A Combined Impact of Low-Voltage Electrostatic Field and Essential Oil on the Postharvest Properties of Chili Pepper: Insights into Related Molecular Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Assay Kits
2.2. Sample Collection, Treatment and Grouping
2.3. Determination of Physicochemical Properties of Chili Pepper
2.4. Determination of the Antioxidant Capacities of Chili Pepper
2.5. Quantification of Cell Wall Polysaccharides in the Chili Pepper Fruit
2.6. Determination of the Enzyme Activities Related to Polysaccharide Metabolism
2.7. Quantification of Chlorophyll Constitutes in the Postharvest Chili Pepper
2.8. Determination of the Enzyme Activities Related to Chlorophyll Metabolism
2.9. Data Processing and Statistics
3. Results and Discussion
3.1. Effect of Different Treatments on the Physicochemical Properties of Postharvest Chili Pepper
3.2. Effect of Different Treatments on the Antioxidant Capacities of Postharvest Chili Pepper
3.3. Effect of Different Treatments on the Cell Wall Polysaccharides Composition of Stored Chili Pepper
3.3.1. Protopectin, Water-Soluble Pectin, Chelate-Soluble Pectin Content and Sodium Carbonate-Soluble Pectin Contents
3.3.2. Cellulose and Hemicellulose Contents
3.3.3. Polygalacturonase, Pectin Methylesterase, β-Glucosidase, and Cellulase Activities
3.4. Effect of Different Treatments on the Chlorophyll Degradation of Stored Chili Pepper
3.4.1. Content of Chlorophyll Fractions
3.4.2. Chlorophyllase, Pheophytinase, and Mg-Dechelatase
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, F.; Fu, M.; Li, J.; Yang, X.; Chen, Q.; Tian, S. Chlorine dioxide delays the reddening of postharvest green peppers by affecting the chlorophyll degradation and carotenoid synthesis pathways. Postharvest Biol. Technol. 2019, 156, 110939. [Google Scholar] [CrossRef]
- Du, Y.; Jin, T.; Zhao, H.; Han, C.; Sun, F.; Chen, Q.; Yue, F.; Luo, Z.; Fu, M. Synergistic inhibitory effect of 1-methylcyclopropene (1-MCP) and chlorine dioxide (ClO2) treatment on chlorophyll degradation of green pepper fruit during storage. Postharvest Biol. Technol. 2021, 171, 111363. [Google Scholar] [CrossRef]
- Mi, S.; Li, T.; Shi, Q.; Zhu, W.; Wang, X. Cold shock precooling improves the firmness of chili pepper during postharvest storage and the molecular mechanisms related to pectin. Food Chem. 2023, 419, 136052. [Google Scholar] [CrossRef] [PubMed]
- Mi, S.; Li, T.; Sang, Y.; Wang, X.; Duan, Y. Effect of cold shock precooling on the physicochemical, physiological properties and volatile profiles of chili peppers during postharvest storage. LWT Food Sci. Technol. 2023, 187, 115300. [Google Scholar] [CrossRef]
- Hu, F.; Qian, S.; Huang, F.; Han, D.; Li, X.; Zhang, C. Combined impacts of low voltage electrostatic field and high humidity assisted-thawing on quality of pork steaks. LWT Food Sci. Technol. 2021, 150, 111987. [Google Scholar] [CrossRef]
- Cheng, R.; Li, W.; Wang, Y.; Cheng, F.; Wu, H.; Sun, Y. Low voltage electrostatic field treatment of fresh-cut pineapples with slightly acidic electrolytic water: Influence on physicochemical changes and membrane stability. Sci. Hortic. 2023, 308, 111602. [Google Scholar] [CrossRef]
- Liu, F.; Xu, Y.; Zeng, M.; Zhang, Y.; Pan, L.; Wang, J.; Huang, S. A novel physical hurdle technology by combining low voltage electrostatic field and modified atmosphere packaging for long-term stored button mushrooms (Agaricus bisporus). Innov. Food Sci. Emerg. 2023, 90, 103514. [Google Scholar] [CrossRef]
- Taheri, A.; Behnamian, M.; Dezhsetan, S.; Karimirad, R. Shelf life extension of bell pepper by application of chitosan nanoparticles containing Heracleum persicum fruit essential oil. Postharvest Biol. Technol. 2020, 170, 111313. [Google Scholar] [CrossRef]
- Ali, S.; Anjum, M.A.; Ejaz, S.; Hussain, S.; Ercisli, S.; Saleem, M.S.; Sardar, H. Carboxymethyl cellulose coating delays chilling injury development and maintains eating quality of ‘Kinnow’ mandarin fruits during low temperature storage. Int. J. Biol. Macromol. 2021, 168, 77–85. [Google Scholar] [CrossRef]
- Yan, R.; Kebbeh, M.; Cheng, Y.; Wang, Y.; Liu, Y.; Huan, C.; Zheng, X. Exogenous melatonin delays yellowing in broccoli based on hormone, nitrogen and sucrose metabolism regulation during postharvest. Sci. Hortic. 2023, 314, 111944. [Google Scholar] [CrossRef]
- Liu, M.; Hu, L.; Deng, N.; Cai, Y.; Li, H.; Zhang, B.; Wang, J. Effects of different hot-air drying methods on the dynamic changes in color, nutrient and aroma quality of three chili pepper (Capsicum annuum L.) varieties. Food Chem. X 2024, 22, 101262. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhang, X.; Liang, J.; Fu, Y.; Wang, J.; Jiang, M.; Pan, L. Cell wall and reactive oxygen metabolism responses of strawberry fruit during storage to low voltage electrostatic field treatment. Postharvest Biol. Technol. 2022, 192, 112017. [Google Scholar] [CrossRef]
- Suathong, W.; Ongkunaruk, P.; Trevanich, S. The shelf life and quality of green pea (Pisum sativum) sprouts during storage at different refrigerated temperatures and durations of indirect-sunlight exposure. Postharvest Biol. Technol. 2024, 207, 112590. [Google Scholar] [CrossRef]
- Shi, Z.; Yang, H.; Jiao, J.; Wang, F.; Lu, Y.; Deng, J. Effects of graft copolymer of chitosan and salicylic acid on reducing rot of postharvest fruit and retarding cell wall degradation in grapefruit during storage. Food Chem. 2019, 283, 92–100. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, F.; Ji, S.; Dai, H.; Zhou, X.; Wei, B.; Cheng, S.; Wang, A. Abscisic acid accelerates postharvest blueberry fruit softening by promoting cell wall metabolism. Sci. Hortic. 2021, 288, 110325. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, L.; Liu, J.; Yu, K.; Yu, W.; Jiang, H.; Zhong, J.; Zou, L.; Liu, W. Effect of sustained-release tea tree essential oil solid preservative on fresh-cut pineapple storage quality in modified atmospheres packaging. Food Chem. 2023, 417, 135898. [Google Scholar] [CrossRef]
- Guan, Y.; Ji, Y.; Yang, X.; Pang, L.; Cheng, J.; Lu, X.; Zheng, J.; Yin, L.; Hu, W. Antioxidant activity and microbial safety of fresh-cut red cabbage stored in different packaging films. LWT Food Sci. Technol. 2023, 175, 114478. [Google Scholar] [CrossRef]
- Jia, L.; Li, Y.; Liu, G.; He, J. UV-C delays senescence in ‘Lingwu long’ jujube fruit by regulating ROS and phenylpropanoid metabolism. Plant Physiol. Biochem. 2023, 194, 383–393. [Google Scholar] [CrossRef]
- Chaudhari, A.K.; Das, S.; Singh, B.K.; Dubey, N.K. Green facile synthesis of cajuput (Melaleuca cajuputi Powell.) essential oil loaded chitosan film and evaluation of its effectiveness on shelf-life extension of white button mushroom. Food Chem. 2023, 401, 134114. [Google Scholar] [CrossRef]
- Das, S.; Chaudhari, A.K.; Singh, V.K.; Dwivedy, A.K.; Dubey, N.K. Angelica archangelica essential oil loaded chitosan nanoemulsion as edible coating for preservation of table grape fruit against Botrytis cinerea contamination and storage quality deterioration. Postharvest Biol. Technol. 2023, 205, 112482. [Google Scholar] [CrossRef]
- Shahin, L.; Zhang, L.; Mohnen, D.; Urbanowicz, B.R. Insights into pectin O-acetylation in the plant cell wall: Structure, synthesis, and modification. Cell Surface 2023, 9, 100099. [Google Scholar] [CrossRef]
- Yang, W.; Liu, Y.; Sang, Y.; Ma, Y.; Guo, M.; Bai, G.; Cheng, S.; Chen, G. Influences of ice-temperature storage on cell wall metabolism and reactive oxygen metabolism in Xinjiang (Diaogan) apricot. Postharvest Biol. Technol. 2021, 180, 111614. [Google Scholar] [CrossRef]
- Peng, X.; Dong, C.; Zhang, N.; Zheng, P.; Bai, Y.; Ji, H.; Yu, J.; Ban, Z.; Chen, C.; Hu, Y. Effect of ozone treatment on the decay and cell wall metabolism during the postharvest storage of cantaloupe. Sci. Hortic. 2024, 331, 113119. [Google Scholar] [CrossRef]
- Fan, X.; Jiang, W.; Gong, H.; Yang, Y.; Zhang, A.; Liu, H.; Cao, J.; Guo, F.; Cui, K. Cell wall polysaccharides degradation and ultrastructure modification of apricot during storage at a near freezing temperature. Food Chem. 2019, 300, 125194. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Pan, Y. Reduced degradation of the cell wall polysaccharides maintains higher tissue integrity of papaya (Carica papaya L.) during chilling storage. Postharvest Biol. Technol. 2023, 204, 112446. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, X.; Hou, Y.; Wang, X.; Li, X. Effects of nitric oxide fumigation treatment on retarding cell wall degradation and delaying softening of winter jujube (Ziziphus jujuba Mill. cv. Dongzao) fruit during storage. Postharvest Biol. Technol. 2019, 156, 110954. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, S.; Lin, H.; Lu, W.; Wang, H.; Chen, Y.; Lin, Y.; Fang, Z. The role of cell wall polysaccharides disassembly in Lasiodiplodia theobromae-induced disease occurrence and softening of fresh longan fruit. Food Chem. 2021, 351, 129294. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, J.; Xu, H.; Tian, L.; Liu, D. Exploring the mechanism of Lycium barbarum fruit cell wall polysaccharide remodeling reveals potential pectin accumulation contributors. Int. J. Biol. Macromol. 2024, 258, 128958. [Google Scholar] [CrossRef]
- Li, Y.; He, H.; Hou, Y.; Kelimu, A.; Wu, F.; Zhao, Y.; Shi, L.; Zhu, X. Salicylic acid treatment delays apricot (Prunus armeniaca L.) fruit softening by inhibiting ethylene biosynthesis and cell wall degradation. Sci. Hortic. 2022, 300, 111061. [Google Scholar] [CrossRef]
- Ji, Y.; Hu, W.; Liao, J.; Xiu, Z.; Jiang, A.; Guan, Y.; Yang, X.; Feng, K. Ethanol vapor delays softening of postharvest blueberry by retarding cell wall degradation during cold storage and shelf life. Postharvest Biol. Technol. 2021, 177, 111538. [Google Scholar] [CrossRef]
- Wang, H.; Ou, L.; Chen, T.; Kuan, Y. Refrigeration, forchlorfenuron, and gibberellic acid treatments differentially regulate chlorophyll catabolic pathway to delay yellowing of broccoli. Postharvest Biol. Technol. 2023, 197, 112221. [Google Scholar] [CrossRef]
- Janhom, N.; Whangchai, K. Ozone fumigation promotes antioxidant activities to retard chlorophyll degradation and cell death in ‘Jinda’ chili during storage. Postharvest Biol. Technol. 2023, 202, 112375. [Google Scholar] [CrossRef]
- Torales, A.C.; Gutiérrez, D.R.; Rodríguez, S.C. Influence of passive and active modified atmosphere packaging on yellowing and chlorophyll degrading enzymes activity in fresh-cut rocket leaves. Food Packag. Shelf Life 2020, 26, 100569. [Google Scholar] [CrossRef]
Firmness vs. PP Content | Firmness vs. WSP Content | Firmness vs. CSP Content | Firmness vs. SSP Content | Firmness vs. CL Content | Firmness vs. HCL Content | Firmness vs. PG Activity | Firmness vs. PME Activity | Firmness vs. β-Glu Activity | Firmness vs. Cx Activity | |
---|---|---|---|---|---|---|---|---|---|---|
Pearson r | 0.89 | −0.89 | 0.68 | 0.78 | 0.64 | 0.69 | −0.71 | −0.75 | −0.76 | −0.65 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
PG Activity vs. PP Content | PG Activity vs. WSP Content | PG Activity vs. CSP Content | PG Activity vs. SSP Content | PG Activity vs. CL Content | PG Activity vs. HCL Content | |
---|---|---|---|---|---|---|
Pearson r | −0.78 | 0.68 | −0.73 | −0.82 | −0.80 | −0.61 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
PME Activity vs. PP Content | PME Activity vs. WSP Content | PME Activity vs. CSP Content | PME Activity vs. SSP Content | PME Activity vs. CL Content | PME Activity vs. HCL Content | |
---|---|---|---|---|---|---|
Pearson r | −0.72 | 0.75 | −0.68 | −0.74 | −0.68 | −0.69 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.004 |
β-Glu Activity vs. PP Content | β-Glu Activity vs. WSP Content | β-Glu Activity vs. CSP Content | β-Glu Activity vs. SSP Content | β-Glu Activity vs. CL Content | β-Glu Activity vs. HCL Content | |
---|---|---|---|---|---|---|
Pearson r | −0.85 | 0.78 | −0.78 | −0.89 | −0.84 | −0.69 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.004 |
Cx Activity vs. PP Content | Cx Activity vs. WSP Content | Cx Activity vs. CSP Content | Cx Activity vs. SSP Content | Cx Activity vs. CL Content | Cx Activity vs. HCL Content | |
---|---|---|---|---|---|---|
Pearson r | −0.77 | 0.73 | −0.76 | −0.83 | −0.69 | −0.45 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.004 |
CLH Activity vs. L* Value | CLH Activity vs. a* Value | CLH Activity vs. b* Value | CLH Activity vs. Chlorophyll a Content | CLH Activity vs. Chlorophyll b Content | CLH Activity vs. Total Chlorophyll Content | |
---|---|---|---|---|---|---|
Pearson r | 0.74 | 0.71 | 0.68 | −0.74 | −0.51 | −0.78 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.001 | <0.0001 |
PPH Activity vs. L* Value | PPH Activity vs. a* Value | PPH Activity vs. b* Value | PPH Activity vs. Chlorophyll a Content | PPH Activity vs. Chlorophyll b Content | PPH Activity vs. Total Chlorophyll Content | |
---|---|---|---|---|---|---|
Pearson r | 0.63 | 0.62 | 0.59 | −0.76 | −0.51 | −0.80 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.001 | <0.0001 |
MDcase Activity vs. L* Value | MDcase Activity vs. a* Value | MDcase Activity vs. b* Value | MDcase Activity vs. Chlorophyll a Content | MDcase Activity vs. Chlorophyll b Content | MDcase Activity vs. Total Chlorophyll Content | |
---|---|---|---|---|---|---|
Pearson r | 0.64 | 0.71 | 0.48 | −0.61 | −0.44 | −0.65 |
p-value | <0.0001 | <0.0001 | 0.002 | <0.0001 | 0.005 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Liu, W.; Zhang, L.; Wang, X.; Mi, S. A Combined Impact of Low-Voltage Electrostatic Field and Essential Oil on the Postharvest Properties of Chili Pepper: Insights into Related Molecular Mechanisms. Foods 2024, 13, 3686. https://doi.org/10.3390/foods13223686
Guo X, Liu W, Zhang L, Wang X, Mi S. A Combined Impact of Low-Voltage Electrostatic Field and Essential Oil on the Postharvest Properties of Chili Pepper: Insights into Related Molecular Mechanisms. Foods. 2024; 13(22):3686. https://doi.org/10.3390/foods13223686
Chicago/Turabian StyleGuo, Xiaoqian, Weihua Liu, Liyong Zhang, Xianghong Wang, and Si Mi. 2024. "A Combined Impact of Low-Voltage Electrostatic Field and Essential Oil on the Postharvest Properties of Chili Pepper: Insights into Related Molecular Mechanisms" Foods 13, no. 22: 3686. https://doi.org/10.3390/foods13223686
APA StyleGuo, X., Liu, W., Zhang, L., Wang, X., & Mi, S. (2024). A Combined Impact of Low-Voltage Electrostatic Field and Essential Oil on the Postharvest Properties of Chili Pepper: Insights into Related Molecular Mechanisms. Foods, 13(22), 3686. https://doi.org/10.3390/foods13223686