Classification and Identification of Foodborne Bacteria in Beef by Utilising Surface-Enhanced Raman Spectroscopy Coupled with Chemometric Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Strains and Chemicals
2.2. Culture of Single Bacteria
2.3. Preparation of AgNPs
2.4. Pre-Treatment and Condition Optimisation of SERS Detection Samples
2.4.1. Optimisation of the Size of AgNPs
2.4.2. Optimisation of the Volume Ratio of AgNPs and Bacterial Suspension
2.5. Acquisition of Raman Spectra
2.6. Preprocessing of Raman Spectra
2.7. Multivariate Statistical Analysis
3. Results and Discussion
3.1. SERS Detection Optimisation with AgNPs Substrates
3.1.1. Analysis of AgNPs Size Optimization on SERS
3.1.2. Analysis of Volume Ratio Optimization on SERS
3.2. Establishment of Bacterial Classification Model
3.2.1. Bacterial Gram Type Classification
3.2.2. Bacterial Genus Level Classification
3.2.3. Bacterial Species Level Classification
3.3. LDA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sohrabi, H.; Majidi, M.R.; Khaki, P.; Jahanban-Esfahlan, A.; de la Guardia, M.; Mokhtarzadeh, A. State of the art: Lateral flow assays toward the point-of-care foodborne pathogenic bacteria detection in food samples. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1868–1912. [Google Scholar] [CrossRef] [PubMed]
- Velusamy, V.; Arshak, K.; Korostynska, O.; Oliwa, K.; Adley, C. An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol. Adv. 2010, 28, 232–254. [Google Scholar] [CrossRef]
- Iqbal, S.S.; Mayo, M.W.; Bruno, J.G.; Bronk, B.V.; Chambers, J.P. A review of molecular recognition technologies for detection of biological threat agents. Biosens. Bioelectron. 2000, 15, 549–578. [Google Scholar] [CrossRef] [PubMed]
- Cialla, D.; März, A.; Böhme, R.; Theil, F.; Weber, K.; Schmitt, M.; Popp, J. Surface-enhanced Raman spectroscopy (SERS): Progress and trends. Anal. Bioanal. Chem. 2012, 403, 27–54. [Google Scholar] [CrossRef] [PubMed]
- Pahlow, S.; März, A.; Seise, B.; Hartmann, K. Bioanalytical application of surface-and tip-enhanced Raman spectroscopy. Eng. Life Sci. 2012, 12, 131–143. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Meyer, M.; Etchegoin, P.G. Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. J. Phys. Chem. B. 2006, 110, 1944–1948. [Google Scholar] [CrossRef]
- Fan, C.; Hu, Z.; Mustapha, A.; Lin, M. Rapid detection of food- and waterborne bacteria using surface-enhanced Raman spectroscopy coupled with silver nanosubstrates. Appl. Microbiol. Biot. 2011, 92, 1053–1061. [Google Scholar] [CrossRef]
- Efrima, S.; Bronk, B.V. Silver colloids impregnating or coating bacteria. J. Phys. Chem. B. 1998, 102, 5947–5950. [Google Scholar] [CrossRef]
- Zeiri, L.; Bronk, B.V.; Shabtai, Y.; Czégé, J.; Efima, S. Silver metal induced surface enhanced Raman of bacteria. Colloid. Surface A 2002, 208, 357–362. [Google Scholar] [CrossRef]
- Zhao, X.; Li, M.; Liu, Y. Microfluidic-based approaches for foodborne pathogen detection. Microorganisms 2019, 7, 381. [Google Scholar] [CrossRef]
- Chu, H.; Huang, Y.; Zhao, Y. Silver nanorod arrays as a surface-enhanced Raman scattering substrate for foodborne pathogenic bacteria detection. Appl. Spectrosc. 2008, 62, 922–931. [Google Scholar] [CrossRef] [PubMed]
- Mircescu, N.E.; Gherman, A.M.R.; Ungurean, A.C.; Marconi, D.; Srbu, C. Fuzzy characterization and classification of bacteria species detected at single-cell level by surface-enhanced raman scattering. Spectrochim. Acta A 2020, 247, 119–149. [Google Scholar] [CrossRef]
- Liu, S.; Li, H.; Hassan, M.M.; Zhu, J.; Chen, Q. Amplification of Raman spectra by gold nanorods combined with chemometrics for rapid classification of four pseudomonas. Int. J. Food Microbiol. 2019, 304, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.C.; Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 1982, 86, 3391–3395. [Google Scholar] [CrossRef]
- Hu, S.; Kang, H.Q.; Gu, F.; Wang, C.W.; Yang, Y. Rapid detection method for pathogenic Candida captured by magnetic nanoparticles and identified using SERS via AgNPs+. Int. J. Nanomed. 2021, 16, 941–950. [Google Scholar] [CrossRef]
- Liu, Q.S.; Dong, P.C.; Fengou, L.C.; Nychas, G.J.; Fowler, S.M.; Mao, Y.W.; Luo, X.; Zhang, Y.M. Preliminary investigation into the prediction of indicators of beef spoilage using Raman and Fourier transform infrared spectroscopy. Meat Sci. 2023, 200, 109168. [Google Scholar] [CrossRef]
- Khulal, U.; Zhao, J.W.; Hu, W.; Chen, Q.S. Nondestructive quantifying total volatile basic nitrogen (TVB-N) content in chicken using hyperspectral imaging (HSI) technique combined with different data dimension reduction algorithms. Food Chem. 2016, 197, 1191–1199. [Google Scholar] [CrossRef]
- Kraehmer, A.; Engel, A.; Kadow, D.; Ali, N.; Umaharan, P.; Kroh, L.W.; Schulz, H. Fast and neat-determination of biochemical quality parameters in cocoa using near infrared spectroscopy. Food Chem. 2015, 181, 152–159. [Google Scholar] [CrossRef]
- Moitra, P.; Chaichi, A.; Hasan, S.M.A.; Dighe, K.; Alafeef, M.; Prasad, A.; Gartia, M.R.; Pan, D. Probing the mutation independent interaction of DNA probes with SARS-CoV-2 variants through a combination of surface-enhanced Raman scattering and machine learning. Biosens. Bioelectron. 2022, 208, 114200. [Google Scholar] [CrossRef]
- Granato, D.; Santos, J.S.; Escher, G.B.; Ferreira, B.L.; Maggio, R.M. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci. Technol. 2018, 72, 83–90. [Google Scholar] [CrossRef]
- Wei, X.D.; Zheng, D.W.; Zhang, P.; Lin, T.F.; Wang, H.Q.; Zhu, Y.W. Surface-enhanced Raman scattering investigation of bovine serum albumin by Au nanoparticles with different sizes. J. Appl. Biomater. Func. 2018, 16, 157–162. [Google Scholar] [CrossRef]
- Guicheteau, J.; Christesen, S.; Emgea, D. Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging. J. Raman Spectrosc. 2010, 41, 1632–1637. [Google Scholar] [CrossRef]
- Argyri, A.A.; Jarvis, R.M.; Wedge, D.; Xu, Y.; Panagou, E.Z.; Goodacre, R.; Nychas, G.-J.E. A comparison of Raman and FT-IR spectroscopy for the prediction of meat spoilage. Food Control. 2013, 29, 461–470. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, Y.; Li, M.; Liu, W. Rapid identification of different pathogenic spore-forming bacteria in spice powders using surface-enhanced Raman spectroscopy and chemometrics. Food Anal. Methods 2022, 15, 2810–2820. [Google Scholar] [CrossRef]
- Lan, S.U.; Ping, Z.; Da-Wei, Z.; Yang-Jun-Qi, W.; Ru-Gang, Z. Rapid detection of Escherichia coli and Salmonella typhimurium by surface-enhanced Raman scattering. Optoelectron. Lett. 2015, 11, 157–160. [Google Scholar] [CrossRef]
- Luo, B.S.; Lin, M. A portable Raman system for the identification of foodborne pathogenic bacteria. J. Rapid Methods Automat. Microbiol. 2010, 16, 238–255. [Google Scholar] [CrossRef]
- Ding, J.; Lin, Q.; Zhang, J.; Young, G.M.; Jiang, C.; Zhong, Y.; Zhang, J. Rapid identification of pathogens by using surface-enhanced Raman spectroscopy and multi-scale convolutional neural network. Anal. Bioanal. Chem. 2021, 413, 3801–3811. [Google Scholar] [CrossRef]
- Liu, S.; Hu, Q.; Li, C.; Zhang, F.; Gu, H.; Wang, X.; Li, S.; Xue, L.; Madl, T.; Zhang, Y.; et al. Wide-range, rapid, and specific identification of pathogenic bacteria by surface-enhanced Raman spectroscopy. ACS Sens. 2021, 6, 2610–2618. [Google Scholar] [CrossRef]
- Saba Bashir, A.; Haq Nawaz, A.; Mashkoor Mohsin, B. Rapid and sensitive discrimination among carbapenem resistant and susceptible E. coli strains using Surface Enhanced Raman Spectroscopy combined with chemometric tools. Photodiagn. Photodyn. 2021, 34, 102280. [Google Scholar] [CrossRef]
- Sundaram, J.; Park, B.; Hinton, A.; Lawrence, K.C.; Kwon, Y. Detection and differentiation of Salmonella serotypes using surface enhanced Raman scattering (SERS) technique. J. Food Meas. Charact. 2013, 7, 1–12. [Google Scholar] [CrossRef]
- Duan, N.; Chang, B.; Zhang, H.; Wang, Z.; Wu, S. Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor. Int. J. Food Microbiol. 2016, 218, 38–43. [Google Scholar] [CrossRef]
- Mungroo, N.A.; Oliveira, G.; Neethirajan, S. SERS based point-of-care detection of food-borne pathogens. Microchim. Acta 2016, 183, 697–707. [Google Scholar] [CrossRef]
- Srividya, K.; Renu, G.; Goutam, K.C.; Siva, U.; Deepak, K.S. Rapid detection of bacterial infection and viability assessment with high specificity and sensitivity using Raman microspectroscopy. Anal. Bioanal. Chem. 2020, 412, 2505–2516. [Google Scholar] [CrossRef]
- Meisel, S.; Stoeckel, S.; Roesch, P.; Popp, J. Identification of meat-associated pathogens via Raman microspectroscopy. Food Microbiol. 2014, 38, 36–43. [Google Scholar] [CrossRef]
- Breuch, R.; Klein, D.; Siefke, E.; Hebel, M.; Herbert, U.; Wickleder, C.; Kaul, P. Differentiation of meat-related microorganisms using paper-based surface-enhanced Raman spectroscopy combined with multivariate statistical analysis. Talanta 2020, 219, 121315. [Google Scholar] [CrossRef]
- Witkowska, E.; Jagielski, T.; Kamińska, A.; Kowalska, A.; Hryncewicz-Gwóźdź, A.; Waluk, J. Detection and identification of human fungal pathogens using surface-enhanced Raman spectroscopy and principal component analysis. Anal. Methods 2016, 8, 8427–8434. [Google Scholar] [CrossRef]
Bacteria | Training Set (n = 360) | Test Set (n = 180) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S.ty | E.co | S.au | LM | LIN | LWE | Accuracy (%) | S.ty | E.co | S.au | LM | LIN | LWE | Accuracy (%) | |
S.ty | 60 | 0 | 0 | 0 | 0 | 0 | 100 | 30 | 0 | 0 | 0 | 0 | 0 | 100 |
E.co | 3 | 57 | 0 | 0 | 0 | 0 | 95 | 0 | 30 | 0 | 0 | 0 | 0 | 100 |
S.au | 0 | 0 | 60 | 0 | 0 | 0 | 100 | 0 | 0 | 30 | 0 | 0 | 0 | 100 |
LM | 0 | 0 | 4 | 49 | 5 | 4 | 89 | 0 | 0 | 1 | 26 | 3 | 0 | 87 |
LIN | 0 | 0 | 0 | 0 | 60 | 0 | 100 | 0 | 0 | 1 | 2 | 26 | 1 | 87 |
LWE | 0 | 0 | 0 | 0 | 0 | 60 | 100 | 0 | 0 | 0 | 0 | 3 | 27 | 90 |
Overall accuracy | 97.3 | 94 | ||||||||||||
Average accuracy | 95.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, H.; Sun, Y.; Huang, M.; Marie Fowler, S.; Liu, J.; Zhang, Y.; Mao, Y. Classification and Identification of Foodborne Bacteria in Beef by Utilising Surface-Enhanced Raman Spectroscopy Coupled with Chemometric Methods. Foods 2024, 13, 3688. https://doi.org/10.3390/foods13223688
Zuo H, Sun Y, Huang M, Marie Fowler S, Liu J, Zhang Y, Mao Y. Classification and Identification of Foodborne Bacteria in Beef by Utilising Surface-Enhanced Raman Spectroscopy Coupled with Chemometric Methods. Foods. 2024; 13(22):3688. https://doi.org/10.3390/foods13223688
Chicago/Turabian StyleZuo, Huixin, Yingying Sun, Mingming Huang, Stephanie Marie Fowler, Jing Liu, Yimin Zhang, and Yanwei Mao. 2024. "Classification and Identification of Foodborne Bacteria in Beef by Utilising Surface-Enhanced Raman Spectroscopy Coupled with Chemometric Methods" Foods 13, no. 22: 3688. https://doi.org/10.3390/foods13223688
APA StyleZuo, H., Sun, Y., Huang, M., Marie Fowler, S., Liu, J., Zhang, Y., & Mao, Y. (2024). Classification and Identification of Foodborne Bacteria in Beef by Utilising Surface-Enhanced Raman Spectroscopy Coupled with Chemometric Methods. Foods, 13(22), 3688. https://doi.org/10.3390/foods13223688