Methods for Detection, Extraction, Purification, and Characterization of Exopolysaccharides of Lactic Acid Bacteria—A Systematic Review
Abstract
:1. Introduction
2. Production of Exopolysaccharides
2.1. Metabolic Engineering
2.2. Co-Culture
2.3. Optimization of Culture Conditions
2.4. Abiotic Stress
3. Detection of Exopolysaccharide-Producing LAB Strains
3.1. Colony Morphological Analysis of EPS-Producing Cells
3.2. Colorimetric Assay for EPS-Producing LAB Strains
3.2.1. Congo Red Agar
3.2.2. Ruthenium Red Agar Method
3.3. Microscopic Visualization of EPS-Producing Cells
3.3.1. Light Microscopy
3.3.2. Scanning Electron Microscopy
4. Methods for Extraction of EPS
4.1. Precipitation
4.2. Ultrafiltration
5. Methods for Purification of EPS
5.1. Dialysis
5.2. Anion Exchange Chromatography
5.3. Size-Exclusion Chromatography or Gel-Filtration Chromatography
6. Methods for Quantification of EPS
6.1. Colorimetric Methods
6.1.1. Phenol-Sulfuric Acid Method
6.1.2. Anthrone-Sulfuric Acid Method
6.2. Chromatographic Methods
6.3. Microscopic Methods
6.4. Near-Infrared Spectroscopy
7. Methods for Characterization of EPS
7.1. Analysis of Purity of EPS
7.2. Analysis of the Structure of EPS
7.2.1. Congo Red Test
7.2.2. Fourier Transform Infrared (FT-IR) Spectroscopy
7.2.3. Nuclear Magnetic Resonance (NMR) Spectroscopy
7.2.4. X-Ray Diffraction (XRD) Spectroscopy
7.3. Analysis of Molecular Weight of EPS
7.4. Analysis of Monosaccharides Composition of EPSs
7.4.1. TLC or HPTLC
7.4.2. HPLC
7.4.3. High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD)
7.4.4. Gas Chromatography (GC)
7.4.5. Gas Chromatography-Mass Spectrometry (GC-MS)
7.4.6. Polarimetry
7.5. Analysis of Morphological Characteristics
7.5.1. Atomic Force Microscope (AFM)
7.5.2. Scanning Electron Microscope (SEM)
7.6. Analysis of the Elemental Composition
7.7. Analysis of Thermal Characteristics of EPS
7.8. Analysis of Zeta Potential and Particle Size of EPS
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, W.; Dong, M.; Wang, W.; Han, S.; Rui, X.; Chen, X.; Jiang, M.; Zhang, Q.; Wu, J.; Li, W. Structural characterization and antioxidant property of released exopolysaccharides from Lactobacillus delbrueckii ssp. bulgaricus SRFM-1. Carbohydr. Polym. 2017, 173, 654–664. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Wang, Y.; Han, Y.; Zhang, Y.; Cao, T.; Huo, G.; Li, B. Genome analysis of Bifidobacterium Bifidum E3, structural characteristics, and antioxidant properties of exopolysaccharides. Foods 2023, 12, 2988. [Google Scholar] [CrossRef] [PubMed]
- Asianezhad, A.; Bari, M.R.; Amiri, S. Bio-producing and characterizing biochemical and physicochemical properties of a novel antioxidant exopolysaccharide by Bacillus coagulans IBRC-M 10807. J. Polym. Environ. 2023, 31, 4338–4352. [Google Scholar] [CrossRef]
- Sutherland, I.W. Bacterial exopolysaccharides. Adv. Microb. Physiol. 1972, 8, 143–213. [Google Scholar]
- Tiwari, O.N.; Sasmal, S.; Kataria, A.K.; Devi, I. Application of microbial extracellular carbohydrate polymeric substances in food and allied industries. 3 Biotech 2020, 10, 221. [Google Scholar] [CrossRef]
- Cirrincione, S.; Breuer, Y.; Mangiapane, E.; Mazzoli, R.; Pessione, E. “Ropy” phenotype, exopolysaccharides and metabolism: Study on food isolated potential probiotics LAB. Microbiol. Res. 2018, 214, 137–145. [Google Scholar] [CrossRef]
- Angelin, J.; Kavitha, M. Exopolysaccharides from probiotic bacteria and their health potential. Int. J. Biol. Macromol. 2020, 162, 853–865. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, S.; Liang, S.; Xiang, F.; Wang, X.; Lian, H.; Li, B.; Liu, F. Exopolysaccharides of lactic acid bacteria: Structure, biological activity, structure-activity relationship, and application in the food industry: A review. Int. J. Biol. Macromol. 2024, 257, 128733. [Google Scholar] [CrossRef]
- Al-Nabulsi, A.A.; Jaradat, Z.W.; Al Qudsi, F.R.; Elsalem, L.; Osaili, T.M.; Olaimat, A.N.; Esposito, G.; Liu, S.Q.; Ayyash, M.M. Characterization and bioactive properties of exopolysaccharides produced by Streptococcus hermophiles and Lactobacillus bulgaricus isolated from labaneh. LWT Food Sci. Technol. 2022, 167, 113817. [Google Scholar] [CrossRef]
- Yu, L.; Ye, G.; Qi, X.; Yang, Y.; Zhou, B.; Zhang, Y.; Du, R.; Ge, J.; Ping, W. Purification, characterization and probiotic proliferation effect of exopolysaccharides produced by Lactiplantibacillus plantarum HDC-01 isolated from sauerkraut. Front. Microbiol. 2023, 14, 1210302. [Google Scholar] [CrossRef]
- Giordani, B.; Naldi, M.; Croatti, V.; Parolin, C.; Erdoğan, Ü.; Bartolini, M.; Vitali, B. Exopolysaccharides from vaginal lactobacilli modulate microbial biofilms. Microb. Cell Fact. 2023, 22, 45. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Vargas, C.C.; Cordero-Soto, I.N.; Flores-Maciel, H.A.; Lara-Ceniceros, T.E.; Gallegos-Infante, A.; González-Herrera, S.M.; Ochoa-Martínez, L.A.; Rutiaga-Quiñones, O.M. Bioproduction of exopolysaccharides by lactic acid bacteria using agave by-products. Process Biochem. 2024, 146, 234–240. [Google Scholar] [CrossRef]
- Sasikumar, K.; Kozhummal Vaikkath, D.; Devendra, L.; Nampoothiri, K.M. An exopolysaccharide (EPS) from a Lactobacillus plantarum BR2 with potential benefits for making functional foods. Bioresour. Technol. 2017, 241, 1152–1156. [Google Scholar] [CrossRef] [PubMed]
- Kavitake, D.; Devi, P.B.; Delattre, C.; Reddy, G.B.; Shetty, P.H. Exopolysaccharides produced by Enterococcus genus-An overview. Int. J. Biol. Macromol. 2023, 226, 111–120. [Google Scholar] [CrossRef]
- Jurášková, D.; Ribeiro, S.C.; Silva, C.C.G. Exopolysaccharides produced by lactic acid bacteria: From biosynthesis to health-promoting properties. Foods 2022, 11, 156. [Google Scholar] [CrossRef]
- Zaghloul, E.H.; Ibrahim, M.I.A. Production and characterization of exopolysaccharide from newly isolated marine probiotic Lactiplantibacillus plantarum EI6 with in vitro wound healing activity. Front. Microbiol. 2022, 13, 903363. [Google Scholar] [CrossRef]
- Bachtarzi, N.; Speciale, I.; Kharroub, K.; De Castro, C.; Ruiz, L.; Ruas-Madiedo, P. Selection of exopolysaccharide-producing Lactobacillus plantarum (Lactiplantibacillus plantarum) isolated from Algerian fermented foods for the manufacture of skim-milk fermented products. Microorganisms 2020, 8, 1101. [Google Scholar] [CrossRef]
- Murugu, J.; Narayanan, R. Production, purification, and characterization of a novel exopolysaccharide from probiotic Lactobacillus amylovorus: MTCC 8129. Indian J. Microbiol. 2024, 64, 1355–1365. [Google Scholar] [CrossRef]
- Kang, Y.J.; Kim, T.J.; Kim, M.J.; Yoo, J.Y.; Kim, J.H. Isolation of exopolysaccharide-producing lactic acid bacteria from pa-kimchi and characterization of exopolysaccharides. Microbiol. Biotechnol. Lett. 2023, 51, 157–166. [Google Scholar] [CrossRef]
- Werning, M.L.; Hernández-Alcántara, A.M.; Ruiz, M.J.; Soto, L.P.; Dueñas, M.T.; López, P.; Frizzo, L.S. Biological functions of exopolysaccharides from lactic acid bacteria and their potential benefits for humans and farmed animals. Foods 2022, 11, 1284. [Google Scholar] [CrossRef]
- Paulo, E.M.; Vasconcelos, M.P.; Oliveira, I.S.; Affe, H.M.D.J.; Nascimento, R.; Melo, I.S.D.; Roque, M.R.D.A.; Assis, S.A.D. An alternative method for screening lactic acid bacteria for the production of exopolysaccharides with rapid confirmation. Food Sci. Technol. 2012, 32, 710–714. [Google Scholar] [CrossRef]
- Lee, M.G.; Joeng, H.; Shin, J.; Kim, S.; Lee, C.; Song, Y.; Lee, B.H.; Park, H.G.; Lee, T.H.; Jiang, H.H.; et al. Potential probiotic properties of exopolysaccharide-producing Lacticaseibacillus paracasei EPS DA-BACS and prebiotic activity of its exopolysaccharide. Microorganisms 2022, 10, 2431. [Google Scholar] [CrossRef] [PubMed]
- Prete, R.; Alam, M.K.; Perpetuini, G.; Perla, C.; Pittia, P.; Corsetti, A. Lactic acid bacteria exopolysaccharides producers: A sustainable tool for functional foods. Foods 2021, 10, 1653. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, A.K.; Ayyash, M.M.; Olaimat, A.N.; Osaili, T.M.; Al-Nabulsi, A.A.; Shah, N.P.; Holley, R. Exopolysaccharides as antimicrobial agents: Mechanism and spectrum of activity. Front. Microbiol. 2021, 12, 664395. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Xu, X.; Peng, Q.; Ma, L.; Qiao, Y.; Shi, B. Exopolysaccharides from lactic acid bacteria, as an alternative to antibiotics, on regulation of intestinal health and the immune system. Anim. Nutr. 2023, 13, 78–89. [Google Scholar] [CrossRef]
- Saadat, Y.R.; Yari Khosroushahi, A.; Pourghassem Gargari, B. A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydr. Polym. 2019, 217, 79–89. [Google Scholar] [CrossRef]
- Zhou, Z.; Zeng, X.; Wu, Z.; Guo, Y.; Pan, D. Relationship of gene-structure-antioxidant ability of exopolysaccharides derived from lactic acid bacteria: A review. J. Agric. Food Chem. 2023, 71, 9187–9200. [Google Scholar] [CrossRef]
- Hugenholtz, J.; Kleerebezem, M. Metabolic engineering of lactic acid bacteria: Overview of the approaches and results of pathway rerouting involved in food fermentations. Curr. Opin. Biotechnol. 1999, 10, 492–497. [Google Scholar] [CrossRef]
- Papagianni, M. Metabolic engineering of lactic acid bacteria for the production of industrially important compounds. Comput. Struct. Biotechnol. J. 2012, 3, e201210003. [Google Scholar] [CrossRef]
- Talbi, C.; Elmarrakchy, S.; Youssfi, M.; Bouzroud, S.; Belfquih, M.; Sifou, A.; Bouhaddou, N.; Badaoui, B.; Balahbib, A.; Bouyahya, A.; et al. Bacterial exopolysaccharides: From production to functional features. Prog. Micobes. Mol. Biol. 2023, 6, a0000384. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Nguyen, T.T.; Bui, D.C.; Hong, P.T.; Hoang, Q.K.; Nguyen, H.T. Exopolysaccharide production by lactic acid bacteria: The manipulation of environmental stresses for industrial applications. AIMS Microbiol. 2020, 6, 451. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki-Yashiki, S.; Sawada, H.; Kino-Oka, M.; Katakura, Y. Analysis of gene expression profiles of Lactobacillus paracasei induced by direct contact with Saccharomyces cerevisiae through recognition of yeast mannan. Biosci. Microbiota Food Health 2017, 36, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Bertsch, A.; Roy, D.; LaPointe, G. Enhanced exopolysaccharide production by Lactobacillus rhamnosus in co-culture with Saccharomyces cerevisiae. Appl. Sci. 2019, 9, 4026. [Google Scholar] [CrossRef]
- Xu, X.; Peng, Q.; Zhang, Y.; Tian, D.; Zhang, P.; Huang, Y.; Ma, L.; Dia, V.P.; Qiao, Y.; Shi, B. Antibacterial potential of a novel Lactobacillus casei strain isolated from Chinese northeast sauerkraut and the antibiofilm activity of its exopolysaccharides. Food Funct. 2020, 11, 4697–4706. [Google Scholar] [CrossRef]
- Kusmiyati, N.; Puspitasari, Y.; Utami, U.; Denta, A.O. Analysis of exopolysaccharides in Lactobacillus casei group probiotics from human breast milk. Indones. J. Med. Lab. Technol. 2023, 5, 29–41. [Google Scholar] [CrossRef]
- Shi, T.; Aryantini, N.P.D.; Uchida, K.; Urashima, T.; Fukuda, K. Enhancement of exopolysaccharide production of Lactobacillus fermentum TDS030603 by modifying culture conditions. Biosci. Microbiota Food Health 2014, 33, 85–90. [Google Scholar] [CrossRef]
- Mıdık, F.; Tokatlı, M.; Bağder Elmacı, S.; Özçelik, F. Influence of different culture conditions on exopolysaccharide production by indigenous lactic acid bacteria isolated from pickles. Arch. Microbiol. 2020, 202, 875–885. [Google Scholar] [CrossRef]
- Angelov, A.; Georgieva, A.; Petkova, M.; Bartkiene, E.; Rocha, J.M.; Ognyanov, M.; Gotcheva, V. On the molecular selection of exopolysaccharide-producing lactic acid bacteria from Indigenous fermented plant-based foods and further fine chemical characterization. Foods 2023, 12, 3346. [Google Scholar] [CrossRef]
- Zhu, J.; Tan, Z.; Zhang, Z.; Shi, X. Characterization on structure and bioactivities of an exopolysaccharide from Lactobacillus curvatus SJTUF 62116. Int. J. Biol. Macromol. 2022, 210, 504–517. [Google Scholar] [CrossRef]
- Ge, X.; Ma, F.; Zhang, B. Effect of intense pulsed light on Lactobacillus bulgaricus exopolysaccharide yield, chemical structure and antioxidant activity. Int. J. Food Sci. Tech. 2021, 56, 865–873. [Google Scholar] [CrossRef]
- Xiao, L.; Li, Y.; Tian, J.; Zhou, J.; Xu, Q.; Feng, L.; Rui, X.; Fan, X.; Zhang, Q.; Chen, X.; et al. Influences of drying methods on the structural, physicochemical and antioxidant properties of exopolysaccharide from Lactobacillus helveticus MB2-1. Int. J. Biol. Macromol. 2020, 157, 220–231. [Google Scholar] [CrossRef]
- Sheng, S.; Fu, Y.; Pan, N.; Zhang, H.; Xiu, L.; Liang, Y.; Liu, Y.; Liu, B.; Ma, C.; Du, R.; et al. Novel exopolysaccharide derived from probiotic Lactobacillus pantheris TCP102 strain with immune-enhancing and anticancer activities. Front. Microbiol. 2022, 13, 1015270. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Sharma, N.; Handa, S.; Pathania, S. Purification and characterization of novel exopolysaccharides produced from Lactobacillus paraplantarum KM1 isolated from human milk and its cytotoxicity. J. Genet. Eng. Biotechnol. 2020, 18, 56. [Google Scholar] [CrossRef] [PubMed]
- Ziadi, M.; Bouzaiene, T.; M’Hir, S.; Zaafouri, K.; Mokhtar, F.; Hamdi, M.; Boisset-Helbert, C. Evaluation of the efficiency of ethanol precipitation and ultrafiltration on the purification and characteristics of exopolysaccharides produced by three lactic acid bacteria. BioMed Res. Int. 2018, 2018, 1896240. [Google Scholar] [CrossRef] [PubMed]
- Ayyash, M.; Abu-Jdayil, B.; Itsaranuwat, P.; Galiwango, E.; Tamiello-Rosa, C.; Abdullah, H.; Esposito, G.; Hunashal, Y.; Obaid, R.S.; Hamed, F. Characterization, bioactivities, and rheological properties of exopolysaccharide produced by novel probiotic Lactobacillus plantarum C70 isolated from camel milk. Int. J. Biol. Macromol. 2020, 144, 938–946. [Google Scholar] [CrossRef] [PubMed]
- Nachtigall, C.; Surber, G.; Wefers, D.; Vogel, C.; Rohm, H.; Jaros, D. Capsular exopolysaccharides from two Streptococcus hermophiles strains differ in their moisture sorption hermophi. Foods 2023, 12, 596. [Google Scholar] [CrossRef]
- Toschkova, S. Structural characterization of an exopolysaccharide produced by Lactobacillus plantarum Ts. Acta Sci. Nat. 2022, 9, 71–83. [Google Scholar] [CrossRef]
- Bachtarzi, N.; Gomri, M.A.; Meradji, M.; Gil-Cardoso, K.; Ortega, N.; Chomiciute, G.; Del Bas, J.M.; López, Q.; Martínez, V.; Kharroub, K. In vitro assessment of biofunctional properties of Lactiplantibacillus plantarum strain Jb21-11 and the characterization of its exopolysaccharide. Int. Microbiol. 2024, 27, 239–256. [Google Scholar] [CrossRef]
- Du, R.; Pei, F.; Kang, J.; Zhang, W.; Wang, S.; Ping, W.; Ling, H.; Ge, J. Analysis of the structure and properties of dextran produced by Weissella confusa. Int. J. Biol. Macromol. 2022, 204, 677–684. [Google Scholar] [CrossRef]
- Kavitake, D.; Veerabhadrappa, B.; Sudharshan, S.J.; Kandasamy, S.; Devi, P.B.; Dyavaiah, M.; Shetty, P.H. Oxidative stress alleviating potential of galactan exopolysaccharide from Weissella confusa KR780676 in yeast model system. Sci. Rep. 2022, 12, 1089. [Google Scholar] [CrossRef]
- Zhao, D.; Jiang, J.; Liu, L.; Wang, S.; Ping, W.; Ge, J. Characterization of exopolysaccharides produced by Weissella confusa XG-3 and their potential biotechnological applications. Int. J. Biol. Macromol. 2021, 178, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.H.; Bamigbade, G.; Tarique, M.; Esposito, G.; Obaid, R.; Abu-Jdayil, B.; Ayyash, M. Physicochemical, rheological, and bioactive properties of exopolysaccharide produced by a potential probiotic Enterococcus faecalis 84B. Int. J. Biol. Macromol. 2023, 240, 124425. [Google Scholar] [CrossRef] [PubMed]
- Zanzan, M.; Ezzaky, Y.; Achemchem, F.; Elmoslih, A.; Hamadi, F.; Hasnaoui, A.; Ali, M.A. Optimisation of thermostable exopolysaccharide production from Enterococcus mundtii A2 isolated from camel milk and its structural characterization. Int. Dairy J. 2023, 147, 105718. [Google Scholar] [CrossRef]
- Zaghloul, E.H.; Ibrahim, M.I.A.; Zaghloul, H.A.H. Antibacterial activity of exopolysaccharide produced by bee gut-resident Enterococcus sp. BE11 against marine fish pathogens. BMC Microbiol. 2023, 23, 231. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Gan, L.; Li, X.; He, J.; Zhang, S.; Chen, J.; Zhang, R.; Xu, Z.; Tian, Y. Characterization of structural and physicochemical properties of an exopolysaccharide produced by Enterococcus sp. F2 from fermented soya beans. Front. Microbiol. 2021, 12, 744007. [Google Scholar] [CrossRef]
- Rahnama Vosough, P.; Edalatian Dovom, M.R.; Habibi Najafi, M.B.; Javadmanesh, A.; Mayo, B. Biodiversity of exopolysaccharide-producing lactic acid bacteria from Iranian traditional Kishk and optimization of EPS yield by Enterococcus spp. Food Biosci. 2022, 49, 101869. [Google Scholar] [CrossRef]
- Bamigbade, G.; Ali, A.H.; Subhash, A.; Tamiello-Rosa, C.; Al Qudsi, F.R.; Esposito, G.; Hamed, F.; Liu, S.Q.; Gan, R.Y.; Abu-Jdayil, B.; et al. Structural characterization, biofunctionality, and environmental factors impacting rheological properties of exopolysaccharide produced by probiotic Lactococcus lactis C15. Sci. Rep. 2023, 13, 17888. [Google Scholar] [CrossRef]
- Li, M.; Li, W.; Li, D.; Tian, J.; Xiao, L.; Kwok, L.Y.; Li, W.; Sun, Z. Structure characterization, antioxidant capacity, rheological characteristics and expression of biosynthetic genes of exopolysaccharides produced by Lactococcus lactis subsp. lactis IMAU11823. Food Chem. 2022, 384, 132566. [Google Scholar] [CrossRef]
- Jiang, G.; He, J.; Gan, L.; Li, X.; Xu, Z.; Yang, L.; Li, R.; Tian, Y. Exopolysaccharide Produced by Pediococcus pentosaceus E8: Structure, bio-activities, and its potential application. Front. Microbiol. 2022, 13, 923522. [Google Scholar] [CrossRef]
- Ayyash, M.; Abu-Jdayil, B.; Olaimat, A.; Esposito, G.; Itsaranuwat, P.; Osaili, T.; Obaid, R.; Kizhakkayil, J.; Liu, S.Q. Physicochemical, bioactive and rheological properties of an exopolysaccharide produced by a probiotic Pediococcus pentosaceus M41. Carbohydr. Polym. 2020, 229, 115462. [Google Scholar] [CrossRef]
- Du, R.; Yu, L.; Yu, N.; Ping, W.; Song, G.; Ge, J. Characterization of exopolysaccharide produced by Levilactobacillus brevis HDE-9 and evaluation of its potential use in dairy products. Int. J. Biol. Macromol. 2022, 217, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yan, D.; Liu, Y.; Luo, X.; Li, Y.; Cao, C.; Li, M.; Han, Q.; Wang, C.; Wu, R.; et al. Purification, structural characteristics, and biological activities of exopolysaccharide isolated from Leuconostoc mesenteroides SN-8. Front. Microbiol. 2021, 12, 644226. [Google Scholar] [CrossRef] [PubMed]
- Derdak, R.; Sakoui, S.; Pop, O.L.; Cristian Vodnar, D.; Addoum, B.; Elmakssoudi, A.; Errachidi, F.; Suharoschi, R.; Soukri, A.; El Khalfi, B. Screening, optimization and characterization of exopolysaccharides produced by novel strains isolated from Moroccan raw donkey milk. Food Chem. X 2022, 14, 100305. [Google Scholar] [CrossRef] [PubMed]
- Du, R.; Yu, L.; Sun, M.; Ye, G.; Yang, Y.; Zhou, B.; Qian, Z.; Ling, H.; Ge, J. Characterization of dextran biosynthesized by glucansucrase from Leuconostoc pseudomesenteroides and their potential biotechnological applications. Antioxidants 2023, 12, 275. [Google Scholar] [CrossRef]
- Grosu-Tudor, S.S.; Zamfir, M. Exopolysaccharide production by selected lactic acid bacteria isolated from fermented vegetables. Sci. Bull. Series F. Biotechnol. 2014, XVIII, 107–114. [Google Scholar]
- Seesuriyachan, P.; Kuntiya, A.; Hanmoungjai, P.; Techapun, C.; Chaiyaso, T.; Leksawasdi, N. Optimization of exopolysaccharide overproduction by Lactobacillus confusus in solid state fermentation under high salinity stress. Biosc. Biotechnol. Biochem. 2012, 76, 912–917. [Google Scholar] [CrossRef]
- Ramos, I.M.; Seseña, S.; Poveda, J.M.; Palop, M.L. Screening of lactic acid bacteria strains to improve the properties of non-fat set yogurt by in situ eps production. Food Bioprocess. Technol. 2023, 16, 2541–2558. [Google Scholar] [CrossRef]
- Ramachandran, P.; Janarthanan, N.T.; Balakrishnan, L.; Palanisami, S.D.; Joseph, S.; Dhanaraj, S.S.; Antony, T.M.P.; Ramasamy, S. Identification and characterization of exopolysaccharides of Staphylococcus epidermis and Staphylococcus capitis isolated from goat gut. Asian J. Biol. Sci. Life Sci. 2020, 9, 92–98. [Google Scholar] [CrossRef]
- Ning, Y.; Cao, H.; Zhao, S.; Gao, D.; Zhao, D. Structure and properties of exopolysaccharide produced by Gluconobacter frateurii and its potential applications. Polymers 2024, 16, 1004. [Google Scholar] [CrossRef]
- Obioha, P.I.; Ouoba, L.I.I.; Anyogu, A.; Awamaria, B.; Atchia, S.; Ojimelukwe, P.C.; Sutherland, J.P.; Ghoddusi, H.B. Identification and characterization of the lactic acid bacteria associated with the traditional fermentation of dairy fermented product. Braz. J. Microbiol. 2021, 52, 869–881. [Google Scholar] [CrossRef]
- Prete, R.; Dell’Orco, F.; Sabatini, G.; Montagano, F.; Battista, N.; Corsetti, A. Improving the antioxidant and anti-inflammatory activity of fermented milks with exopolysaccharides-producing Lactiplantibacillus plantarum strains. Foods 2024, 13, 1663. [Google Scholar] [CrossRef] [PubMed]
- Parameswaran, R.; Soumya, M.P.; Nampoothiri, K.M. Direct utilization and conversion of raw starch to exopolysaccharides by a newly isolated amylolytic Streptococcus sp. J. Biotechnol. 2023, 371, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Kamigaki, T.; Ogawa, A. Observation of exopolysaccharides (EPS) from Lactobacillus helveticus SBT2171 using the Tokuyasu method. Microscopy 2020, 69, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Pintado, A.I.; Barbosa, C.C.; Pintado, M.E.; Malcata, F.X.; Gomes, A.M. Efficient screening and enhanced exopolysaccharide production by functional lactic acid bacteria (LAB) in lactose supplemented media. Appl. Microbiol. Theory Technol. 2024, 5, 37–50. [Google Scholar] [CrossRef]
- Luang-In, V.; Saengha, W.; Deeseenthum, S. Characterization and bioactivities of a novel exopolysaccharide produced from lactose by Bacillus tequilensis PS21 isolated from Thai milk Kefir. Microbiol. Biotechnol. Lett. 2018, 46, 9–17. [Google Scholar] [CrossRef]
- Sørensen, H.M.; Rochfort, K.D.; Maye, S.; MacLeod, G.; Brabazon, D.; Loscher, C.; Freeland, B. Exopolysaccharides of lactic acid bacteria: Production, purification and health benefits towards functional food. Nutrients 2022, 14, 2938. [Google Scholar] [CrossRef]
- Choi, I.S.; Ko, S.H.; Lee, M.E.; Kim, H.M.; Yang, J.E.; Jeong, S.-G.; Lee, K.H.; Chang, J.Y.; Kim, J.-C.; Park, H.W. Production, characterization, and antioxidant activities of an exopolysaccharide extracted from spent media wastewater after Leuconostoc mesenteroides WiKim32 Fermentation. ACS Omega 2021, 6, 8171–8178. [Google Scholar] [CrossRef]
- Hooshdar, P.; Kermanshahi, R.K.; Ghadam, P.; Khosravi-Darani, K. A review on production of exopolysaccharide and biofilm in probiotics like lactobacilli and methods of analysis. Biointerface Res. Appl. Chem. 2020, 10, 6058–6075. [Google Scholar] [CrossRef]
- Rahnama Vosough, P.; Habibi Najafi, M.B.; Edalatian Dovom, M.R.; Javadmanesh, A.; Mayo, B. Evaluation of antioxidant, antibacterial and cytotoxicity activities of exopolysaccharide from Enterococcus strains isolated from traditional Iranian Kishk. Food Measure 2021, 15, 5221–5230. [Google Scholar] [CrossRef]
- Zhan, K.; Ji, X.; Luo, L. Recent progress in research on Momordica charantia polysaccharides: Extraction, purification, structural characteristics and bioactivities. Chem. Biol. Technol. Agric. 2023, 10, 58. [Google Scholar] [CrossRef]
- Bramhachari, P.V.; Kishor, P.K.; Ramadevi, R.; Rao, B.R.; Dubey, S.K. Isolation and characterization of mucous exopolysaccharide (EPS) produced by Vibrio furnissii strain VB0S3. J. Microbiol. Biotechnol. 2007, 17, 44–51. [Google Scholar] [PubMed]
- Nachtigall, C.; Rohm, H.; Jaros, D. Degradation of exopolysaccharides from lactic acid bacteria by thermal, chemical, enzymatic and ultrasound stresses. Foods 2021, 10, 396. [Google Scholar] [CrossRef] [PubMed]
- Pourjafar, H.; Ansari, F.; Sadeghi, A.; Samakkhah, S.A.; Jafari, S.M. Functional and health-promoting properties of probiotics’ exopolysaccharides.; Isolation, characterization, and applications in the food industry. Crit. Rev. Food Sci. Nutr. 2023, 63, 8194–8225. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.A.V.; Lucas, B.F.; Alvarenga, A.G.P.; Moreira, J.B.; de Morais, M.G. Microalgae polysaccharides: An overview of production, characterization, and potential applications. Polysaccharides 2021, 2, 759–772. [Google Scholar] [CrossRef]
- Shoshaa, R.; Ashfaq, M.Y.; Al-Ghouti, M.A. Recent developments in ultrafiltration membrane technology for the removal of potentially toxic elements, and enhanced antifouling performance: A review. Environ. Technol. Innov. 2023, 31, 103162. [Google Scholar] [CrossRef]
- Zhang, J.; Li, G.; Yuan, X.; Li, P.; Yu, Y.; Yang, W.; Zhao, S. Reduction of ultrafiltration membrane fouling by the pretreatment removal of emerging pollutants: A review. Membranes 2023, 13, 77. [Google Scholar] [CrossRef]
- Bedade, D.; Pawar, S. Downstream processing of biotechnology products. In Basic Biotechniques for Bioprocess and Bioentrepreneurship; Academic Press: Cambridge, MA, USA, 2023; pp. 377–390. [Google Scholar] [CrossRef]
- Shene, C.; Canquil, N.; Bravo, S.; Rubilar, M. Production of the exopolysacchzrides by Streptococcus hermophiles: Effect of growth conditions on fermentation kinetics and intrinsic viscosity. Int. J. Food Microbiol. 2008, 124, 279–284. [Google Scholar] [CrossRef]
- Delattre, C.; Pierre, G.; Laroche, C.; Michaud, P. Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol. Adv. 2016, 34, 1159–1179. [Google Scholar] [CrossRef]
- Yu, Y.J.; Chen, Z.; Chen, P.T.; Ng, I.S. Production, characterization and antibacterial activity of exopolysaccharide from a newly isolated Weissella cibaria under sucrose effect. J. Biosci. Bioeng. 2018, 126, 769–777. [Google Scholar] [CrossRef]
- Macedo, M.G.; Lacroix, C.; Champagne, C.P. Combined effects of temperature and medium composition on exopolysaccharide production by Lactobacillus rhamnosus RW-9595M in a whey permeate based medium. Biotechnol. Prog. 2002, 18, 167–173. [Google Scholar] [CrossRef]
- Donnarumma, G.; Molinaro, A.; Cimini, D.; De Castro, C.; Valli, V.; De Gregorio, V.; De Rosa, M.; Schiraldi, C. Lactobacillus crispatus L1: High cell density cultivation and exopolysaccharide structure characterization to highlight potentially beneficial effects against vaginal pathogens. BMC Microbiol. 2014, 14, 137. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Qian, T.; Yang, G.; Mu, J. Characteristics of exopolysaccharides produced by isolates from natural bioflocculant of Ruditapes philippinarum conglutination mud. Front. Microbiol. 2023, 13, 1068922. [Google Scholar] [CrossRef] [PubMed]
- Leroy, F.; De Vuyst, L. Advances in production and simplified methods for recovery and quantification of exopolysaccharides for applications in food and health. J. Dairy Sci. 2016, 99, 3229–3238. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Luo, M.; Liu, F.; Feng, X.; Ibrahim, S.A.; Cheng, L.; Huang, W. Effects of freeze drying and hot-air drying on the physicochemical properties and bioactivities of polysaccharides from Lentinula edodes. Int. J. Biol. Macromol. 2020, 145, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Kavitake, D.; Devi, P.B.; Baria, B.; Agarwal, K.; Ravi, R.; Singh, A.K.; Shetty, P.H. Functional enhancement of yoghurt through incorporation of glucan exopolysaccharide from Enterococcus hirae OL616073 of food origin. Food Measure 2024, 18, 5462–5476. [Google Scholar] [CrossRef]
- Hou, C.; Yin, M.; Lan, P.; Wang, H.; Nie, H.; Ji, X. Recent progress in the research of Angelica sinensis (Oliv.) Diels polysaccharides: Extraction, purification, structure and bioactivities. Chem. Biol. Technol. Agric. 2021, 8, 1–13. [Google Scholar] [CrossRef]
- Kaddour, H.; Tranquille, M.; Okeoma, C.M. The past, the present, and the future of the size exclusion chromatography in extracellular vesicles separation. Viruses 2021, 13, 2272. [Google Scholar] [CrossRef]
- Feng, F.; Zhou, Q.; Yang, Y.; Zhao, F.; Du, R.; Han, Y.; Xiao, H.; Zhou, Z. Characterization of highly branched dextran produced by Leuconostoc citreum B-2 from pineapple fermented product. Int. J. Biol. Macromol. 2018, 113, 45–50. [Google Scholar] [CrossRef]
- Yue, F.; Zhang, J.; Xu, J.; Niu, T.; Lü, X.; Liu, M. Effects of monosaccharide composition on quantitative analysis of total sugar content by phenol-sulfuric acid method. Front. Nutr. 2022, 9, 963318. [Google Scholar] [CrossRef]
- Kejla, L.; Schulzke, T.; Šimáček, P.; Auersvald, M. Anthrone method combined with adsorption of interferents as a new approach towards reliable quantification of total carbohydrate content in pyrolysis bio-oils. J. Anal. Appl. Pyrol. 2023, 173, 106066. [Google Scholar] [CrossRef]
- Kurzyna-Szklarek, M.; Cybulska, J.; Zdunek, A. Analysis of the chemical composition of natural carbohydrates- An overview of methods. Food Chem. 2022, 394, 133466. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, M.; Suresh Babu, S.P.; Balasubramanian, M.; Ramachandran, R.; Jesteena, J. Bioactive exopolysaccharide from endophytic Bacillus thuringiensis SMJR inhibits food borne pathogens and enhances the shelf life of foods. Bioact. Carbohydr. Diet. Fibre 2022, 27, 100297. [Google Scholar] [CrossRef]
- Behare, P.V.; Singh, R.; Nagpal, R.; Rao, K.H. Exopolysaccharides producing Lactobacillus fermentum strain for enhancing rheological and sensory attributes of low-fat Dahi. J. Food Sci. Technol. 2013, 50, 1228–1232. [Google Scholar] [CrossRef] [PubMed]
- Marimuthu, S.; Rajendran, K. Structural and functional characterization of exopolysaccharide produced by a novel isolate Bacillus sp. EPS003. Appl. Biochem. Biotechnol. 2023, 195, 4583–4601. [Google Scholar] [CrossRef]
- Wolter, A.; Hager, A.S.; Zannini, E.; Galle, S.; Gänzle, M.G.; Waters, D.M.; Arendt, E.K. Evaluation of exopolysaccharide producing Weissella cibaria MG1 strain for the production of sourdough from various flours. Food Microbiol. 2014, 37, 44–50. [Google Scholar] [CrossRef]
- Prasanna, P.H.P.; Grandison, A.S.; Charalampopoulos, D. Microbiological, chemical and rheological properties of low fat set yoghurt produced with exopolysaccharide (EPS) producing Bifidobacterium strains. Food Res. Int. 2013, 51, 15–22. [Google Scholar] [CrossRef]
- Wei, G.; Dai, X.; Zhao, B.; Li, Z.; Tao, J.; Wang, T.; Huang, A. Structure-activity relationship of exopolysaccharides produced by Limosilactobacillus fermentum A51 and the mechanism contributing to the textural properties of yogurt. Food Hydrocoll. 2023, 144, 108993. [Google Scholar] [CrossRef]
- Macedo, M.G.; Laporte, M.F.; Lacroix, C. Quantification of exopolysaccharide, lactic acid, and lactose concentrations in culture broth by near-infrared spectroscopy. J. Agric. Food Chem. 2002, 50, 1774–1779. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, Y.; Wang, H.; Zhang, H.; Chen, W.; Lu, W. Lactic acid bacteria-derived exopolysaccharide: Formation, immunomodulatory ability, health effects, and structure-function relationship. Microbiol. Res. 2023, 274, 127432. [Google Scholar] [CrossRef]
- Erdem, T.k.; Dilşad Tatar, H.; Ayman, S.; Gezginç, Y. Exopolysaccharides from lactic acid bacteria: A review on functions, biosynthesis and applications in food industry. Turkish JAF Sci. Tech. 2023, 11, 414–423. [Google Scholar] [CrossRef]
- Gangalla, R.; Gattu, S.; Palaniappan, S.; Ahamed, M.; Macha, B.; Thampu, R.K.; Fais, A.; Cincotti, A.; Gatto, G.; Dama, M.; et al. Structural Characterization and assessment of the novel Bacillus amyloliquefaciens RK3 exopolysaccharide on the improvement of cognitive function in Alzheimer’s Disease mice. Polymers 2021, 13, 2842. [Google Scholar] [CrossRef] [PubMed]
- Xing, H.; Du, R.; Zhao, F.; Han, Y.; Xiao, H.; Zhou, Z. Optimization, chain conformation and characterization of exopolysaccharide isolated from Leuconostoc mesenteroides DRP105. Int. J. Biol. Macromol. 2018, 112, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Xia, X.; Tang, W.; Ji, J.; Rui, X.; Chen, X.; Jiang, M.; Zhou, J.; Zhang, Q.; Dong, M. Structural characterization and anticancer activity of cell-bound exopolysaccharide from Lactobacillus helveticus MB2-1. J. Agric. Food Chem. 2015, 63, 3454–3463. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Song, Q.; Zhao, F.; Han, Y.; Zhou, Z. Production optimization, partial characterization and properties of an exopolysaccharide from Lactobacillus sakei L3. Int. J. Biol. Macromol. 2019, 141, 21–28. [Google Scholar] [CrossRef]
- Villares, A.; García-Lafuente, A.; Guillamón, E.; Mateo-Vivaracho, L. Separation and characterization of the structural features of macromolecular carbohydrates from wild edible mushrooms. Bioact. Carbohydr. Diet. Fibre 2013, 2, 15–21. [Google Scholar] [CrossRef]
- Dey, G.; Patil, M.P.; Banerjee, A.; Sharma, R.K.; Banerjee, P.; Maity, J.P.; Singha, S.; Taharia, M.; Shaw, A.K.; Huang, H.B.; et al. The role of bacterial exopolysaccharides (EPS) in the synthesis of antimicrobial silver nanomaterials: A state-of-the-art review. J. Microbiol. Methods 2023, 212, 106809. [Google Scholar] [CrossRef]
- La Torre, C.; Plastina, P.; Abrego-Guandique, D.M.; Caputo, P.; Oliviero Rossi, C.; Saraceno, G.F.; Caroleo, M.C.; Cione, E.; Fazio, A. Characterization of exopolysaccharides isolated from donkey milk and its biological safety for skincare applications. Polysaccharides 2024, 5, 493–503. [Google Scholar] [CrossRef]
- Banerjee, A.; Das, D.; Rudra, S.G.; Mazumder, K.; Andler, R.; Bandopadhyay, R. Characterization of exopolysaccharide produced by Pseudomonas sp. PFAB4 for synthesis of EPS-coated AgNPs with antimicrobial properties. J. Polym. Environ. 2020, 28, 242–256. [Google Scholar] [CrossRef]
- Van, Q.N.; Issaq, H.J.; Jiang, Q.; Li, Q.; Muschik, G.M.; Waybright, T.J.; Lou, H.; Dean, M.; Uitto, J.; Veenstra, T.D. Comparison of 1D and 2D NMR spectroscopy for metabolic profiling. J. Proteome Res. 2008, 7, 630–639. [Google Scholar] [CrossRef]
- Marion, D. An introduction to biological NMR spectroscopy. Mol. Cell Proteomics 2013, 12, 3006–3025. [Google Scholar] [CrossRef]
- Harrington, G.F.; Santiso, J. Back-to-Basics tutorial: X-ray diffraction of thin films. J. Electroceram. 2021, 47, 141–163. [Google Scholar] [CrossRef]
- Ali, A.; Chiang, Y.W.; Santos, R.M. X-ray diffraction techniques for mineral characterization: A review for engineers of the fundamentals, applications, and research directions. Minerals 2022, 12, 205. [Google Scholar] [CrossRef]
- Hassler, V.; Brand, N.; Wefers, D. Isolation and characterization of exopolysaccharides from Kombucha samples of different origins. Int. J. Biol. Macromol. 2024, 267, 131377. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Huang, X.; He, Z.; He, T. Exopolysaccharide production by salt-tolerant bacteria: Recent advances, current challenges, and future prospects. Int. J. Biol. Macromol. 2024, 264, 130731. [Google Scholar] [CrossRef]
- Upadhyaya, C.; Patel, H.; Patel, I.; Ahir, P.; Upadhyaya, T. Development of biological coating from novel halophilic exopolysaccharide exerting shelf-life-prolonging and biocontrol actions for post-harvest applications. Molecules 2024, 29, 695. [Google Scholar] [CrossRef]
- Kumar, S.; Jyotirmayee, K.; Sarangi, M. Thin layer chromatography: A tool of biotechnology for isolation of bioactive compounds from medicinal plants. Int. J. Pharm. Sci. Rev. Res. 2013, 18, 126–132. [Google Scholar]
- Palaniyandi, S.A.; Damodharan, K.; Suh, J.W.; Yang, S.H. Functional characterization of an exopolysaccharide produced by Bacillus sonorensis MJM60135 isolated from Ganjang. J. Microbiol. Biotechnol. 2018, 28, 663–670. [Google Scholar] [CrossRef]
- Kwon, M.; Lee, J.; Park, S.; Kwon, O.H.; Seo, J.; Roh, S. Exopolysaccharide isolated from Lactobacillus plantarum L-14 has anti-inflammatory effects via the toll-like receptor 4 pathway in LPS-induced raw 264.7 cells. Int. J. Mol. Sci. 2020, 21, 9283. [Google Scholar] [CrossRef]
- Adesulu-Dahunsi, A.T.; Sanni, A.I.; Jeyaram, K. Production, characterization and in vitro antioxidant activities of exopolysaccharide from Weissella cibaria GA44. LWT-Food Sci. Technol. 2018, 87, 432–442. [Google Scholar] [CrossRef]
- Vijayalakshmi, S.; Kim, J.R.; Chelliah, R.; Barathikannan, K.; Hirad, A.H.; Oh, D.H. Structural characterization and immunomodulatory activity of an exopolysaccharide produced by probiotic Leuconostoc mesenteroides 201607 isolated from fermented food. Appl. Microbiol. 2024, 4, 329–340. [Google Scholar] [CrossRef]
- Andrew, M.; Jayaraman, G. Molecular characterization and biocompatibility of exopolysaccharide produced by moderately halophilic bacterium Virgibacillus dokdonensis from the Saltern of Kumta Coast. Polymers 2022, 14, 3986. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, X.; Pan, W.; Shen, X.; He, Y.; Yin, H.; Zhou, K.; Zou, L.; Chen, S.; Liu, S. Exopolysaccharides produced by yogurt-texture improving Lactobacillus plantarum RS20D and the immunoregulatory activity. Int. J. Biol. Macromol. 2019, 121, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Zou, S.; Liang, D.; Luan, L. Structural characterization, antioxidant and hepatoprotective activities of polysaccharides from Sophorae tonkinensis Radix. Carbohydr. Polym. 2018, 184, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Cabrera-Barjas, G.; Tapia, J.; Fabi, J.P.; Delattre, C.; Banerjee, A. Characterization of hermop hot spring-origin Staphylococcus sp. BSP3 produced exopolysaccharide as biological additive. Nat. Prod. Bioprospect. 2024, 14, 15. [Google Scholar] [CrossRef]
- Banerjee, A.; Mohammed Breig, S.J.; Gómez, A.; Sánchez-Arévalo, I.; González-Faune, P.; Sarkar, S.; Bandopadhyay, R.; Vuree, S.; Cornejo, J.; Tapia, J.; et al. Optimization and characterization of a novel exopolysaccharide from Bacillus Haynesii CamB6 for food applications. Biomolecules 2022, 12, 834. [Google Scholar] [CrossRef]
- Corradini, C.; Cavazza, A.; Bignardi, C. High-performance anion-exchange chromatography coupled with pulsed electrochemical detection as a powerful tool to evaluate carbohydrates of food interest: Principles and applications. Int. J. Carbohydr. Chem. 2012, 2012, 487564. [Google Scholar] [CrossRef]
- Hamidi, M.; Mirzaei, R.; Delattre, C.; Khanaki, K.; Pierre, G.; Gardarin, C.; Petit, E.; Karimitabar, F.; Faezi, S. Characterization of a new exopolysaccharide produced by Halorubrum sp. TBZ112 and evaluation of its anti-proliferative effect on gastric cancer cells. 3 Biotech 2019, 9, 1. [Google Scholar] [CrossRef]
- Zhao, D.; Jiang, J.; Du, R.; Guo, S.; Ping, W.; Ling, H.; Ge, J. Purification and characterization of an exopolysaccharide from Leuconostoc lactis L2. Int. J. Biol. Macromol. 2019, 139, 1224–1231. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Wu, J.; Xu, W.; Wang, X.; Lü, X. Improvement of simultaneous determination of neutral monosaccharides and uronic acids by gas chromatography. Food Chem. 2017, 220, 198–207. [Google Scholar] [CrossRef]
- Wang, X.; Shao, C.; Liu, L.; Guo, X.; Xu, Y.; Lü, X. Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum KX041. Int. J. Biol. Macromol. 2017, 103, 1173–1184. [Google Scholar] [CrossRef]
- Zhang, M.; Tang, X.; Wang, F.; Zhang, Q.; Zhang, Z. Characterization of Lycium barbarum polysaccharide and its effect on human hepatoma cells. Int. J. Biol. Macromol. 2013, 61, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Fuso, A.; Bancalari, E.; Castellone, V.; Caligiani, A.; Gatti, M.; Bottari, B. Feeding lactic acid bacteria with different sugars: Effect on exopolysaccharides (EPS) production and their molecular characteristics. Foods 2023, 12, 215. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Rudra, S.G.; Mazumder, K.; Nigam, V.; Bandopadhyay, R. Structural and functional properties of exopolysaccharide excreted by a novel Bacillus anthracis (Strain PFAB2) of hot spring origin. Indian J. Microbiol. 2018, 58, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.J.; Jeong, H.; Kim, S.; Shin, J.; Song, Y.; Lee, B.H.; Park, H.G.; Lee, T.H.; Jiang, H.H.; Han, Y.S.; et al. Structural analysis and prebiotic activity of exopolysaccharide produced by probiotic strain Bifidobacterium bifidum EPS DA-LAIM. Food Sci. Biotechnol. 2023, 32, 517–529. [Google Scholar] [CrossRef]
- Wu, M.; Pakroo, S.; Nadai, C.; Molinelli, Z.; Speciale, I.; De Castro, C.; Tarrah, A.; Yang, J.; Giacomini, A.; Corich, V. Genomic and functional evaluation of exopolysaccharide produced by Liquorilactobacillus mali T6-52: Technological implications. Microb. Cell Fact. 2024, 23, 158. [Google Scholar] [CrossRef]
- Bajaj, B.K.; Razdan, K.; Claes, I.J.J.; Lebeer, S. Physico-chemical characterization of exopolysaccharides of potential probiotic Enterococcus faecium isolates from infants’ gut. Curr. Biochem. Eng. 2015, 2, 90–100. [Google Scholar] [CrossRef]
- Bhandary, T.; Alagesan, P.K. Assessment of bioactivity of the novel exopolysaccharide secreted by Bacillus subtilis isolated from the gut of marine anchovies. J. App. Biol. Biotech. 2023, 12, 205–212. [Google Scholar] [CrossRef]
- Nazemi Salman, B.; Vahabi, S.; Javanmard, A. Atomic force microscopy application in biological research: A review study. Iran. J. Med. Sci. 2013, 38, 76–83. [Google Scholar] [CrossRef]
- Jalili, N.; Laxminarayana, K. A review of atomic force microscopy imaging systems: Application to molecular metrology and biological sciences. Mechatronics 2004, 14, 907–945. [Google Scholar] [CrossRef]
- Peng, N.; Cai, P.; Mortimer, M.; Wu, Y.; Gao, C.; Huang, Q. The exopolysaccharide-eDNA interaction modulates 3D architecture of Bacillus subtilis biofilm. BMC Microbiol. 2020, 20, 115. [Google Scholar] [CrossRef]
- Ali, A.; Zhang, N.; Santos, R.M. Mineral characterization using scanning electron microscopy (SEM): A review of the fundamentals, advancements, and research directions. Appl. Sci. 2023, 13, 12600. [Google Scholar] [CrossRef]
- Prajapati, D.; Bhatt, A.; Gupte, A. Purification and physicochemical characterization of exopolysaccharide produced by a novel brown-rot fungus Fomitopsis meliae AGDP-2. J. App. Biol. Biotech. 2022, 10, 158–166. [Google Scholar] [CrossRef]
- Wang, Y.; Du, R.; Qiao, X.; Zhao, B.; Zhou, Z.; Han, Y. Optimization and characterization of exopolysaccharides with a highly branched structure extracted from Leuconostoc citreum B-2. Int. J. Biol. Macromol. 2020, 142, 73–84. [Google Scholar] [CrossRef]
- Varenne, F.; Botton, J.; Merlet, C.; Vachon, J.J.; Geiger, S.; Infante, I.C.; Chehimi, M.M.; Vauthier, C. Standardization and validation of a protocol of zeta potential measurements by electrophoretic light scattering for nanomaterial characterization. Colloids Surf. A Physicochem. Eng. Asp. 2015, 486, 218–231. [Google Scholar] [CrossRef]
- Selvamani, V. Stability studies on nanomaterials used in drugs. In Characterization and Biology of Nanomaterials for Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2019; pp. 425–444. [Google Scholar] [CrossRef]
- Larson, S.L.; Ballard, J.H.; Runge, K.A.; Zhang, H.; Breland, B.R.; Nick, Z.H.; Vroman, E.T.; Weiss, C.A.; Han, F.X. Effects of hermophi ion on particle sizes and surface charges of exopolysaccharides from Rhizobium tropici and pH effects. Rhizosphere 2023, 26, 100713. [Google Scholar] [CrossRef]
Genus | Strains | EPS | Detection | Production | Extraction | Purification | Characterization | References |
---|---|---|---|---|---|---|---|---|
Lactobacillus | ||||||||
L. bulgaricus | EPS-L | Colony morphology | MRS with sucrose | Precipitation (EtOH) and TCA | Dialysis | GPC, GC-MS, FT-IR, NMR, SEM, and ZP | [9] | |
L. curvatus SJTUF 62116 | EPS-1 | - | MRS | Precipitation (EtOH) and TCA | -do- | UV, HPSEC-MALLS-RID, FT-IR, NMR, HPAEC-PAD, GC-MS, SEM, AFM, and TGA | [39] | |
L. delbrueckii subsp. bulgaricus Strain IMAU40160 | EPS | - | MRS | Precipitation (EtOH) and Sevage reagent | -do- | GC–MS, FT-IR, NMR, XRD, and SEM | [40] | |
L. helveticus MB2-1 | EPS | - | Whey powder, lactose, and soya peptone | Precipitation (EtOH) and TCA | Dialysis, AEC, and GFC | UV-VIS, FT-IR, NMR, HPLC, SEM, DSC, TGA, ZP, and PSD | [41] | |
L. pantheris TCP102 | EPS1 | -do- | MRS | -do- | Dialysis, AEC, and GFC | FT-IR, UV, HPLC, and SEM | [42] | |
L. paraplantarum KM1 | EPS | - | MRS with lactose | -do- | Dialysis and GFC | HPLC and SEM | [43] | |
L. plantarum C7 | EPS | - | MRS with sucrose | Precipitation (EtOH) and ultrafiltration | - | FT-IR, GC-FID, and HPSEC-RID-MALLS | [44] | |
L. plantarum C70 (KX881779) | EPS-C70 | - | MRS with sucrose | Precipitation (EtOH) | Dialysis | GPC-RID, GC, FT-IR, NMR, DSC, SEM, ZP, and PSD | [45] | |
L. plantarum NS1905E | EPS-NS1905E | - | MRS | -do- | -do- | GPC-MALLS, HPAEC-PAD, and FT-IR | [46] | |
L. plantarum Ts | EPS | Colony morphology | MRS with sucrose | -do- | -do- | FT-IR, TLC, and HPLC | [47] | |
Lactiplantibacillus | ||||||||
Lpb. plantarum EI6 | EPS | Colony morphology | MRS with sucrose | Precipitation (EtOH) and TCA | Dialysis | FT-IR, NMR, GC-MS, SEM, and SEM-EDX | [16] | |
Lpb. plantarum HDC-01 | EPS | -do- | -do- | -do- | Dialysis and GFC | UV, HPLC, GPC, FT-IR, NMR, XRD, SEM, AFM, TGA, DSC, and DTG | [10] | |
Lpb. plantarum ITD-ZC-107 | EPS | CRA | BHI with bagasse and agave | Precipitation (EtOH) | - | TGA and DSC | [12] | |
Lpb. plantarum Jb21-11 | EPS-Jb21-11 | Colony morphology | MRS | Precipitation (EtOH) | Dialysis | HPLC-SEC, GC, and NMR | [48] | |
Lpb. plantarum ZE3 | EPS-1 and EPS-2 | - | MRS with glucose, sucrose, and fructose | -do- | -do- | UHPLC, HPSEC, and FT-IR | [38] | |
Weissella | ||||||||
W. confusa H2 | H2 EPS | - | MRS with sucrose | -do- | Dialysis and GFC | UV-Vis, GPC, HPLC, FT-IR, NMR, XRD, SEM, AFM, and TGA | [49] | |
W. confusa KR780676 | Galactan EPS | -do- | -do- | Precipitation (EtOH) | -do- | FT-IR, XRD, SEM, and PS | [50] | |
W. confusa SKP173 | EPS | -do- | -do- | -do- | -do- | GC-MS, HPLC, and FT-IR | [19] | |
W. confusa XG-3 | XG-3 EPS | - | Optimized medium with sucrose | -do- | Dialysis and GFC | GC, HPLC, SEM, AFM, FT-IR, XRD, NMR, Congo red, TGA, ZP, and PSD | [51] | |
Enterococcus | ||||||||
E. faecalis 84B | EPS-84B | - | MRS with sucrose | Precipitation (EtOH) and TCA | -do- | UV, GPC, GC-FID, FT-IR, NMR, SEM, DSC, ZP, and PSD | [52] | |
E. mundtii A2 | EPS | - | MRS | -do- | Dialysis | FT-IR, XRD, SEM-EDX, TGA, and DTG | [53] | |
Enterococcus sp. BE11 | EPS | Colony morphology | MRS with sucrose | -do- | -do- | UV-Vis, FT-IR, NMR, GC-MS, SEM, and SEM-EDX | [54] | |
Enterococcus sp. F2 | EPS-F2 | - | -do- | -do- | Dialysis, AEC, and GFC | UV-Vis, HPSEC, HPAEC, FT-IR, GC-MS, NMR, XRD, TGA, SEM, ZP, and PSD | [55] | |
Enterococcus spp. | EPS | RRA | -do- | Precipitation (EtOH) and Sevag reagent | -do- | HPLC, GPC, and FT-IR | [56] | |
Lactococcus | ||||||||
Lact. lactis C15 | EPS-C15 | - | M-17 medium with sucrose | -do- | -do- | GPC, GC-FID, FT-IR, NMR, SEM, DSC, ZP and PSD | [57] | |
Lact. lactis subsp. lactis IMAU11823 | EPS-1 | - | MRS | -do- | Dialysis and AEC | GC, FT-IR, NMR, SEM, HPLC, ZP, and PSD | [58] | |
Pediococcus | ||||||||
P. pentosaceus E8 | EPS-E8 | - | -do- | Precipitation (EtOH) and Sevage reagent | Dialysis, AEC, and GFC | HPSEC-MALLS, HPAEC-PAD, GC-MS, FT-IR, NMR, XRD, TGA, DSC, DTG, SEM, AFM, ZP, and PSD | [59] | |
P. pentosaceus M41 | EPS- M41 | - | MRS with sucrose | Precipitation (EtOH) and TCA | -do- | UV, GC-FID, FT-IR, NMR, DSC, SEM, ZP, and PSD | [60] | |
Levilactobacillus | ||||||||
Levilactobacillus brevis HDE-9 | HDE-9 EPS | Colony morphology | -do- | -do- | Dialysis and GFC | UV-Vis, GPC, HPLC, FT-IR, NMR, XRD, SEM, AFM, and TGA | [61] | |
Leuconostoc | ||||||||
Leu. mesenteroides SN-8 | EPS-8-2 | - | MRS with sucrose | -do- | Dialysis and GFC | UV-Vis, GC-FID, HPSEC, FT-IR, NMR, TGA, and DSC | [62] | |
Leuc. mesenteroides SL | EPS-SL | Colony morphology | MRS with sucrose | Precipitation (EtOH) and TCA | Dialysis and GFC | UV, FT-IR, NMR, GC-MS, SEM, and TGA | [63] | |
Leuc. pseudomesenteroides | EPS | - | Glucansucrase with CaCl2 and sucrose | -do- | Dialysis | UV, GPC, HPLC, FT-IR, XRD, SEM, AFM, TGA, DSC, and DTG | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, M.K.; Song, J.H.; Vasquez, R.; Lee, J.S.; Kim, I.H.; Kang, D.-K. Methods for Detection, Extraction, Purification, and Characterization of Exopolysaccharides of Lactic Acid Bacteria—A Systematic Review. Foods 2024, 13, 3687. https://doi.org/10.3390/foods13223687
Yadav MK, Song JH, Vasquez R, Lee JS, Kim IH, Kang D-K. Methods for Detection, Extraction, Purification, and Characterization of Exopolysaccharides of Lactic Acid Bacteria—A Systematic Review. Foods. 2024; 13(22):3687. https://doi.org/10.3390/foods13223687
Chicago/Turabian StyleYadav, Manoj Kumar, Ji Hoon Song, Robie Vasquez, Jae Seung Lee, In Ho Kim, and Dae-Kyung Kang. 2024. "Methods for Detection, Extraction, Purification, and Characterization of Exopolysaccharides of Lactic Acid Bacteria—A Systematic Review" Foods 13, no. 22: 3687. https://doi.org/10.3390/foods13223687
APA StyleYadav, M. K., Song, J. H., Vasquez, R., Lee, J. S., Kim, I. H., & Kang, D. -K. (2024). Methods for Detection, Extraction, Purification, and Characterization of Exopolysaccharides of Lactic Acid Bacteria—A Systematic Review. Foods, 13(22), 3687. https://doi.org/10.3390/foods13223687