Review on Antinutritional and Antioxidant Properties
Abstract
:1. Introduction
2. Search Strategy for the Articles
3. Overview of Antinutritional and Antioxidant Properties of Phytochemicals Found in Selected Millets
4. Effect of Processing on Antinutrients and Antioxidant Properties of Millets
4.1. Effect of Processing on Polyphenols
4.1.1. Effect of Physiochemical and Bioprocessing on Polyphenols
4.1.2. Effect of Thermal Processing on Polyphenols
4.1.3. Effect of Non-Thermal Processing on Polyphenols
4.1.4. Combination of Techniques and Their Effect on Polyphenols
4.2. Effect of Processing on Tannins
4.2.1. Effect of Physiochemical and Bioprocessing on Tannins
4.2.2. Effect of Thermal Processing on Tannins
4.2.3. Effect of Non-Thermal Processing on Tannins
4.2.4. Combination Techniques and Their Impact on Tannins
4.3. Effect of Processing on Phytates/Phytic Acid
4.3.1. Effect of Physiochemical and Bioprocessing Methods on Phytates
4.3.2. Effect of Thermal Processing on Phytates
4.3.3. Effect of Non-Thermal Processing on Phytates
4.3.4. Effect of Combination Techniques on Phytates
4.4. Effect of Processing on Oxalates
4.4.1. Effect of Physiochemical and Bioprocessing on Oxalates
4.4.2. Effect of Thermal Processing on Oxalates
4.4.3. Effect of Non-Thermal Methods on Oxalates
4.5. Effect of Processing on Saponins
4.5.1. Effect of Physiochemical and Bioprocessing Methods on Saponins
4.5.2. Effect of Thermal Processing on Saponins
4.5.3. Effect of Non-Thermal Processing on Saponins
4.6. Effect of Processing on Other Antinutrients (Lectins, Goitrogen, Haemagglutinins)
Effect of Physiochemical, Bio, Thermal, and Non-Thermal Processing on Other Antinutrients
5. Nutraceutical Health Benefits of Phytochemical Antinutrients
6. Processing Methods Mechanisms of Action, Evaluation, and Recommendation for Optimal Component Balance
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nanje Gowda, N.A.; Siliveru, K.; Vara Prasad, P.V.; Bhatt, Y.; Netravati, B.P.; Gurikar, C. Modern Processing of Indian Millets: A Perspective on Changes in Nutritional Properties. Foods 2022, 11, 499. [Google Scholar] [CrossRef] [PubMed]
- Longvah, T.; Ananthan, R.; Bhaskarachary, K.; Venkaiah, K. Indian Food Composition Tables. Longvah, T., Ed.; National Institute of Nutrition: Hyderabad, India, 2017. [Google Scholar]
- Akanbi, T.O.; Timilsena, Y.; Dhital, S. Bioactives from Millet: Properties and Effects of Processing on Bioavailability. In Bioactive Factors and Processing Technology for Cereal Foods; Springer: Singapore, 2019; pp. 171–183. [Google Scholar]
- Liang, S.; Liang, K. Millet Grain as a Candidate Antioxidant Food Resource: A Review. Int. J. Food Prop. 2019, 22, 1652–1661. [Google Scholar] [CrossRef]
- Kulla, S.; Hymavathi, T.V.; Kumari, B.A.; Reddy, R.G.; Rani, C.V.D. Impact of Germination on the Nutritional, Antioxidant and Antinutrient Characteristics of Selected Minor Millet Flours. Ann. Phytomed. Int. J. 2021, 10, 178–184. [Google Scholar] [CrossRef]
- Jan, S.; Kumar, K.; Yadav, A.N.; Ahmed, N.; Thakur, P.; Chauhan, D.; Rizvi, Q.U.E.H.; Dhaliwal, H.S. Effect of Diverse Fermentation Treatments on Nutritional Composition, Bioactive Components, and Anti-Nutritional Factors of Finger Millet (Eleusine coracana L.). J. Appl. Biol. Biotechnol. 2022, 10, 46–52. [Google Scholar] [CrossRef]
- Ramadoss, D.P.; Sivalingam, N. Vanillin Extracted from Proso and Barnyard Millets Induces Cell Cycle Inhibition and Apoptotic Cell Death in MCF-7 Cell Line. J. Cancer Res. Ther. 2021, 17, 1425. [Google Scholar] [CrossRef]
- Olabode Isaiah, O. The Synergistic Interaction of Phenolic Compounds in Pearl Millets with Respect to Antioxidant and Antimicrobial Properties. Am. J. Food Sci. Health 2020, 6, 80–88. [Google Scholar]
- Bello, O.M.; Ogbesejana, A.B.; Balkisu, A.; Osibemhe, M.; Musa, B.; Oguntoye, S.O. Polyphenolic Fractions from Three Millet Types (Fonio, Finger Millet, and Pearl Millet): Their Characterization and Biological Importance. Clin. Complement. Med. Pharmacol. 2022, 2, 100020. [Google Scholar] [CrossRef]
- Anitha, S.; Upadhyay, S.; Grando, S.; Kane-Potaka, J. Does Consumption of Pearl Millet Cause Goiter? A Systematic Review of Existing Evidence. Front. Nutr. 2024, 11, 1323336. [Google Scholar] [CrossRef]
- Anitha, S.; Botha, R.; Kane-Potaka, J.; Givens, D.I.; Rajendran, A.; Tsusaka, T.W.; Bhandari, R.K. Can Millet Consumption Help Manage Hyperlipidemia and Obesity?: A Systematic Review and Meta-Analysis. Front. Nutr. 2021, 8, 700778. [Google Scholar] [CrossRef]
- Hou, D.; Chen, J.; Ren, X.; Wang, C.; Diao, X.; Hu, X.; Zhang, Y.; Shen, Q. A Whole Foxtail Millet Diet Reduces Blood Pressure in Subjects with Mild Hypertension. J. Cereal Sci. 2018, 84, 13–19. [Google Scholar] [CrossRef]
- Muthamilarasan, M.; Prasad, M. Small Millets for Enduring Food Security Amidst Pandemics. Trends Plant Sci. 2021, 26, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.L.; VanBuren, R. Leveraging Millets for Developing Climate Resilient Agriculture. Curr. Opin. Biotechnol. 2022, 75, 102683. [Google Scholar] [CrossRef] [PubMed]
- USDA Production Trends—Millet. Available online: https://fas.usda.gov/data/production/commodity/0459100 (accessed on 22 July 2024).
- Rathore, S. Millet Grain Processing, Utilization and Its Role in Health Promotion: A Review. Int. J. Nutr. Food Sci. 2016, 5, 318. [Google Scholar] [CrossRef]
- Mahajan, M.; Singla, P.; Sharma, S. Sustainable Postharvest Processing Methods for Millets: A Review on Its Value-added Products. J. Food Process Eng. 2024, 47, e14313. [Google Scholar] [CrossRef]
- Salim, R.; Nehvi, I.B.; Mir, R.A.; Tyagi, A.; Ali, S.; Bhat, O.M. A Review on Anti-Nutritional Factors: Unraveling the Natural Gateways to Human Health. Front. Nutr. 2023, 10, 1215873. [Google Scholar] [CrossRef]
- Sunil, C.K.; Gowda, N.A.N.; Nayak, N.; Rawson, A. Unveiling the Effect of Processing on Bioactive Compounds in Millets: Implications for Health Benefits and Risks. Process Biochem. 2024, 138, 79–96. [Google Scholar] [CrossRef]
- Boncompagni, E.; Orozco-Arroyo, G.; Cominelli, E.; Gangashetty, P.I.; Grando, S.; Kwaku Zu, T.T.; Daminati, M.G.; Nielsen, E.; Sparvoli, F. Antinutritional Factors in Pearl Millet Grains: Phytate and Goitrogens Content Variability and Molecular Characterization of Genes Involved in Their Pathways. PLoS ONE 2018, 13, e0198394. [Google Scholar] [CrossRef]
- Sharma, R.; Sharma, S.; Dar, B.N.; Singh, B. Millets as Potential Nutri-Cereals: A Review of Nutrient Composition, Phytochemical Profile and Techno-Functionality. Int. J. Food Sci. Technol. 2021, 56, 3703–3718. [Google Scholar] [CrossRef]
- Sharma, R.; Bhandari, M.; Sharma, S.; Bhardwaj, R. Compositional, Structural and Functional Characteristics of Millets as Modified by Bioprocessing Techniques: A Review. J. Food Process Preserv. 2022, 46, e16885. [Google Scholar] [CrossRef]
- Ramakrishnan, S.R.; Antony, U.; Kim, S.J. Non-Thermal Process Technologies: Influences on Nutritional and Storage Characteristics of Millets. J. Food Process Eng. 2023, 46, e14215. [Google Scholar] [CrossRef]
- Ali, A.; Singh, T.; Kumar, R.R.; Vinutha, T.; Kundu, A.; Singh, S.P.; Meena, M.C.; Satyavathi, C.T.; Praveen, S.; Goswami, S. Effect of Thermal Treatments on the Matrix Components, Inherent Glycemic Potential, and Bioaccessibility of Phenolics and Micronutrients in Pearl Millet Rotis. Food Funct. 2023, 14, 1595–1607. [Google Scholar] [CrossRef] [PubMed]
- Nanje Gowda, N.A.; Satishkumar; Taj, F.; Subramanya, S.; Ranganna, B. Development a Table Top Centrifugal Dehuller for Small Millets. Agric. Mech. Asia Afr. Lat. Am. 2020, 51, 72–78. [Google Scholar]
- Sharma, R.; Sharma, S. Anti-Nutrient & Bioactive Profile, in Vitro Nutrient Digestibility, Techno-Functionality, Molecular and Structural Interactions of Foxtail Millet (Setaria italica L.) as Influenced by Biological Processing Techniques. Food Chem. 2022, 368, 130815. [Google Scholar] [CrossRef] [PubMed]
- Baer-Dubowska, W.; Szaefer, H.; Majchrzak-Celińska, A.; Krajka-Kuźniak, V. Tannic Acid: Specific Form of Tannins in Cancer Chemoprevention and Therapy-Old and New Applications. Curr. Pharmacol. Rep. 2020, 6, 28–37. [Google Scholar] [CrossRef]
- Rashad, H.; Metwally, F.M.; Ezzat, S.M.; Salama, M.M.; Hasheesh, A.; Abdel Motaal, A. Randomized Double-Blinded Pilot Clinical Study of the Antidiabetic Activity of Balanites Aegyptiaca and UPLC-ESI-MS/MS Identification of Its Metabolites. Pharm. Biol. 2017, 55, 1954–1961. [Google Scholar] [CrossRef]
- Samtiya, M.; Soni, K.; Chawla, S.; Poonia, A.; Sehgal, S.; Dhewa, T. Key Anti-Nutrients of Millet and Their Reduction Strategies: An Overview. Acta Sci. Nutr. Health 2021, 5, 68–80. [Google Scholar] [CrossRef]
- Arya, S.S.; Shakya, N.K. High Fiber, Low Glycaemic Index (GI) Prebiotic Multigrain Functional Beverage from Barnyard, Foxtail and Kodo Millet. Lebensm.-Wiss. Technol. 2021, 135, 109991. [Google Scholar] [CrossRef]
- Xiang, J.; Yuan, Y.; Du, L.; Zhang, Y.; Li, C.; Beta, T. Modification on Phenolic Profiles and Enhancement of Antioxidant Activity of Proso Millets during Germination. Food Chem. X 2023, 18, 100628. [Google Scholar] [CrossRef]
- Nayak, N.; Bhujle, R.R.; Nanje-Gowda, N.A.; Chakraborty, S.; Siliveru, K.; Subbiah, J.; Brennan, C. Advances in the Novel and Green-Assisted Techniques for Extraction of Bioactive Compounds from Millets: A Comprehensive Review. Heliyon 2024, 10, e30921. [Google Scholar] [CrossRef]
- Zhang, Y.; Hao, R.; Chen, J.; Li, S.; Huang, K.; Cao, H.; Farag, M.A.; Battino, M.; Daglia, M.; Capanoglu, E.; et al. Health Benefits of Saponins and Its Mechanisms: Perspectives from Absorption, Metabolism, and Interaction with Gut. Crit. Rev. Food Sci. Nutr. 2023, 64, 9311–9332. [Google Scholar] [CrossRef]
- Dey, S.; Saxena, A.; Kumar, Y.; Maity, T.; Tarafdar, A. Optimizing the Effect of Ultrasonication and Germination on Antinutrients and Antioxidants of Kodo (Paspalum scrobiculatum) and Little (Panicum sumatrense) Millets. J. Food Sci. Technol. 2023, 60, 2990–3001. [Google Scholar] [CrossRef] [PubMed]
- Bhuvaneshwari, G.; Nirmalakumari, A.; Kalaiselvi, S. Impact of Soaking, Sprouting on Antioxidant and Anti-Nutritional Factors in Milletgrains. J. Phytol. 2020, 12, 62–66. [Google Scholar] [CrossRef]
- Sharma, B.; Gujral, H.S. Characterization of Thermo-Mechanical Behavior of Dough and Starch Digestibility Profile of Minor Millet Flat Breads. J. Cereal Sci. 2019, 90, 102842. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, W.; Guo, X.; Song, G.; Pang, S.; Fang, W.; Peng, Z. Effects of Oats, Tartary Buckwheat, and Foxtail Millet Supplementation on Lipid Metabolism, Oxido-Inflammatory Responses, Gut Microbiota, and Colonic SCFA Composition in High-Fat Diet Fed Rats. Nutrients 2022, 14, 2760. [Google Scholar] [CrossRef] [PubMed]
- Devisetti, R.; Yadahally, S.N.; Bhattacharya, S. Nutrients and Antinutrients in Foxtail and Proso Millet Milled Fractions: Evaluation of Their Flour Functionality. Lebensm.-Wiss. Technol. 2014, 59, 889–895. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhaka, N.; Dhewa, T.; Puniya, A.K. Nutritional and Health-Promoting Attributes of Millet: Current and Future Perspectives. Nutr. Rev. 2023, 81, 684–704. [Google Scholar] [CrossRef]
- Abioye, V.; Ogunlakin, G.; Taiwo, G. Effect of Germination on Anti-Oxidant Activity, Total Phenols, Flavonoids and Anti-Nutritional Content of Finger Millet Flour. J. Food Process Technol. 2018, 9, 2. [Google Scholar] [CrossRef]
- Kumar, A.; Kaur, A.; Gupta, K.; Gat, Y.; Kumar, V. Assessment of Germination Time of Finger Millet for Value Addition in Functional Foods. Curr. Sci. 2021, 120, 406–413. [Google Scholar] [CrossRef]
- Petroski, W.; Minich, D.M. Is There Such a Thing as “Anti-Nutrients”? A Narrative Review of Perceived Problematic Plant Compounds. Nutrients 2020, 12, 2929. [Google Scholar] [CrossRef]
- Sarita; Singh, E. Potential of Millets: Nutrients Composition and Health Benefits. J. Sci. Innov. Res. 2016, 5, 46–50. [Google Scholar]
- Panwar, P.; Dubey, A.; Verma, A.K. Evaluation of Nutraceutical and Antinutritional Properties in Barnyard and Finger Millet Varieties Grown in Himalayan Region. J. Food Sci. Technol. 2016, 53, 2779–2787. [Google Scholar] [CrossRef] [PubMed]
- Popova, A.; Mihaylova, D. Antinutrients in Plant-Based Foods: A Review. Open Biotechnol. J. 2019, 13, 68–76. [Google Scholar] [CrossRef]
- Dey, S.; Saxena, A.; Kumar, Y.; Maity, T.; Tarafdar, A. Understanding the Antinutritional Factors and Bioactive Compounds of Kodo Millet (Paspalum scrobiculatum) and Little Millet (Panicum sumatrense). J. Food Qual. 2022, 2022, 1–19. [Google Scholar] [CrossRef]
- Anal, A.K.; Singh, R.; Rice, D.L.; Pongtong, K.; Hazarika, U.; Trivedi, D.; Karki, S. Millets as Supergrain: A Holistic Approach for Sustainable and Healthy Food Product Production. Sustain. Food Technol. 2024, 2, 908–925. [Google Scholar] [CrossRef]
- Jan, S.; Kumar, K.; Thakur, P.; Kumar, K.; Ahmed, N.; Chauhan, D.; Eain Hyder Rizvi, Q.-U.; Vyas, P. Beneficial Effect of Diverse Fermentation Treatments on Nutritional Composition, Bioactive Components, and Anti-Nutritional Factors of Foxtail Millet (Setaria italica L.). J. Postharvest Technol. 2022, 10, 35–47. [Google Scholar]
- Rana, N.; Dahiya, S. Antioxidant Activity, Mineral Content and Dietary Fiber of Grains. Asian J. Dairy Food Res. 2019, 38, 81–84. [Google Scholar] [CrossRef]
- Sharma, S.; Garg, A.P. Effect of Germination on the Physicochemical and Anti-Nutritional Properties of Finger Millet (Eleusine coracana), Pearl Millet (Pennisetum glaucum), and Sorghum (Sorghum bicolor). Pharma Innov. J. 2023, 12, 4763–4772. [Google Scholar]
- EM, S.; VS, P.; SS, M.; AP, K. Effect of Processing Treatment on Chemical and Nutritional Properties of Millets. Pharma Innov. 2023, 12, 135–138. [Google Scholar] [CrossRef]
- Sharma, B.; Gujral, H.S. Modifying the Dough Mixing Behavior, Protein & Starch Digestibility and Antinutritional Profile of Minor Millets by Sprouting. Int. J. Biol. Macromol. 2020, 153, 962–970. [Google Scholar] [CrossRef]
- Goudar, G.; Manne, M.; Sathisha, G.J.; Sharma, P.; Mokalla, T.R.; Kumar, S.B.; Ziouzenkova, O. Phenolic, Nutritional and Molecular Interaction Study among Different Millet Varieties. Food Chem. Adv. 2023, 2, 100150. [Google Scholar] [CrossRef]
- Mawouma, S.; Condurache, N.N.; Turturică, M.; Constantin, O.E.; Croitoru, C.; Rapeanu, G. Chemical Composition and Antioxidant Profile of Sorghum (Sorghumbicolor (L.) Moench) and Pearl Millet (Pennisetumglaucum (L.) R.Br.) Grains Cultivated in the Far-North Region of Cameroon. Foods 2022, 11, 2026. [Google Scholar] [CrossRef] [PubMed]
- Sheethal, H.V.; Baruah, C.; Subhash, K.; Ananthan, R.; Longvah, T. Insights of Nutritional and Anti-Nutritional Retention in Traditionally Processed Millets. Front. Sustain. Food Syst. 2022, 5, 735356. [Google Scholar] [CrossRef]
- Purewal, S.S.; Sandhu, K.S.; Salar, R.K.; Kaur, P. Fermented Pearl Millet: A Product with Enhanced Bioactive Compounds and DNA Damage Protection Activity. J. Food Meas. Charact. 2019, 13, 1479–1488. [Google Scholar] [CrossRef]
- Babiker, E.; Abdelseed, B.; Hassan, H.; Adiamo, O. Effect of Decortication Methods on the Chemical Composition, Antinutrients, Ca, P and Fe Contents of Two Pearl Millet Cultivars during Storage. World J. Sci. Technol. Sustain. Dev. 2018, 15, 278–286. [Google Scholar] [CrossRef]
- Patel, S.; Dutta, S. Effect of Soaking and Germination on Anti-Nutritional Factors of Garden Cress, Wheat and Finger Millet. Int. J. Pure Appl. Biosci. 2018, 6, 1076–1081. [Google Scholar] [CrossRef]
- Sharma, N.; Goyal, S.K.; Alam, T.; Fatma, S.; Chaoruangrit, A.; Niranjan, K. Effect of High Pressure Soaking on Water Absorption, Gelatinization, and Biochemical Properties of Germinated and Non-Germinated Foxtail Millet Grains. J. Cereal Sci. 2018, 83, 162–170. [Google Scholar] [CrossRef]
- Shigihalli, S.; Ravindra, U.; Ravishankar, P. Effect of Processing Methods on Phytic Acid Content in Selected White Finger Millet Varieties. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1829–1835. [Google Scholar] [CrossRef]
- Udeh, H.O.; Duodu, K.G.; Jideani, A.I.O. Malting Period Effect on the Phenolic Composition and Antioxidant Activity of Finger Millet (Eleusine coracana L. Gaertn) Flour. Molecules 2018, 23, 2091. [Google Scholar] [CrossRef]
- Usman, M.A. Influence of Germination Time, During Malting, on Selected Anti-Nutritional Factors of Some Sorghum [Sorghum bicolor (L.) Moench] Types. Int. J. Agric. Res. Food Prod. 2018, 3, 2536–2734. [Google Scholar]
- Balasubramaniam, V.G.; Ayyappan, P.; Sathvika, S.; Antony, U. Effect of Enzyme Pretreatment in the Ultrasound Assisted Extraction of Finger Millet Polyphenols. J. Food Sci. Technol. 2019, 56, 1583–1594. [Google Scholar] [CrossRef]
- Sruthi, N.U.; Rao, P.S.; Rao, B.D. Decortication Induced Changes in the Physico-Chemical, Anti-Nutrient, and Functional Properties of Sorghum. J. Food Compos. Anal. 2021, 102, 104031. [Google Scholar] [CrossRef]
- Balli, D.; Cecchi, L.; Pieraccini, G.; Venturi, M.; Galli, V.; Reggio, M.; Di Gioia, D.; Furlanetto, S.; Orlandini, S.; Innocenti, M.; et al. Millet Fermented by Different Combinations of Yeasts and Lactobacilli: Effects on Phenolic Composition, Starch, Mineral Content and Prebiotic Activity. Foods 2023, 12, 748. [Google Scholar] [CrossRef] [PubMed]
- Kiptanui, E.B.; Kunyanga, C.N.; Ngugi, E.K.; Kimani, D.E. Optimization of Fermentation and Malting Process of Sorghum Beverage and Effects on Nutritional Quality. Afr. J. Food Sci. 2022, 16, 252–260. [Google Scholar] [CrossRef]
- Gunawan, S.; Dwitasari, I.; Rahmawati, N.; Darmawan, R.; Wirawasista Aparamarta, H.; Widjaja, T. Effect of Process Production on Antinutritional, Nutrition, and Physicochemical Properties of Modified Sorghum Flour. Arab. J. Chem. 2022, 15, 104134. [Google Scholar] [CrossRef]
- Ibidapo, O.; Henshaw, F.; Shittu, T.; Afolabi, W. Bioactive Components of Malted Millet (Pennisetum glaucum), Soy Residue “Okara” and Wheat Flour and Their Antioxidant Properties. Int. J. Food Prop. 2019, 22, 1886–1898. [Google Scholar] [CrossRef]
- Surve, V.D.; Annapure, U. Preparation and Characterization of Kharode/Rabadi from Fermented Pearl Millet Flour. J. Pharmacogn. Phytochem. 2019, 8, 756–763. [Google Scholar]
- Adeyeye, E.I.; Olaleye, A.A.; Aremu, M.O.; Atere, J.O.; Idowu, O.T. Sugar, Antinutrient and Food Properties Levels in Raw, Fermented and Germinated Pearl Millet Grains. FUW Trends Sci. Technol. J. 2020, 5, 745–758. [Google Scholar]
- Balli, D.; Bellumori, M.; Pucci, L.; Gabriele, M.; Longo, V.; Paoli, P.; Melani, F.; Mulinacci, N.; Innocenti, M. Does Fermentation Really Increase the Phenolic Content in Cereals? A Study on Millet. Foods 2020, 9, 303. [Google Scholar] [CrossRef]
- Mutshinyani, M.; Mashau, M.E.; Jideani, A.I.O. Bioactive Compounds, Antioxidant Activity and Consumer Acceptability of Porridges of Finger Millet (Eleusine coracana) Flours: Effects of Spontaneous Fermentation. Int. J. Food Prop. 2020, 23, 1692–1710. [Google Scholar] [CrossRef]
- Abioye, V.F.; Adejuyitan, J.A.; Adeoye, A.O.; Gbadegesin, I.O. Effect of Natural Fermentation Period on Nutritional, Anti Nutritional, I Total Phenols, Flavonoids and Antioxidant Contents of Finger Millet Flour. Eur. J. Nutr. Food Saf. 2021, 13, 74–82. [Google Scholar] [CrossRef]
- Yadav, S.; Mishra, S.; Pradhan, R.C. Ultrasound-Assisted Hydration of Finger Millet (Eleusine coracana) and Its Effects on Starch Isolates and Antinutrients. Ultrason. Sonochem. 2021, 73, 105542. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Bhatt, S.; Agrawal, H.; Dadwal, V.; Gupta, M. Effect of Fermentation Conditions on Nutritional and Phytochemical Constituents of Pearl Millet Flour (Pennisetum glaucum) Using Response Surface Methodology. Appl. Food Res. 2022, 2, 100055. [Google Scholar] [CrossRef]
- Singh, A.; Gupta, S.; Kaur, R.; Gupta, H.R. Process Optimization for Anti-Nutrient Minimization of Millets. Asian J. Dairy. Food Res. 2017, 36, 322–326. [Google Scholar] [CrossRef]
- Bagirei, S.Y.; James, S.A.; Maina, C.Y.; Ibrahim-Baba, A.; Ilemona, A.; Ozovehe, A.; James, S. Total Phenolic, Flavonoid and Antioxidant Capacities of Processed Pearl Millet and Sorghum Flours. Croat. J. Food Sci. Technol. 2022, 14, 272–281. [Google Scholar] [CrossRef]
- Kazi, T.; Laware, S.; Auti, S. Impact of Malting on Nutritional Composition and Antioxidant Activity of Finger Millet. Ann. Food Sci. Technol. 2022, 23, 68–77. [Google Scholar]
- Abioye, V.F.; Olatunde, S.J.; Ogunlakin, G.O.; Abioye, O.A. Effect of Soaking Conditions on Chemical Composition, Antioxidant Activity, Total Phenols, Flavonoids and Antinutritional Contents of Finger Millet. Afr. J. Food Agric. Nutr. Dev. 2022, 22, 20942–20956. [Google Scholar] [CrossRef]
- Paliwal, A.; Sharma, N.; Singh, R. Effects of Wet Processing on Physicochemical and Functional Characteristics of Millet Flour. Curr. Res. Nutr. Food Sci. 2022, 10, 980–993. [Google Scholar] [CrossRef]
- Sharma, R.; Sharma, S.; Singh, B. Modulation in the Bio-Functional & Technological Characteristics, in Vitro Digestibility, Structural and Molecular Interactions during Bioprocessing of Proso Millet (Panicum miliaceum L.). J. Food Compos. Anal. 2022, 107, 104372. [Google Scholar] [CrossRef]
- Yonata, D.; Pranata, B.; Aminah, S. Effect of Addition Fermented Cabbage Extract on Antioxidant Activity and Antinutritional Compounds of Foxtail Millet Flour. J. Tek. Pertan. Lampung J. Agric. Eng. 2022, 11, 427. [Google Scholar] [CrossRef]
- Paliwal, A.; Sharma, N.; Mohite, A.M. Effect of Wet Processing on the Grinding Characteristics and Functional Properties of Sorghum. Appl. Food Res. 2023, 3, 100255. [Google Scholar] [CrossRef]
- Kumari, S.; Bhinder, S.; Singh, B.; Kaur, A. Physicochemical Properties, Non-Nutrients and Phenolic Composition of Germinated Freeze-Dried Flours of Foxtail Millet, Proso Millet and Common Buckwheat. J. Food Compos. Anal. 2023, 115, 105043. [Google Scholar] [CrossRef]
- Suma, P.F.; Urooj, A. Nutrients, Antinutrients & Bioaccessible Mineral Content (In vitro) of Pearl Millet as Influenced by Milling. J. Food Sci. Technol. 2014, 51, 756–761. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Saxena, D.C.; Riar, C.S. Antioxidant Activity, Total Phenolics, Flavonoids and Antinutritional Characteristics of Germinated Foxtail Millet (Setaria italica). Cogent Food Agric. 2015, 1, 1081728. [Google Scholar] [CrossRef]
- Chauhan, E.S. Sarita Effects of Processing (Germination and Popping) on the Nutritional and Anti-Nutritional Properties of Finger Millet (Eleusine coracana). Curr. Res. Nutr. Food Sci. 2018, 6, 566–572. [Google Scholar] [CrossRef]
- Malik, S.; Krishnaswamy, K.; Mustapha, A. Development and Functional Characterization of Complementary Food Using Kodo and Proso Millet with Acid Whey from Greek Yogurt Processing. J. Food Process Preserv. 2021, 46, e16051. [Google Scholar] [CrossRef]
- Hassan, S.; Imran, M.; Ahmad, M.H.; Khan, M.I.; XU, C.; Khan, M.K.; Muhammad, N. Phytochemical Characterization of Ultrasound-Processed Sorghum Sprouts for the Use in Functional Foods. Int. J. Food Prop. 2020, 23, 853–863. [Google Scholar] [CrossRef]
- Bora, P.; Das, P.; Bhattacharyya, R.; Saikia, A. Effect of Processing on the Phytochemical Content and Antioxidant Capacity of Proso Millet (Panicum miliaceum L.) Milled Fractions. Int. J. Chem. Stud. 2018, 6, 18–22. [Google Scholar]
- Pradeep, P.M.; Sreerama, Y.N. Impact of Processing on the Phenolic Profiles of Small Millets: Evaluation of Their Antioxidant and Enzyme Inhibitory Properties Associated with Hyperglycemia. Food Chem. 2015, 169, 455–463. [Google Scholar] [CrossRef]
- Kumari, D.; Chandrasekara, A.; Shahidi, F. Bioaccessibility and Antioxidant Activities of Finger Millet Food Phenolics. J. Food Bioact. 2019, 6, 100–109. [Google Scholar] [CrossRef]
- Yousaf, L.; Hou, D.; Liaqat, H.; Shen, Q. Millet: A Review of Its Nutritional and Functional Changes during Processing. Food Res. Int. 2021, 142, 110197. [Google Scholar] [CrossRef]
- Bello, F.A. Effect of Alkaline Steeping on the Nutritional, Antinutritional and Functional Properties of Malted Millet (Pennisetum glaucum) Flour. Int. J. Innov. Food Nutr. Sustain. Agric. 2017, 5, 17–23. [Google Scholar]
- Elizabeth Chinenye, O. Effect of Fermentation (Natural and Starter) on the Physicochemical, Anti-Nutritional and Proximate Composition of Pearl Millet Used for Flour Production. Am. J. Biosci. Bioeng. 2017, 5, 12. [Google Scholar] [CrossRef]
- Dwivedi, M.; Yajnanarayana, V.K.; Kaur, M.; Sattur, A.P. Evaluation of Anti Nutritional Factors in Fungal Fermented Cereals. Food Sci. Biotechnol. 2015, 24, 2113–2116. [Google Scholar] [CrossRef]
- Shubham Gopal, D. Effect of Microwave Treatment on Phytochemical, Functional and Rheological Property of Kodo Millet (Paspalum scrobiculatum). Pharma Innov. J. 2021, 10, 397–401. [Google Scholar]
- Bora, P.; Ragaee, S.; Marcone, M. Effect of Parboiling on Decortication Yield of Millet Grains and Phenolic Acids and in Vitro Digestibility of Selected Millet Products. Food Chem. 2019, 274, 718–725. [Google Scholar] [CrossRef]
- Aisoni, J.E.; Yusha’u, M.; Orole, O.O. Processing Effects on Physicochemical and Proximate Composition of Finger Millet (Eleusine coracana). Greener J. Biol. Sci. 2018, 8, 014–020. [Google Scholar] [CrossRef]
- Sene, S.; Talla Gueye, M.; Sarr, F.; Diallo, Y.; Salif Sow, M.; Faye, A.; Min, D.; Lamine Gaye, M. Parboiling Effect on Phytate Contains of Two Senegalese Pearl Millet Varieties (Pennisetum glaucum [L.] R.Br.) GB 87-35 and ICRITABI. J. Nutrit. Health Food Sci. 2018, 6, 1–6. [Google Scholar] [CrossRef]
- Singh, N.; David, J.; Thompkinson, D.; Sagar Seelam, B.; Rajput, H.; Morya, S. Effect of Roasting on Functional and Phytochemical Constituents of Finger Millet (Eleusine coracana L.). Pharma Innov. J. 2018, 7, 414–418. [Google Scholar]
- Snehal, G.; Neena, J. Effect of Hydrothermal Treatments on Mineral Composition, Bio Accessibility and Total Polyphenols of Pearl Millet (Pennisetum glaucum). J. Pharmacogn. Phytochem. 2018, 7, 442–448. [Google Scholar]
- Azad, M.O.K.; Jeong, D.I.; Adnan, M.; Salitxay, T.; Heo, J.W.; Naznin, M.T.; Lim, J.D.; Cho, D.H.; Park, B.J.; Park, C.H. Effect of Different Processing Methods on the Accumulation of the Phenolic Compounds and Antioxidant Profile of Broomcorn Millet (Panicum miliaceum L.) Flour. Foods 2019, 8, 230. [Google Scholar] [CrossRef]
- Hassan, S.; Ahmad, N.; Ahmad, T.; Imran, M.; Xu, C.; Khan, M.K. Microwave Processing Impact on the Phytochemicals of Sorghum Seeds as Food Ingredient. J. Food Process. Preserv. 2019, 43, e13924. [Google Scholar] [CrossRef]
- Rana, S.; Agnihotri, V.; Anjum, S.; Bhandari, N.S. Effect of Dehulling, Roasting, and Cooking on the Nutritional Composition of Himalayan Barnyard Millet (Echinochloa frumentacea). JSFA Rep. 2023, 3, 196–206. [Google Scholar] [CrossRef]
- Kushwaha, A.; Singh, A.; Sirohi, R.; Tarafdar, A. Effect of Hydrothermal Treatment and Milling Parameters on Milling and Nutritional Qualities of Finger Millet (Eleusine coracana). J. Agric. Eng. 2018, 55, 34–46. [Google Scholar] [CrossRef]
- Oluwole, O.; Fernando, M.A.D.B.; Audain, K.; Fasanmade, O.; Ijabadeniyi, O.; Falade, K.; Yaakwaah, A.M.; Jayasena, V. The Effects of Germination and Roasting on Nutraceutical and Antioxidant Properties of Jirani Variety of Millet. Am. J. Food Sci. Technol. 2019, 7, 234–241. [Google Scholar]
- Sadhu, V.J.; Naidu, S. A Study on Functional and Nutritional Characteristics of Barnyard Millet and Foxtail Millet. Food Nutr. J. 2021, 6, 1–10. [Google Scholar] [CrossRef]
- Chinma, C.E.; Ibrahim, P.A.; Adedeji, O.E.; Ezeocha, V.C.; Ohuoba, E.U.; Kolo, S.I.; Abdulrahman, R.; Ogochukwu Anumba, N.L.; Adebo, J.A.; Adebo, O.A. Physicochemical Properties, in Vitro Digestibility, Antioxidant Activity and Consumer Acceptability of Biscuits Prepared from Germinated Finger Millet and Bambara Groundnut Flour Blends. Heliyon 2022, 8, e10849. [Google Scholar] [CrossRef]
- Navyashree, N.; Singh Sengar, A.; Sunil, C.K.; Venkatachalapathy, N. White Finger Millet (KMR-340): A Comparative Study to Determine the Effect of Processing and Their Characterisation. Food Chem. 2022, 374, 131665. [Google Scholar] [CrossRef]
- Patil, S.S.; Rudra, S.G.; Varghese, E.; Kaur, C. Effect of Extruded Finger Millet (Eleusine Coracan L.) on Textural Properties and Sensory Acceptability of Composite Bread. Food Biosci. 2016, 14, 62–69. [Google Scholar] [CrossRef]
- Gulati, P.; Weier, S.A.; Santra, D.; Subbiah, J.; Rose, D.J. Effects of Feed Moisture and Extruder Screw Speed and Temperature on Physical Characteristics and Antioxidant Activity of Extruded Proso Millet (Panicum miliaceum) Flour. Int. J. Food Sci. Technol. 2016, 51, 114–122. [Google Scholar] [CrossRef]
- Rani, S.; Singh, R.; Sehrawat, R.; Kaur, B.P.; Upadhyay, A. Pearl Millet Processing: A Review. Nutr. Food Sci. 2018, 48, 30–44. [Google Scholar] [CrossRef]
- Gowthamraj, G.; Jubeena, C.; Sangeetha, N. The Effect of γ-Irradiation on the Physicochemical, Functional, Proximate, and Anti-Nutrient Characteristics of Finger Millet (CO14 & CO15) Flours. Radiat. Phys. Chem. 2021, 183, 109403. [Google Scholar] [CrossRef]
- Rousta, M.; Sadeghi, A.A.; Shawrang, P.; Aimn Afshar, M.; Chamani, M. Effect of Gamma, Electron Beam and Infrared Radiation Treatment on the Nutritional Value and Anti-Nutritional Factors of Sorghum Grain. Iran. J. Appl. Anim. Sci. 2014, 4, 723–731. [Google Scholar]
- Sharma, R.; Bhandari, M.; Kaur, K.; Singh, A.; Sharma, S.; Kaur, P. Molecular Interactome and Starch–Protein Matrix, Functional Properties, Phytochemical Constituents, and Antioxidant Activity of Foxtail Millet (Setaria italica) Flour as Influenced during Gaseous Ozonation. Cereal Chem. 2022, 99, 1101–1111. [Google Scholar] [CrossRef]
- Sharma, R.; Bhandari, M.; Kaur, K.; Sohu, R.S.; Bhardwaj, R.; Dar, B.N.; Kaur, P.; Sharma, S. Influence of Gaseous Ozonation on Bio-Techno-Functionality, In Vitro Nutrient Digestibility, and Molecular Properties of Red Sorghum Flour. Ozone Sci. Eng. 2024, 46, 113–127. [Google Scholar] [CrossRef]
- Sarkar, A.; Niranjan, T.; Patel, G.; Kheto, A.; Tiwari, B.K.; Dwivedi, M. Impact of Cold Plasma Treatment on Nutritional, Antinutritional, Functional, Thermal, Rheological, and Structural Properties of Pearl Millet Flour. J. Food Process Eng. 2023, 46, e14317. [Google Scholar] [CrossRef]
- Monica, V.; Anbarasan, R.; Mahendran, R. Influence of Cold Plasma in Accelerating the Germination and Nutrient Composition of Foxtail Millet (Setaria italica L.). Plasma Chem. Plasma Process. 2023, 43, 1843–1861. [Google Scholar] [CrossRef]
- Charu, C.; Vignesh, S.; Chidanand, D.V.; Mahendran, R.; Baskaran, N. Impact of Cold Plasma on Pearl and Barnyard Millets’ Microbial Quality, Antioxidant Status, and Nutritional Composition. Food Humanit. 2024, 2, 100238. [Google Scholar] [CrossRef]
- Sharma, V.; Tomar, M.S.; Sahoo, S.; Pradhan, R.C. Development of Barnyard Millet Flour Rich in Bioactive Compounds with Enhanced Functional Properties by Application of Multipin Atmospheric Cold Plasma. J. Food Process Eng. 2024, 47, e14667. [Google Scholar] [CrossRef]
- López-Moreno, M.; Garcés-Rimón, M.; Miguel, M. Antinutrients: Lectins, Goitrogens, Phytates and Oxalates, Friends or Foe? J. Funct. Foods 2022, 89, 104938. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Y.; Qin, L. The Cause of Germination Increases the Phenolic Compound Contents of Tartary Buckwheat (Fagopyrum tataricum). J. Future Foods 2022, 2, 372–379. [Google Scholar] [CrossRef]
- Kayisoglu, C.; Altikardes, E.; Guzel, N.; Uzel, S. Germination: A Powerful Way to Improve the Nutritional, Functional, and Molecular Properties of White- and Red-Colored Sorghum Grains. Foods 2024, 13, 662. [Google Scholar] [CrossRef]
- Kruma, Z.; Tomsone, L.; Galoburda, R. Effects of Germination on Total Phenolic Compounds and Radical Scavenging Activity in Hull-Less Spring Cereals and Triticale. Agron. Res. 2016, 14, 1372–1383. [Google Scholar]
- Urooj, A. Impact of Household Processing Methods on the Nutritional Characteristics of Pearl Millet (Pennisetumtyphoideum): A Review. MOJ Food Process. Technol. 2017, 4, 28–32. [Google Scholar] [CrossRef]
- Paliwal, A.; Sharma, N. Fermentation Kinetics of Sorghum Grain and Effects of Wet Processing on Structural and Chemical Properties of Sorghum Flour. Vegetos 2022, 36, 141–148. [Google Scholar] [CrossRef]
- Kaur, T.; Panesar, P.S.; Riar, C.S. Optimization of Hydrothermal (Soak-Boil and Soak-Steam) Treatments of Foxtail (Setaria italica L.) Millet and Their Effect on Milling, Antioxidant, Pasting, and Drying Characteristics. J. Food Meas. Charact. 2024, 18, 500–515. [Google Scholar] [CrossRef]
- Hithamani, G.; Srinivasan, K. Effect of Domestic Processing on the Polyphenol Content and Bioaccessibility in Finger Millet (Eleusine coracana) and Pearl Millet (Pennisetum glaucum). Food Chem. 2014, 164, 55–62. [Google Scholar] [CrossRef]
- Carciochi, R.A.; Dimitrov, K.; Galván D’Alessandro, L. Effect of Malting Conditions on Phenolic Content, Maillard Reaction Products Formation, and Antioxidant Activity of Quinoa Seeds. J. Food Sci. Technol. 2016, 53, 3978–3985. [Google Scholar] [CrossRef]
- Chandrasekara, N.; Shahidi, F. Effect of Roasting on Phenolic Content and Antioxidant Activities of Whole Cashew Nuts, Kernels, and Testa. J. Agric. Food Chem. 2011, 59, 5006–5014. [Google Scholar] [CrossRef]
- Hendek Ertop, M.; Bektaş, M. Enhancement of Bioavailable Micronutrients and Reduction of Antinutrients in Foods with Some Processes. Food Health 2018, 4, 159–165. [Google Scholar] [CrossRef]
- Kleszcz, R.; Majchrzak-Celińska, A.; Baer-Dubowska, W. Tannins in Cancer Prevention and Therapy. Br. J. Pharmacol. 2023. ahead of print. [Google Scholar] [CrossRef]
- Sp, N.; Kang, D.Y.; Jo, E.S.; Rugamba, A.; Kim, W.S.; Park, Y.M.; Hwang, D.Y.; Yoo, J.S.; Liu, Q.; Jang, K.J.; et al. Tannic Acid Promotes Trail-Induced Extrinsic Apoptosis by Regulating Mitochondrial Ros in Human Embryonic Carcinoma Cells. Cells 2020, 9, 282. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Jeong, S.-J.; Park, M.N.; Linnes, M.; Han, H.J.; Kim, J.H.; Lieske, J.C.; Kim, S.-H. Gallotannin Suppresses Calcium Oxalate Crystal Binding and Oxalate-Induced Oxidative Stress in Renal Epithelial Cells. Biol. Pharm. Bull. 2012, 35, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.; Yadav, D.N.; Kaur, J.; Anand, T. Development and Shelf-Life Evaluation of Pearl Millet Based Upma Dry Mix. J. Food Sci. Technol. 2014, 51, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Nour, A.A.M.; Ahmed, I.A.M.; Babiker, E.E.; Awad, M.; Ibrahim, E.; Ibrahim, M.A.E.M. Effect of Supplementation and Cooking on in Vitro Protein Digestibility and Anti-Nutrients of Pearl Millet Flour. Am. J. Nutr. Food Sci. 2015, 1, 69–75. [Google Scholar]
- Kaur, P.; Purewal, S.S.; Sandhu, K.S.; Kaur, M.; Salar, R.K. Millets: A Cereal Grain with Potent Antioxidants and Health Benefits. J. Food Meas. Charact. 2019, 13, 793–806. [Google Scholar] [CrossRef]
- Nithya, K.S.; Ramachandramurty, B.; Krishnamoorthy, V.V. Effect of Processing Methods on Nutritional and Anti-Nutritional Qualities of Hybrid (COHCU-8) and Traditional (CO7) Pearl Millet Varieties of India. J. Biol. Sci. 2007, 7, 643–647. [Google Scholar] [CrossRef]
- Nour, A.A.M.; Ahmed, I.A.M.; Babiker, E.E. Supplementation and Cooking of Pearl Millet: Changes in Anti-Nutrients, and Total Minerals Content and Extractability. Innov. Rom. Food Biotechnol. 2014, 15, 9–22. [Google Scholar]
- Zarei, M.; Shawrang, P. Correlation between Condensed Tannin and Fiber Contents of Irradiated Pomegranate Seed. J. Agric. Sci. 2016, 61, 343–357. [Google Scholar] [CrossRef]
- Shawrang, P.; Sadeghi, A.A.; Behgar, M.; Zareshahi, H.; Shahhoseini, G. Study of Chemical Compositions, Anti-Nutritional Contents and Digestibility of Electron Beam Irradiated Sorghum Grains. Food Chem. 2011, 125, 376–379. [Google Scholar] [CrossRef]
- Belmiro, R.H.; Tribst, A.A.L.; Cristianini, M. Effects of High Pressure Processing on Common Beans (Phaseolus vulgaris L.): Cotyledon Structure, Starch Characteristics, and Phytates and Tannins Contents. Starch/Staerke 2020, 72, 1900212. [Google Scholar] [CrossRef]
- Amalraj, A.; Pius, A. Bioavailability of Calcium and Its Absorption Inhibitors in Raw and Cooked Green Leafy Vegetables Commonly Consumed in India—An in Vitro Study. Food Chem. 2015, 170, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Gangoliya, S.S.; Singh, N.K. Reduction of Phytic Acid and Enhancement of Bioavailable Micronutrients in Food Grains. J. Food Sci. Technol. 2015, 52, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Sihag, M.K.; Sharma, V.; Goyal, A.; Arora, S.; Singh, A.K. Effect of Domestic Processing Treatments on Iron, β-Carotene, Phytic Acid and Polyphenols of Pearl Millet. Cogent Food Agric. 2015, 1, 1109171. [Google Scholar] [CrossRef]
- Dubey, A.; Tripathy, P.P. Ultrasound-Mediated Hydration of Finger Millet: Effects on Antinutrients, Techno-Functional and Bioactive Properties, with Evaluation of ANN-PSO and RSM Optimization Methods. Food Chem. 2024, 435, 137516. [Google Scholar] [CrossRef] [PubMed]
- Huynh, N.K.; Nguyen, D.H.M.; Nguyen, H.V.H. Effects of Processing on Oxalate Contents in Plant Foods: A Review. J. Food Compos. Anal. 2022, 112, 104685. [Google Scholar] [CrossRef]
- Morah, F.; Morah, F.N.I.; Etukudo, U.P. Effect of Sprouting on Nutritional Value of Panicium miliaceum (Proso Millet). Edorium J. Nutr. Diet. 2017, 4, 1–4. [Google Scholar] [CrossRef]
- Manjula, K.; Bhagath, Y.B.; Nagalakshmi, K. Effect of radiation processing on bioactive components of finger millet flour (Eleusine coracana L.). Int. Food Res. J. 2015, 22(2), 556–560. [Google Scholar]
- Sharma, K.; Kaur, R.; Kumar, S.; Saini, R.K.; Sharma, S.; Pawde, S.V.; Kumar, V. Saponins: A Concise Review on Food Related Aspects, Applications and Health Implications. Food Chem. Adv. 2023, 2, 100191. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Phosanam, A.; Stockmann, R. Perspectives on Saponins: Food Functionality and Applications. Int. J. Mol. Sci. 2023, 24, 13538. [Google Scholar] [CrossRef]
- Mhada, M.; Metougui, M.L.; El Hazzam, K.; El Kacimi, K.; Yasri, A. Variations of Saponins, Minerals and Total Phenolic Compounds Due to Processing and Cooking of Quinoa (Chenopodium quinoa Willd.) Seeds. Foods 2020, 9, 660. [Google Scholar] [CrossRef]
- Lazo-Vélez, M.A.; Guajardo-Flores, D.; Mata-Ramírez, D.; Gutiérrez-Uribe, J.A.; Serna-Saldivar, S.O. Characterization and Quantitation of Triterpenoid Saponins in Raw and Sprouted Chenopodium berlandieri spp. (Huauzontle) Grains Subjected to Germination with or without Selenium Stress Conditions. J. Food Sci. 2016, 81, C19–C26. [Google Scholar] [CrossRef] [PubMed]
- Owheruo, J.O.; Ifesan, B.O.T.; Kolawole, A.O. Physicochemical Properties of Malted Finger Millet (Eleusine coracana) and Pearl Millet (Pennisetum glaucum). Food Sci. Nutr. 2019, 7, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kataria, A.; Singh, B. Effect of Thermal Processing on the Bioactive Compounds, Antioxidative, Antinutritional and Functional Characteristics of Quinoa (Chenopodium quinoa). Lebensm.-Wiss. Technol. 2022, 160, 113256. [Google Scholar] [CrossRef]
- Akinyemi, T.Y.; Akinyede, A.I.; Oluwajuyitan, T.D. Extruded Breakfast Cereal from Finger Millet Flour Blends: Nutritional Composition, in-Vivo Protein Quality Assessment and Biochemical Indices of Rat Fed. NFS J. 2022, 29, 35–42. [Google Scholar] [CrossRef]
- Ryva, B.; Zhang, K.; Asthana, A.; Wong, D.; Vicioso, Y.; Parameswaran, R. Wheat Germ Agglutinin as a Potential Therapeutic Agent for Leukemia. Front. Oncol. 2019, 9, 100. [Google Scholar] [CrossRef]
- Casals, C.; Campanero-Rhodes, M.A.; García-Fojeda, B.; Solís, D. The Role of Collectins and Galectins in Lung Innate Immune Defense. Front Immunol 2018, 9, 1998. [Google Scholar] [CrossRef]
- Gupta, B.; Sadaria, D.; Warrier, V.U.; Kirtonia, A.; Kant, R.; Awasthi, A.; Baligar, P.; Pal, J.K.; Yuba, E.; Sethi, G.; et al. Plant Lectins and Their Usage in Preparing Targeted Nanovaccines for Cancer Immunotherapy. Semin. Cancer Biol. 2022, 80, 87–106. [Google Scholar] [CrossRef]
- Theodoro, J.M.V.; Martinez, O.D.M.; Grancieri, M.; Toledo, R.C.L.; Binoti, M.L.; Martins, A.M.D.; Carvalho, C.W.P.; Lisboa, P.C.; Martino, H.S.D. Germinated Millet Flour (Pennisetum glaucum (L.) R. BR.) Improves Adipogenesis and Glucose Metabolism and Maintains Thyroid Function in Vivo. Food Funct. 2021, 12, 6083–6090. [Google Scholar] [CrossRef]
- Anwar, M.M.; Ali, S.E.; Nasr, E.H. Improving the Nutritional Value of Canola Seed by Gamma Irradiation. J. Radiat. Res. Appl. Sci. 2015, 8, 328–333. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, M.; Sun, W.; Ren, J. Effects of High Hydrostatic Pressure Treatments on Haemagglutination Activity and Structural Conformations of Phytohemagglutinin from Red Kidney Bean (Phaseolus vulgaris). Food Chem. 2013, 136, 1358–1363. [Google Scholar] [CrossRef]
- Mallikarjunan, N.; Marathe, S.; Rajalakshmi, D.; Mahesh, S.; Jamdar, S.N.; Sharma, A. Effect of Ionizing Radiation on Structural and Functional Attributes of Red Kidney Bean (Phaseolus vulgaris L.) Lectin. Lebensm.-Wiss. Technol. 2014, 59, 300–307. [Google Scholar] [CrossRef]
- Li, S.; Xian, F.; Guan, X.; Huang, K.; Yu, W.; Liu, D. Neural Protective Effects of Millet and Millet Polyphenols on High-Fat Diet-Induced Oxidative Stress in the Brain. Plant Foods Hum. Nutr. 2020, 75, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Lalit, A.; Alam, A.; Vidyapith, B.; India, T.; Shukla, A.; Sharma, V. Screening of Phytoconstituents and Antimicrobial Activity of Hexane Extract of Pennisetum glaucum (L.) r. Br. and Eleusine coracana (L.) Gaertn. Appl. Res. J. 2015, 1, 384–387. [Google Scholar]
- Odai, T.; Terauchi, M.; Kato, K.; Hirose, A.; Miyasaka, N. Effects of Grape Seed Proanthocyanidin Extract on Vascular Endothelial Function in Participants with Prehypertension: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2019, 11, 2844. [Google Scholar] [CrossRef]
- Ma, D.; Zheng, B.; Du, H.; Han, X.; Zhang, X.; Zhang, J.; Gao, Y.; Sun, S.; Chu, L. The Mechanism Underlying the Protective Effects of Tannic Acid Against Isoproterenol-Induced Myocardial Fibrosis in Mice. Front. Pharmacol. 2020, 11, 716. [Google Scholar] [CrossRef]
- Díaz Sánchez, R.M.; Castillo-Dalí, G.; Fernández-Olavarría, A.; Mosquera-Pérez, R.; Delgado-Muñoz, J.M.; Gutiérrez-Pérez, J.L.; Torres-Lagares, D. A Prospective, Double-Blind, Randomized, Controlled Clinical Trial in the Gingivitis Prevention with an Oligomeric Proanthocyanidin Nutritional Supplement. Mediat. Inflamm. 2017, 2017, 7460780. [Google Scholar] [CrossRef]
- Kumari, D.; Madhujith, T.; Chandrasekara, A. Comparison of Phenolic Content and Antioxidant Activities of Millet Varieties Grown in Different Locations in Sri Lanka. Food Sci. Nutr. 2017, 5, 474–485. [Google Scholar] [CrossRef]
- Ji, Z.; Mao, J.; Chen, S.; Mao, J. Antioxidant and Anti-Inflammatory Activity of Peptides from Foxtail Millet (Setaria italica) Prolamins in HaCaT Cells and RAW264.7 Murine Macrophages. Food Biosci. 2020, 36, 100636. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, X.; Tian, H.; Li, Y.; Shi, P.; Guo, W.; Zhu, Q. Effect of Four Modification Methods on Adsorption Capacities and in Vitro Hypoglycemic Properties of Millet Bran Dietary Fibre. Food Res. Int. 2021, 147, 110565. [Google Scholar] [CrossRef]
- Jacob, J.; Krishnan, V.; Antony, C.; Bhavyasri, M.; Aruna, C.; Mishra, K.; Nepolean, T.; Satyavathi, C.T.; Visarada, K.B.R.S. The Nutrition and Therapeutic Potential of Millets: An Updated Narrative Review. Front. Nutr. 2024, 11, 1346869. [Google Scholar] [CrossRef]
- Chethan Kumar, P.; Amutha, S.; Oberoi, H.S.; Kanchana, S.; Azeez, S.; Rupa, T.R. Germination Induced Changes in Bioactive Compounds and Nutritional Components of Millets. J. Food Sci. Technol. 2022, 59, 4244–4252. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Cruz, R.A.; Ramírez-Wong, B.; Ledesma-Osuna, A.I.; Torres-Chávez, P.I.; Sánchez-Machado, D.I.; Montaño-Leyva, B.; López-Cervantes, J.; Gutiérrez-Dorado, R. Effect of Extrusion Processing Conditions on the Phenolic Compound Content and Antioxidant Capacity of Sorghum (Sorghum bicolor (L.) Moench) Bran. Plant Foods Hum. Nutr. 2020, 75, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.K.; Kurichh, R.; Bist, Y.; Kheto, A.; Kumar, Y.; Sharma, R.; Shikha, D.; Saxena, D.C. Effect of Microwave Roasting on the Physicochemical, Functional, Rheological, and Antioxidant Properties of Kodo Millet Flour. J. Food Process. Preserv. 2024, 2024, 6861190. [Google Scholar] [CrossRef]
- Jaddu, S.; Sahoo, S.; Sonkar, S.; Alzahrani, K.; Dwivedi, M.; Misra, N.; Pradhan, R.C. Cold Plasma Treatment of Little Millet Flour: Impact on Bioactives, Antinutritional Factors and Functional Properties. Plant Foods Hum. Nutr. 2024, 79, 503–510. [Google Scholar] [CrossRef]
- Meena, L.; Gowda, N.N.; Sunil, C.K.; Rawson, A.; Janghu, S. Effect of Ultrasonication on Food Bioactive Compounds and Their Bio-Accessibility: A Review. J. Food Compos. Anal. 2024, 126, 105899. [Google Scholar] [CrossRef]
Sl. No. | Antinutrient | Impact on Health and Nutrient Availability | Type of Compounds and Mode of Action | Reference |
---|---|---|---|---|
1. | Polyphenols | Reduce the nutritional value and availability of minerals and proteins |
| [37] |
Reduce protein digestion and availability |
| [38] | ||
Loss of body weight, appetite, breathing, and cardiac issues |
| [39] | ||
2. | Tannins | Interfere with mineral absorption, reduce bioavailability and bioaccessibility of minerals (Ca, Zn, Fe, Mg, and K) |
| [40,41,42,43] |
Reduces protein and carbohydrate digestion, absorption, and palatability |
| [44,45] | ||
Digestive disorders |
| [46] | ||
3. | Phytates/phytic acid | Interfere with minerals (Fe, Zn, Ca) absorption and bioavailability |
| [40,42,43,46] |
Interfere with mineral absorption, solubility, functionality, palatability, protein, and carbohydrate digestion |
| [42,46] | ||
4. | Phenolic acid | Reduce the mineral availability |
| [37] |
5. | Saponins | Reduce nutrient (Vitamins A and E and lipids) absorption, interfere with integrity of epithelial cells, thyroid and gut functions |
| [40,45] |
6. | Oxalates | Kidney stones and protein indigestion |
| [40,45] |
7. | Trypsin inhibitors | Protein indigestion |
| [29,45] |
8. | Protease and amylase enzyme inhibitors | Inhibit growth, can cause pancreatic hypertrophy, reduce protein digestibility |
| [40,47] |
9. | Dietary fiber | Barrier for digestion, delayed nutrient absorption, increase fecal transit time |
| [1] |
10. | Lectins and haemagglutinins | Cause impaired growth, reduced nutrient absorption, inflammation, leaky gut syndrome, affects pancreas function |
| [29,42,45] |
11. | Oxalates | Inhibit Ca absorption, increase risk of kidney stones (Ca) |
| [42] |
12. | Goitrogens | Causes hypothyroidism and goiter |
| [42] |
Compounds | Pearl Millet | Foxtail Millet | Proso Millet | Little Millet | Kodo Millet |
---|---|---|---|---|---|
TPC (mg GAE/g; d.w) | 1.29–4.79 | 0.22–1.29 | 1.14 | 1.51 | 4.44 |
Total free phenolic acids (mg/g; d.w) | 0.098 | 0.084 | 0.071 | 0.053 | 0.172 |
Total bound phenolic acids (mg/g; d.w) | 1.04 | 0.306 | 0.312 | 0.166 | 1.4 |
TFC (mg QE/g or CE/g; d.w) | 4.9–6.2 * QE | 6.28–7.61 QE | 3.34 QE | 1.18–3.34 CE | 1.01–1.87 CE |
α-amylase inhibition of free phenolics (µg GAE/mL) | 122.59 | 135.3 | 99.48 | 98.77 | 125.8 |
α-glucosidase activity of free phenolics (µg GAE/mL) | 82.4 | 87.92 | 78.91 | 81.15 | 92.61 |
DPPH RSA activity (%) | 24.8–73.7 | 25.3–73.5 | 26.87 | 23.0–34.1 | 53.1–56.7 |
FRAP RSA activity (mM Fe (II)/g) | 0.22 | 0.19 | 0.18 | 0.16 | 0.21 |
ABTS RSA activity (%) | 62.8–90.6 | 36.95 | 55.43 | 31.21 | 60.75 |
Total tannins (mg/g; d.w) | 0.239 | 0.287 | 0.218 | 0.157 | 0.48 |
Phytic acid (mg/g; d.w) | 4.7–9.2 | 5.91–9.73 | 5.2–9.3 | 6.3–8.3 | 1.2–8.3 |
Saponins (mg/g; d.w) | 38.6 | 8.73 * | - | - | - |
Oxalates (mg/g; d.w) | 0.26–0.36 | 0.119 | 0.085 | - | 0.034 |
Physiochemical and Bioprocessing Techniques | |||||||
---|---|---|---|---|---|---|---|
Phytochemical Compounds | Decortication | Milling/Dehulling | Soaking | Sprouting/Germination | Malting | Fermentation | Enzymatic Treatment |
Total phenols | D | D | I or D | I or D | I or D | I or D | I or D |
Total flavonoids | D | D | D or N | I or D | I or D | I | I |
Tannins | D | D | D or N | I or D | D | I or D | I or D |
Phytate | D | D | D | D | D | D | |
Saponins | D | I or D | D | ||||
Oxalates | D | D | D | D | |||
Dietary fiber | D | D | I or D | D | I or D | D | |
Trypsin & amylase inhibitor | D | D | D | ||||
Lectins | D | D | D | D | D | ||
Lignans | D | D | |||||
Carotenoids | D | D | D | ||||
Total anthocyanins | |||||||
Antioxidant capacity | D | D | I or D or N | I | I or D | I |
Novel Non-Thermal Processing Techniques | Thermal Processing Techniques | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Phytochemical Compounds | Cold Plasma | High Pressure Processing | Ultrasound | Gamma Irradiation | Electron beam Irradiation | Ozone Treatment | Parboiling | Baking | Steaming | Popping/Puffing | Extrusion | Boiling/Cooking | Roasting | Microwave Treatment |
Total phenols | I or D | I | D | D | D | I | I | I | I or D | I or D | D | I or D | D | |
Total flavonoids | I or D | I | I or D | I | D | I or D or N | D | I or D | I or D | |||||
Tannins | D | D | I or D | D | D | D | I or D | D | D | D | D | I or D | ||
Phytate | D | D | I or D | D | D | I | D | D | D or N | D | D | D | D | I or D |
Saponins | D | I or D | I or D | |||||||||||
Oxalates | D | I | D | D | I or D | |||||||||
Dietary fibre | D | D | D | I or D | I | D | D | D | ||||||
Trypsin & amylase inhibitor | D | D | D | |||||||||||
Lectins | I | D | D | I | ||||||||||
Lignans | ||||||||||||||
Carotenoids | D | D | D | D | ||||||||||
Total anthocyanins | D | |||||||||||||
Antioxidant capacity | D | I or D | I | D | I | I or D | I | I | D | I or D | I or D |
Processing Method | Processing Conditions | Results and Important Observations * | Inference | References |
---|---|---|---|---|
Solid state fermentation (SSF) | Pearl millets soaked at 30°C for 12 h, autoclaved at 121°C for 15 min, and fermented with Rhizopus azygosporus culture for 10 days at 25 °C. |
|
| [56] |
Decortication | Pearl millets were decorticated using stone dehuller (800–1200 rpm) or modern abrasive dehuller. |
|
| [57] |
Soaking and germination | Finger millet was soaked for 12 h at 30 °C, germinated for 12, 24, and 36 h at 30, 34, and 37 °C and 80% RH, dried at 60 °C for 6 h, and milled (100 mesh size). |
|
| [58] |
High pressure soaking and germination. | Foxtail millet germinated and non-germinated samples were subjected to high pressure of 200, 400 and 600 Mps at 20, 40, 60, and 80 °C for 30, 60, 90, and 120 min duration. Treated samples were dried to 10% moisture and milled (150 µm sieve). |
|
| [59] |
Soaking, malting, and popping | White finger millet varieties. Soaking (12, 24, and 48 h) and dried at 65 °C. Malting: steeped overnight, germinated at 25 °C (12, 24, and 48 h) and dried at 60 °C for 6 h Popping: Conditioned (19% M.C) and popped at 170–200 °C. |
|
| [60] |
Malting | Brown (BFM) and dark brown finger millets (DBFM) soaked for 24 h at 25 °C, sprouted, kilned for 8 h at 50 °C, milled. Malting duration 0–96 h. |
|
| [61] |
Germination and malting. | Sorghum grains steeped for 6 h and sprouted at 32 °C for 0, 48, and 96 h. |
|
| [62] |
Enzymatic treatment | Finger millet decorticated, milled (60 µ sieve). Xylanase and Cellulase enzymes at different concentrations added and incubated at 50 °C for 2 h, deactivated at 90 °C for 5 min, decanted, and lyophilized. Samples were extracted at various temperatures, time, and solvent concentrations using ultrasound-assisted extraction. |
|
| [63] |
Decortication & milling | Sorghum millet was decorticated in a rotary mill, polished (9, 15 min), and sieved BSS 36 mesh. |
|
| [64] |
Fermentation | Pearl, finger, foxtail millets. Three methods of fermentation. 1. FPM1: unground finger millet flour fermented for 72 h at 30 °C with 0.2% S. boulardii and spray dried. 2. FPM2 and FPM3: Mixing ground finger millet four and inoculated with combination of yeast and LAB (S. cerevisiae + C. paraminentarius, and G. uvarum + F. sanfranciscensis) and fermented for 24 h at 28 °C. |
|
| [65] |
Malting and fermentation | Sorghum grains malted for 3, 4, and 5 days, drying at 65 °C for 6 h, hammer mill (2 mm), malt extraction (72 °C for 12 h), and 7 days fermentation at temperatures 20 and 35 °C to develop beverages. |
|
| [66] |
Fermentation with three LAB species | Sorghum flour fermented by three LAb (L. brevis, L. bulgaricuss, L. casie) with and without NaOH immersion and combination treatment. |
|
| [67] |
Malting | Pearl millet steeped for 24 h at 30 °C, germinated at 34 °C for 24 h, sprouted for 48 h, dried in cabinet dryer at 60 °C for 5–6 h, and disc milled. |
|
| [68] |
Fermentation | Pearl millet Rabadi prepared by soaking and fermenting in butter milk at 30, 37.5, 45 °C for 5, 10, and 15 h, course grinding (15 s), cooked with fermented sample, molded, and dried at 50 °C for 12 h. |
|
| [69] |
Germination and Fermentation | Pearl millet steeped (14–24 h), germinated (3–4 days), sun dried (2–3 days), homogenized (200 mm sieve), and malted. |
|
| [70] |
Fermentation | Pearl millet fermented at 38 °C for 0, 24, 48, 72, and 96 h using mixture of L. pentosus, L. sanfranciscensis and yeast strains. |
|
| [71] |
Soaking and sprouting | Millets: little, foxtail, pearl, finger, and kodo millets. Soaking for 24 h and sprouting for 24 h. |
|
| [35] |
Spontaneous fermentation | Light and brown variety of finger millet milled (2 mm sieve), spontaneously fermented at 37 °C from 0 to 96 h, and oven dried (45 °C for 24–48 h). |
|
| [72] |
Natural fermentation | Finger millet fermented (72 h at 28 °C) using LAB species (B. cereus, L. plantarum, L. casei, and L. brevis), and dried (50 °C for 48 h). |
|
| [73] |
Germination | Foxtail and little millets germinated at 35 °C and 30 °C for 24 h, respectively, overnight steeping, tray dried (60 °C for 6 h), and milled. |
|
| [5] |
Germination | Finger millet soaked overnight, germinated at 25 °C for variable time of 12 to 96 h, dried at 50 °C, and milled to flour. |
|
| [41] |
Ultrasound assisted hydration | Finger millet hydrated by ultrasound treatment with different variables like amplitude (30–70%), time (10–20 min), and grain-water ratio (1:3 to 1:6). |
|
| [74] |
Fermentation | Peral millet fermented using yeast. Temperature (30–45 °C), yeast concentration (2–4%), time (18–24 h). |
|
| [75] |
Soaking, germination, fermentation, and microwave heating. | Pearl and finger millets. Soaking (ST) at 28 °C Germination (GT) at 25 °C for 48–72 h Microwave treatment (MT) (900 W, 2450 MHz) for 40–100 s, followed by oven drying (at 55 °C overnight) and milling using cabinet flour mill (16 mesh sieve). Open fermentation (OF): for 48 h using dried and pulverized flour and oven drying at 55 °C for 24 h. Closed fermentation (CF): Milled raw flour autoclaved at 121 °C for 15 min, inoculation (Aspegillus niger), fermented at 29 °C for 48 h, and finally oven drying at 55 °C for 24 h to fungal growth. |
|
| [76] |
Sprouting and fermentation | Pearl millet sprouted (28 °C for 2, 3, 4, and 5 days) and fermented for 0, 24, 48, 72, and 96 h, followed by oven drying at 80 °C for 24 h and milled (disc mill) into flour (0.05 mm). |
|
| [77] |
LAB & yeast fermentation | Finger millet flour with water was autoclaved at 121 °C for 15 min, inoculated and fermented for 12, 24, and 36 h, and oven dried at 50 °C. |
|
| [6] |
LAB & yeast fermentation | Foxtail millet flour with water autoclaved at 121 °C for 30 min, inoculated and fermented for 12, 24, and 36 h, and overnight dried at 50 °C. |
|
| [48] |
Malting | Finger millet was steeped for 12–16 h, germinated for 24–36 h, shade dried (35 and 48 °C for 48 h), milled, and malted. |
|
| [78] |
Soaking | Finger millet soaked at temperatures of 30, 40, and 50 °C between 0 and 24 h durations. Soaked sample dried at 50 °C and milled with 100 µm sieve. |
|
| [79] |
Steeping, fermentation, germination, and combination treatment. | Pearl and finger millet steeped in water (28 °C for 16 h), dried, fermented for 72 h, germinated for 12 h, try dried at 55 °C, and hammer milled. |
|
| [80] |
Soaking, germination and fermentation and combination treatment. | Proso millets soaked (12 h), germinated (48 h), fermented (20 h), and combination treatment of all three methods. |
|
| [81] |
Traditional fermentation | Pearl and finger millets soaked for 4 h, course grinded, and sieved (0.25 mm). Flour was added to boiling water and cooked, cooled, and dumplings were formed. Dumplings were mixed with water or cured and fermented overnight. |
|
| [55] |
Fermentation | Foxtail millet fermented (0 to 48 h) using lactic acid bacteria (LAB) extracted from fermented cabbage. Fermented grains were dried, disc milled, and sieved (100 mesh size). |
|
| [82] |
Steeping, fermentation, and germination | Sorghum subject in steeped for 16 h, dried. Natural fermentation: steeping for 72 h and drying. Germination: steeping for 12 h, sprouted in muslin cloth for 3 days at 30 °C. All grains dried at 55 °C for 8 h to final moisture of 8% before milling in hammer mill. |
|
| [83] |
Germination | Foxtail and proso millet soaked for 15 h, germinated at 24 °C for 4 days. Later, freeze drying and milling and sieving (250 µm). |
|
| [84] |
Germination | Finger and pearl millet germinated for 48 h at 35 °C, dried at 40 °C, milled, and sieved (100 µm) to produce flour. |
|
| [50] |
Decortication and polishing | Foxtail and proso millets dehusked in centrifugal sheller and debranned in cone polisher. |
|
| [38] |
Milling/refining | Pearl millet whole flour, refined, and bran fraction |
|
| [85] |
Germination | Finger millet germinated for 12, 24, 48, 72, ands 96 h |
|
| [40] |
Germination | Foxtail germinated for 19.5 h up to 46.45 h at various soaking time, ranging from 5.27 to 18.73 h, and germination temperature ranging from 13.18 to 46.8 h. |
|
| [86] |
Germination & popping | Finger millet germinated for 48 h and popped. |
|
| [87] |
Soaking, germination, & fermentation. | Foxtail millets soaked for 12 h, germinated for 12 h, fermented for 20 h at 38 °C. |
|
| [26] |
Fermentation | Millet matrix was prepared with kodo and proso millet flour + acid whey (variable composition 0-100% v/v) and homogenized for 3 min. |
|
| [88] |
Ultrasound assisted sprouting | Sorghum grains sonicated at various amplitudes and times (40% for 5 min, 60% for 5 min, 40% for 10 min, 60% for 10 min) at 35 °C with pulsed on:5 s and pulsed-off 10 s. Treated grains germinated on paper towel for 48 h at 25 °C. |
|
| [89] |
Milling | Proso, Pearl |
|
| [85,90] |
Germination | Foxtail |
|
| [86,91] |
Germination | Foxtail |
|
| [59] |
Germination | Pearl Variety: Kalukombu (K) and Maharashtra Rabi Bajra (MRB) |
|
| [85,92] |
Germination | Kodo |
|
| [93] |
Malting | Pearl |
|
| [94] |
Fermentation | Pearl Var; Sosart-1 |
|
| [95] |
Fermentation | Proso, Kodo |
|
| [96] |
Processing Method | Processing Conditions | Results and Important Observations * | Inference | References |
---|---|---|---|---|
Microwave treatment | Kodo millets were treated at 360, 540, 720 W for 150, 210, and 270 s in domestic microwave oven (2450 MHz). |
|
| [97] |
Parboiling, decortication. | Pearl and proso millets were parboiled as follows: soaking for 12 h at 30 °C, boiled at 100 °C for 5 min, and dried for 24–48 h until final moisture of 11–13%. Decortication using abrasive mill at 1400 rpm for 2 min to remove pericarp and germ. |
|
| [98] |
Roasting and fermentation. | Finger millet rinsed in water, dried, and roasted on open pan for 10–15 min. Fermentation: millet was soaked under covered sack and fermented for 24 h and sun dried. |
|
| [99] |
Parboiling, and decortication. | Pearl millets were processed as follows: soaked for 4 h with increasing temperature (60, 70, and 80 °C), cooled, sun dried for 1 h, steamed again using parboiling system for 15 min, sun drying (1 h) until 10–12% final moisture, milling in abrasive disc huller with residence time of 3 min to decorticate grains. |
|
| [100] |
Roasting and grinding | Finger millet roasted and grinded in a home blender (conditions unspecified). |
|
| [101] |
Microwave and steam treatments | Pearl millets subjected to microwave (40, 60, 80, and 100 s) and soaked grains (65 °C for 2 h), steaming under pressure (4, 6, 8, and 10 min) treatments. |
|
| [102] |
Roasting, steaming, puffing, and extrusion. | Boomcorn millet: Dehulled to remove 98% hull. Roasting: 110 °C for 10 min after soaking for 6 h and milled (200 µm sieve). Steaming: 110 °C for 10 min, oven dried at 50 °C, and milled. Puffing: 110 °C at 1 MPa and milled. Extrusion: Twins screw extruder, feed rate (30 g/min), 150 rpm, 110 °C with 80–100 bar pressure. Oven drying of extruded samples at 50 °C, milled. |
|
| [103] |
Microwave processing of sprouted grains | Sorghum grains soaked overnight, microwave treated at 450 W for 15–30 s, and 700 W for 15–30 s, and germinated at 25C for 48 h. |
|
| [104] |
Hydrothermal, microwave, and infrared treatments. | Pearl millet flour (0.3 mm) sieved and microwave treated (MW) (750 W for 90 s). Millet flour was treated with infrared (IR) radiation with 150 W, 0.7–1 µm wavelength at 70–80 °C for 5 min. Hydrothermal treatment (HT) was done soaking millet grains for 1 h, milled to paste, and steam treated in a cloth at 100 °C for 5 min, later incubated and dried overnight at 50 °C and milled into flour. |
|
| [24] |
Roasting | Barnyard millets roasted at 70–80 °C for 6–7 min. |
|
| [51] |
Dehulling, roasting, cooking. | Barnyard millet dehulled in mortar, roasted till golden brown, and boiled in water until cooked. (Unspecified conditions). |
|
| [105] |
Steaming, pressure cooking, dry roasting, open boiling. | Finger millets were used to develop various products with different processes Roasting on hot pan for 10 min (Unfermented bread/rotti), steaming for 15 min (pittu), pressure cooking for 15 min (halape), and open boiling for 25 min (thalapa-thin porridge). Grains were dehulled (rice polisher) and ground (0.038 mm), then boiled for 20 min to prepare thin porridge. |
|
| [92] |
Hydrothermal treatment and milling | Finger millet soaked (10 h) at 30 °C, steamed (98 kPa for 20 min), and try dried (39 °C till 13% moisture content). Milling at variable roller speed (1000, 1200, and 1400 rpm), residence time (10, 12, and 14 min), and dispersed density * 430, 490, 560 kg·m3). |
|
| [106] |
Germination and roasting | Jirani millet germinated (24–72 h) and roasted at 112.5–120C for 15–21 min. |
|
| [107] |
Blanching | Pearl millet blanched in boiling water at 98 °C for 30 °C and dried at 50 °C for 60 min. |
|
| [49] |
Cooking, fermentation, and Baking | Foxtail and barnyard millet moistened (10%), hand pounded to dehull, and dried. Cooking: soaking (3, 6, and 12 h) and cooking (19, 22, and 25 min). Fermentation: dehulled grains soaked for 10 h at 28C, wet grinded, and fermented overnight. Baking: millet flour mixed with other ingredients, baked at 180 °C for 25–30 min. |
|
| [108] |
Baking | Germinated finger millet (GFM) and germinated bambara ground nut (GBGN) composite flour used in 100:0, 90:10, 80:20, 70:30, and 60:40 ratios baked at 180 °C for 20 min. |
|
| [109] |
Roasting and germination | White finger millets pan roasted (120 °C for 5 min) and germinated (30 °C for 48 h). Dried and milled with sieve size < 250 µm. |
|
| [110] |
Extrusion | Finger millet flour with 20% moisture extruded at 110 °C and 350 rpm to develop composite bread. |
|
| [111] |
Extrusion | Proso millet extruded at various moisture (17–25%), screw speed (170–250 rpm), and temperature (90–150 °C) |
|
| [112] |
Cooking | Pearl |
|
| [113] |
Processing Method | Processing Conditions | Results and Important Observations * | Inference | References |
---|---|---|---|---|
γ-Irradiation | Finger millet slurry (CO-14 and CO-15 varieties) γ-radiation source: cobalt-60 Dose: 2.5, 5, 7.5, and 10 kGy Dosage rate: 2.5 kGy/h |
|
| [114] |
γ-Irradiation Electron beam Infrared Radiation | Sorghum grains γ-Irradiation: Co60 at 10, 20 and 30 kGy doses. Electron beam: Rhodotron accelerator model TT 200 at 10, 20 and 30 kGy doses. Infrared Radiation: 1000 W IR at time intervals of 60, 90 and 120 s. |
|
| [115] |
Ozone | Foxtail millet Ozone dose: 0.06 L/min Treatment time: 15, 30, 45 and 60 min |
|
| [116] |
Ozone | Red sorghum flour Ozone dose: 32.0, 38.0, 44.0 and 50.0 g/kg |
|
| [117] |
Atmospheric Cold Plasma (ACP) | Pearl millet Power level: 20 kV; 25 kV; 30 kV Treatment time: 10 min, 15 min; 20 min |
|
| [118] |
Cold plasma | Foxtail millet Power level: 1 kV, 2 kV Treatment time: 1, 3, 5 min |
|
| [119] |
Cold plasma | Pearl millet; Barnyard millet Power: 2 kV Treatment time: 5 min |
|
| [120] |
Multipin atmospheric cold plasma (MACP) | Barnyard millet flour Power: 10, 20, 30 kV Treatment time: 10 min, 20 min, 30 min |
|
| [121] |
High pressure | Foxtail millet germinated and non-germinated Pressure: 200, 400 and 600 MPa Temperature: 20, 40, 60 and 80 °C Treatment time: 30, 60, 90 and 120 min |
|
| [59] |
Ultrasound | Sorghum Amplitude: 40%; 60% Duration: 5 min; 10 min. Frequency: 20 kHz, Power: 750 W Pulsed on/pulsed off time: 5 and 10 s. Temperature (constant): 35 °C |
|
| [89] |
Ultrasound | Kodo millet flour; Little millet flour Ultrasonication time: 10–30 min Germination time: 12–72 h Temperature: 20–40 °C |
|
| [34] |
Ultrasound | Finger millet Ultrasound amplitude: 30–70% Pulse on/off time: 5 s Treatment/hydration time: 10–30 min |
|
| [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bheemaiah Balyatanda, S.; Gowda, N.A.N.; Subbiah, J.; Chakraborty, S.; Prasad, P.V.V.; Siliveru, K. Physiochemical, Bio, Thermal, and Non-Thermal Processing of Major and Minor Millets: A Comprehensive Review on Antinutritional and Antioxidant Properties. Foods 2024, 13, 3684. https://doi.org/10.3390/foods13223684
Bheemaiah Balyatanda S, Gowda NAN, Subbiah J, Chakraborty S, Prasad PVV, Siliveru K. Physiochemical, Bio, Thermal, and Non-Thermal Processing of Major and Minor Millets: A Comprehensive Review on Antinutritional and Antioxidant Properties. Foods. 2024; 13(22):3684. https://doi.org/10.3390/foods13223684
Chicago/Turabian StyleBheemaiah Balyatanda, Suhan, N. A. Nanje Gowda, Jeyamkondan Subbiah, Snehasis Chakraborty, P. V. Vara Prasad, and Kaliramesh Siliveru. 2024. "Physiochemical, Bio, Thermal, and Non-Thermal Processing of Major and Minor Millets: A Comprehensive Review on Antinutritional and Antioxidant Properties" Foods 13, no. 22: 3684. https://doi.org/10.3390/foods13223684
APA StyleBheemaiah Balyatanda, S., Gowda, N. A. N., Subbiah, J., Chakraborty, S., Prasad, P. V. V., & Siliveru, K. (2024). Physiochemical, Bio, Thermal, and Non-Thermal Processing of Major and Minor Millets: A Comprehensive Review on Antinutritional and Antioxidant Properties. Foods, 13(22), 3684. https://doi.org/10.3390/foods13223684