Widely Targeted Metabolomics Reveal the Distribution of Metabolites in Shatian Pomelo Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Preparation and Extraction
2.2. UPLC-MS/MS Conditions
2.3. Quality Control (QC) Sample Determination
2.4. Data Analysis
3. Results
3.1. Quality Control and Statistical Analysis of Widely Targeted Metabolomic Samples from Different Parts of the Shatian Pomelo
3.2. Composition and Classification of Metabolites from Different Parts of the Shatian Pomelo
3.3. Differential Screening of Metabolites from Different Parts of the Shatian Pomelo
3.4. Annotation and Enrichment Analysis of KEGG for Differential Metabolites from Different Parts of the Shatian Pomelo
3.5. Key Differential Metabolites from Different Parts of Shatian Pomelo
4. Discussion and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, L.; Ye, F.; Zhou, Y.; Zhao, G. Utilization of pomelo peels to manufacture value-added products: A review. Food Chem. 2021, 351, 129247. [Google Scholar] [CrossRef] [PubMed]
- Basumatary, B.; Nayak, P.K.; Chandrasekar, C.M.; Nath, A.; Nayak, M.; Kesavan, R.K. Impact of thermo sonication and pasteurization on the physicochemical, microbiological and anti-oxidant properties of pomelo (Citrus maxima) juice. Int. J. Fruit Sci. 2020, 20, S2056–S2073. [Google Scholar] [CrossRef]
- Shen, S.; Cheng, H.; Liu, Y.; Chen, Y.; Chen, S.; Liu, D.; Ye, X.; Chen, J. New electrolyte beverages prepared by the citrus canning processing water through chemical improvement. Food Chem. X 2021, 12, 100155. [Google Scholar] [CrossRef]
- Huang, C.; Hou, J.; Huang, M.; Hu, M.; Deng, L.; Zeng, K.; Yao, S. A comprehensive review of segment drying (vesicle granulation and collapse) in citrus fruit: Current state and future directions. Sci. Hortic. 2023, 309, 111683. [Google Scholar] [CrossRef]
- Benedetto, N.; Carlucci, V.; Faraone, I.; Lela, L.; Ponticelli, M.; Russo, D.; Mangieri, C.; Tzvetkov, N.T.; Milella, L. An Insight into Citrus medica Linn.: A Systematic Review on Phytochemical Profile and Biological Activities. Plants 2023, 12, 2267. [Google Scholar] [CrossRef]
- Li, C.; Gu, H.; Dou, H.; Zhou, L. Identification of flavanones from peel of Citrus changshan-huyou Y. B. Chang, by HPLC–MS and NMR. Eur. Food Res. Technol. 2007, 225, 777–782. [Google Scholar] [CrossRef]
- Lin, L.-Y.; Huang, C.-Y.; Chen, K.-C.; Peng, R.Y. Pomelo fruit wastes are potentially valuable antioxidants, anti-inflammatories, antihypertensives, and antihyperglycemics. Hortic. Environ. Biotechnol. 2021, 62, 377–395. [Google Scholar] [CrossRef]
- Qiu, Y.; Yang, J.; Ma, L.; Song, M.; Liu, G. Limonin Isolated from Pomelo Seed Antagonizes Abeta25-35-Mediated Neuron Injury via PI3K/AKT Signaling Pathway by Regulating Cell Apoptosis. Front. Nutr. 2022, 9, 879028. [Google Scholar] [CrossRef]
- Castro-Vazquez, L.; Alanon, M.E.; Rodriguez-Robledo, V.; Perez-Coello, M.S.; Hermosin-Gutierrez, I.; Diaz-Maroto, M.C.; Jordan, J.; Galindo, M.F.; Arroyo-Jimenez Mdel, M. Bioactive Flavonoids, Antioxidant Behaviour, and Cytoprotective Effects of Dried Grapefruit Peels (Citrus paradisi Macf.). Oxid. Med. Cell. Longev. 2016, 2016, 8915729. [Google Scholar] [CrossRef]
- Czech, A.; Malik, A.; Sosnowska, B.; Domaradzki, P. Bioactive Substances, Heavy Metals, and Antioxidant Activity in Whole Fruit, Peel, and Pulp of Citrus Fruits. Int. J. Food Sci. 2021, 2021, 6662259. [Google Scholar] [CrossRef]
- Bellavite, P. Neuroprotective Potentials of Flavonoids: Experimental Studies and Mechanisms of Action. Antioxidants 2023, 12, 280. [Google Scholar] [CrossRef] [PubMed]
- Addi, M.; Elbouzidi, A.; Abid, M.; Tungmunnithum, D.; Elamrani, A.; Hano, C. An Overview of Bioactive Flavonoids from Citrus Fruits. Appl. Sci. 2021, 12, 29. [Google Scholar] [CrossRef]
- Xiao, Y.; He, C.; Chen, Y.; Ho, C.T.; Wu, X.; Huang, Y.; Gao, Y.; Hou, A.; Li, Z.; Wang, Y.; et al. UPLC-QQQ-MS/MS-based widely targeted metabolomic analysis reveals the effect of solid-state fermentation with Eurotium cristatum on the dynamic changes in the metabolite profile of dark tea. Food Chem. 2022, 378, 131999. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Song, Q.; Cao, Y.; Zhao, Y.; Huo, H.; Wang, Y.; Song, Y.; Li, J.; Tu, P. Advanced liquid chromatography-mass spectrometry enables merging widely targeted metabolomics and proteomics. Anal. Chim. Acta 2019, 1069, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Liu, M.; Hu, Y.; Xue, Q.; Yao, F.; Sun, J.; Sun, L.; Liu, Y. Systemic characteristics of biomarkers and differential metabolites of raw and ripened pu-erh teas by chemical methods combined with a UPLC-QQQ-MS-based metabolomic approach. LWT 2021, 136, 110316. [Google Scholar] [CrossRef]
- Hou, J.; Yan, D.; Liu, Y.; Wang, W.; Hong, M.; He, M.; Yang, X.; Zeng, K.; Yao, S. Global changes in metabolic pathways in endocarp of ‘Dayagan’ hybrid citrus fruit during segment drying revealed by widely targeted metabolomics and transcriptomics analysis. Postharvest Biol. Technol. 2023, 198, 112255. [Google Scholar] [CrossRef]
- Yan, N.; Du, Y.; Liu, X.; Chu, M.; Shi, J.; Zhang, H.; Liu, Y.; Zhang, Z. A comparative UHPLC-QqQ-MS-based metabolomics approach for evaluating Chinese and North American wild rice. Food Chem. 2019, 275, 618–627. [Google Scholar] [CrossRef]
- Zhang, J.; Ai, Z.; Wu, J.; Liu, S.; Hu, Y.; Liu, Y.; Tang, P.; Cui, L.; Li, X.; Piao, C.; et al. Effects of commercial sterilization on non-ginsenoside functional components in fresh ginseng pulps using widely targeted metabolomics. LWT 2023, 183, 114926. [Google Scholar] [CrossRef]
- Liu, R.; Bao, Z.X.; Zhao, P.J.; Li, G.H. Advances in the Study of Metabolomics and Metabolites in Some Species Interactions. Molecules 2021, 26, 3311. [Google Scholar] [CrossRef]
- Qian, Z.; Huang, Q.; Feng, X.; Li, D. Comparison of the chemical-antioxidant profiles of different parts of Citrus reticulata Blanco (Rutaceae) based on OLE-HPLC-DAD-MS/MS-ABTS assay. J. Food Meas. Charact. 2021, 15, 3873–3883. [Google Scholar] [CrossRef]
- Wang, S.; Tu, H.; Wan, J.; Chen, W.; Liu, X.; Luo, J.; Xu, J.; Zhang, H. Spatio-temporal distribution and natural variation of metabolites in citrus fruits. Food Chem. 2016, 199, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Tomar, M.; Bhuyan, D.J.; Punia, S.; Grasso, S.; Sa, A.G.A.; Carciofi, B.A.M.; Arrutia, F.; Changan, S.; Radha; et al. Tomato (Solanum lycopersicum L.) seed: A review on bioactives and biomedical activities. Biomed. Pharmacother. 2021, 142, 112018. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, L.E.; Strickler, S.R.; Mueller, L.A.; Mazourek, M. Comparative analysis of Cucurbita pepo metabolism throughout fruit development in acorn squash and oilseed pumpkin. Hortic. Res. 2016, 3, 16045. [Google Scholar] [CrossRef] [PubMed]
- Shinozaki, Y.; Nicolas, P.; Fernandez-Pozo, N.; Ma, Q.; Evanich, D.J.; Shi, Y.; Xu, Y.; Zheng, Y.; Snyder, S.I.; Martin, L.B.B.; et al. High-resolution spatiotemporal transcriptome mapping of tomato fruit development and ripening. Nat. Commun. 2018, 9, 364. [Google Scholar] [CrossRef] [PubMed]
- Vamanu, E.; Gatea, F. Correlations between Microbiota Bioactivity and Bioavailability of Functional Compounds: A Mini-Review. Biomedicines 2020, 8, 39. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, W.; Liu, D.; Yin, M.; Wang, X.; Wang, S.; Shen, S.; Liu, S.; Huang, Y.; Li, X.; et al. Evolution-guided multiomics provide insights into the strengthening of bioactive flavone biosynthesis in medicinal pummelo. Plant Biotechnol. J. 2023, 21, 1577–1589. [Google Scholar] [CrossRef]
- Deng, M.; Zhang, R.; Zhang, S.; Lu, Q.; Dong, L.; Huang, F.; Jia, X.; Ma, Q.; Chi, J.; Zhao, D.; et al. The flavonoid profiles in different tissue parts of Shatianyu (Citrus grandis L. Osbeck) and their in vitro bioactivity. LWT 2023, 180, 114712. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Wang, Y.; Chao, Y.; Zhang, J.; Jia, Y.; Tie, J.; Hu, D. Regulation of SIRT1 and Its Roles in Inflammation. Front. Immunol. 2022, 13, 831168. [Google Scholar] [CrossRef]
- El-Maraghy, S.A.; Reda, A.; Essam, R.M.; Kortam, M.A. The citrus flavonoid “Nobiletin” impedes STZ-induced Alzheimer’s disease in a mouse model through regulating autophagy mastered by SIRT1/FoxO3a mechanism. Inflammopharmacology 2023, 31, 2701–2717. [Google Scholar] [CrossRef]
- Fernandes, S.R.; Barreiros, L.; Oliveira, R.F.; Cruz, A.; Prudencio, C.; Oliveira, A.I.; Pinho, C.; Santos, N.; Morgado, J. Chemistry, bioactivities, extraction and analysis of azadirachtin: State-of-the-art. Fitoterapia 2019, 134, 141–150. [Google Scholar] [CrossRef]
- Malik, S.; Bhatia, J.; Suchal, K.; Gamad, N.; Dinda, A.K.; Gupta, Y.K.; Arya, D.S. Nobiletin ameliorates cisplatin-induced acute kidney injury due to its anti-oxidant, anti-inflammatory and anti-apoptotic effects. Exp. Toxicol. Pathol. 2015, 67, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Mubeen, S.; Li, Z.-L.; Huang, Q.-m.; He, C.-T.; Yang, Z.-Y. Comparative Transcriptome Analysis Revealed the Tissue-Specific Accumulations of Taxanes among Three Experimental Lines of Taxus yunnanensis. J. Agric. Food Chem. 2018, 66, 10410–10420. [Google Scholar] [CrossRef] [PubMed]
- Dossou, S.S.K.; Xu, F.; Cui, X.; Sheng, C.; Zhou, R.; You, J.; Tozo, K.; Wang, L. Comparative metabolomics analysis of different sesame (Sesamum indicum L.) tissues reveals a tissue-specific accumulation of metabolites. BMC Plant Biol. 2021, 21, 352. [Google Scholar] [CrossRef] [PubMed]
NO. | RT (min) | Compounds | A (Exocarp) | B (Endocarp) | C (Segment Membrane) | D (Pulp) | E (Seed) |
---|---|---|---|---|---|---|---|
1 | 7.17 | Chrysosplenetin (5,4′-Dihydroxy-3,6,7,3′-tetramethoxyflavone) | 215,375,441.33 ± 2,733,016.92 a | 3,649,223.62 ± 255,425.12 b | 1,038,869.23 ± 369,062.40 c | 151,693.63 ± 21,734.25 c | 17,849.01 ± 5711.43 c |
2 | 7.01 | 5,7-Dihydroxy-6,3’,4’,5’-tetramethoxyflavone (Arteanoflavone) | 199,144,747.6 ± 7,509,612.73 a | 3,257,368.39 ± 23,451.55 b | 1,058,011.09 ± 63,027 b | 141,366.86 ± 21,684.15 b | 14,512.12 ± 8195.76 b |
3 | 7.07 | 5,7-Dihydroxy-3,4’,6,8-tetramethoxyflavone | 197,634,943.6 ± 2,221,127.57 a | 3,537,275.17 ± 104,667.83 b | 1,077,954.74 ± 96,963.36 c | 161,430.72 ± 8528.39 c | 18,517.77 ± 7373.69 c |
4 | 5.91 | Limocitrin (5,7,4’-trihydroxy-8,3’-dimethoxyflavone) | 115,680,954.87 ± 3,355,958.14 a | 4,032,390.53 ± 402,918.75 b | 870,832.43 ± 43,265.91 c | 262,394.37 ± 234,964.59 c | 49,824.69 ± 27,280.1 c |
5 | 5.90 | 3,3’,4’,5′-Tetrahydroxy-5,7-Dimethoxyflavone | 112,800,123.7 ± 2,069,998.79 a | 4,015,686.73 ± 434,379.65 b | 883,382.07 ± 73,676.55 c | 287,122.36 ± 194,795.13 c | 27,163.77 ± 3921.35 c |
6 | 5.97 | 3,3’,5,7-Tetrahydroxy-4’,6-Dimethoxyflavone; (Laciniatin) | 110,438,621.63 ± 4,248,654.88 a | 4,074,597.52 ± 899,302.78 b | 925,358.73 ± 98,083.31 bc | 304,048.92 ± 174,264.63 d | 59,913.79 ± 27,814.35 d |
7 | 4.21 | Diosmetin-7-O-rutinoside (Diosmin) | 92,297,944.63 ± 8,557,177.77 a | 662,131.08 ± 53,129.53 c | 1,049,026.34 ± 246,757.27 c | 10,172,673.97 ± 1,612,973.6 b | 2,680,246.94 ± 511,396.29 c |
8 | 4.20 | Peonidin-3-O-(6″-O-p-coumaroyl) glucoside | 84,259,605.36 ± 13,964,244.65 a | 482,497.71 ± 44,279.46 b | 885,215.97 ± 51,186.07 b | 9,159,306.23 ± 287,503.52 b | 2,395,267.42 ± 320,379.65 b |
9 | 6.77 | Chrysosplenol F | 76,432,865.01 ± 2,172,940.91 a | 2,265,029.23 ± 293,596.33 b | 674,248.26 ± 41,185.12 bc | 116,875.73 ± 57,252.36 c | 19,009.09 ± 4735.11 c |
10 | 7.06 | Skullcapflavone II | 68,755,045.76 ± 1,504,580.52 a | 1,152,061.97 ± 33,998.7 b | 411,526.91 ± 34,949.46 bc | 58,736.67 ± 57,885.38 bc | 13,462.01 ± 898.31 c |
11 | 4.92 | Meranzin | 260,937,082.23 ± 23,304,358.27 a | 20,341,832.83 ± 1,708,360.9 b | 6,243,958.5 ± 144,435.99 bc | 12,543,136.5 ± 504,700.46 bc | 212,607.19 ± 18,038.13 c |
12 | 4.36 | Suberenol | 186,823,251.23 ± 21,776,116.02 a | 19,099,824.82 ± 1,699,241.51 b | 5,772,893.04 ± 28,612.4 bc | 12,435,930.24 ± 85,479.08 bc | 176,742.38 ± 5857.66 c |
13 | 4.54 | Citrusal | 186,823,251.23 ± 21,776,116.02 a | 19,099,824.82 ± 1,699,241.51 b | 5,772,893.04 ± 28,612.4 bc | 12,435,930.24 ± 85,479.08 bc | 176,742.38 ± 5857.66 c |
14 | 5.83 | Isopeucenin | 157,477,138.8 ± 12,162,157.68 a | 5,642,660.59 ± 1,312,269.86 b | 1,234,122.08 ± 65,187.29 b | 270,187.16 ± 192,250.21 b | 40,838.55 ± 9569.31 b |
15 | 8.00 | Peucenin | 154,394,924.77 ± 7,692,801.82 a | 6,430,933.69 ± 389,918.41 b | 2,062,597.8 ± 114,085.53 bc | 364,476.85 ± 106,253.91 c | 75,073.57 ± 8458.71 c |
16 | 9.34 | 4,9-dimethoxy-2-(2-((1-(7-methoxy-2-oxo-2H-chromen-6-yl)-3-methylbut-3-en-2-yl) oxy)-3-methylbut-3-en-1-yl)-7H-furo[3,2-g] chromen-7-one | 123,031,095.1 ± 5,623,842.42 a | 8,623,836.7 ± 1,685,324.27 b | 3,410,740.97 ± 818,112.44 c | 324,912.94 ± 93,832.91 c | 56,452.08 ± 25,491.96 c |
17 | 5.12 | Marmesin | 94,794,297.06 ± 13,634,909.66 a | 5,892,271.63 ± 308,200.36 b | 936,469.33 ± 127,144.45 b | 199,081.51 ± 46,710.36 b | 24,964.74 ± 1101.51 b |
18 | 5.27 | (R)-Columbianetin | 89,507,016.21 ± 10,018,326.9 a | 5,543,506.33 ± 162,326.75 b | 876,848.22 ± 63,002.84 b | 232,068.1 ± 16,449.96 b | 27,053.88 ± 5665.46 b |
19 | 5.16 | (S)-Columbianetin | 89,030,986.87 ± 7,601,557.45 a | 5,273,407.35 ± 203,666.33 b | 901,251.66 ± 49,519.62 b | 233,312.31 ± 33,575.65 b | 33,981.72 ± 4086.74 b |
20 | 5.29 | Aculeatin | 87,874,086.71 ± 9,177,839.7 a | 4,085,031.99 ± 141,979.16 b | 839,461.13 ± 74,198.74 b | 436,005.05 ± 30,257.15 b | 32,599.26 ± 8838.45 b |
21 | 1.74 | Vanilloloside | 66,918,314.54 ± 2,200,006.22 a | 2,2407,728.96 ± 1,936,019.52 b | 9,630,821.78 ± 264,738.34 c | 1,047,743.08 ± 33,178.48 e | 4,662,786.36 ± 289,863.42 d |
22 | 7.80 | Ethyl Rosmarinate | 45,477,614.42 ± 740,079.47 a | 1,014,298.25 ± 82,285.65 b | 314,092.07 ± 51,137.3 c | 76,242.37 ± 33,474.65 c | 8580.57 ± 5381.47 c |
23 | 4.53 | Isomartynoside | 20,687,319.68 ± 744,402.91 a | 2,429,958.35 ± 196,037.56 c | 3,581,404.68 ± 429,813.82 b | 242,327.76 ± 159,646.43 e | 1,676,687.08 ± 66,604.67 d |
24 | 2.51 | O-p-Coumaroylgalactaric acid | 15,489,567.74 ± 255,510.67 a | 35,983.57 ± 17,989.23 c | 40,145.37 ± 5073.08 c | 23,262.85 ± 11,225.3 c | 5,584,619.27 ± 375,002.9 b |
25 | 3.85 | Caffeoyl-p-coumaroyltartaric acid | 3,074,723.57 ± 191,997.19 a | 353,981.19 ± 23,437.76 b | 133,901.71 ± 13,837.88 c | 30,755.38 ± 12,655.1 c | 64,523.6 ± 9132.67 c |
26 | 2.10 | Gallic acid-4-O-glucoside | 2,837,670.36 ± 110,318.44 a | 290,698.33 ± 24,060.2 b | 95,060.68 ± 8822.36 c | 7424.4 ± 2166.22 d | 32,141 ± 8079.06 cd |
27 | 3.03 | Benzyl β-primeveroside | 2,586,449.41 ± 71,897.56 a | 1,129,773.84 ± 61,411.06 b | 701,857.19 ± 40,702.72 c | 114,193.4 ± 4212.4 d | 54,383.58 ± 10,190.7 d |
28 | 2.72 | Phenylpropionic acid-O-β-D-glucopyranoside | 2,413,478.4 ± 233,932.76 a | 778,878.41 ± 144,084.99 b | 249,482.8 ± 34,050.35 c | 85,555.14 ± 23,928.44 c | 57,981.33 ± 13,160.53 c |
29 | 3.29 | Benzyl-(2′′-O-xylosyl) glucoside | 2,254,227.17 ± 187,358.5 a | 1,025,592.16 ± 92,579.99 b | 674,646.37 ± 54,996.98 c | 98,671.06 ± 14,700.62 d | 47,044.06 ± 9160 d |
30 | 2.19 | mudanoside B | 2,122,356.04 ± 84,289.31 a | 90,109.14 ± 7076.37 b | 63,744.08 ± 4854.33 bc | 6147.13 ± 378.22 c | 14,332.81 ± 3346.47 c |
31 | 6.25 | 1,2-Dihydroxy-3-methoxy-10-methylacridin-9-one | 76,802,456.09 ± 6,747,989.98 a | 208,713.08 ± 59,287.97 b | 38,123.64 ± 9474.95 b | 16,620.93 ± 12,116.89 b | 8218.07 ± 3394.31 b |
32 | 6.42 | clausine G | 75,466,395.59 ± 5,404,771.87 a | 184,078.51 ± 95,857.1 b | 32,248.41 ± 4504.21 b | 18,512.72 ± 16,919.5 b | 7231.26 ± 4518.78 b |
33 | 6.27 | 1-Hydroxy-2,3-dimethoxy-10H-acridin-9-one (Xanthoxoline) | 75,122,410.3 ± 5,559,738.77 a | 199,659.79 ± 112,539.04 b | 45,933.71 ± 9408.16 b | 17,618.92 ± 18,214.61 b | 5988.84 ± 3300.55 b |
34 | 5.50 | Grandisine III | 47,531,920.36 ± 4,206,918.74 a | 156,240.64 ± 56,592.05 b | 28,639.62 ± 12,252.91 b | 19,751.77 ± 10,476.99 b | 15,743.45 ± 11,923.24 b |
35 | 2.47 | p-Coumaroylputrescine | 23,396,172.51 ± 3,501,029.57 a | 5,114,109.93 ± 366,920.37 b | 7,609,952.68 ± 480,229.08 b | 5,116,393.88 ± 81,310.33 b | 666,890.53 ± 25,260.76 c |
36 | 6.84 | Citpressine I | 17,813,550.77 ± 1,192,572.48 a | 232,362.3 ± 170,007.8 b | 8981.16 ± 1709.46 b | 4681.46 ± 2056.72 b | 4618.94 ± 852.09 b |
37 | 2.13 | Xanthurenic Acid 8-O-Glucoside | 16,172,791.27 ± 1,337,176.61 a | 3,473,240.25 ± 73,470.84 b | 1,936,397.29 ± 85,652.95 c | 744,633.09 ± 77,972.89 d | 1,023,957.8 ± 76,356.01 cd |
38 | 2.33 | m-Aminophenylacetylene | 13,541,353.9 ± 820,841.54 a | 3,237,092.85 ± 63,039.95 d | 4,896,596.8 ± 412,573.04 b | 4,178,287.91 ± 108,391.81 c | 3,124,474.58 ± 41,155.84 d |
39 | 6.79 | 1,5-Dihydroxy-3-methoxy-10-methylacridin-9-one | 13,253,993.39 ± 41,434.9 a | 28,782.17 ± 11,677.93 b | 10,252.21 ± 3008.51 b | - | 7652.66 ± 3405.02 b |
40 | 2.47 | Indole | 12,696,287.5 ± 938,357.84 a | 3,490,247.27 ± 215,867.14 cd | 4,817,418.95 ± 468,345.87 b | 4,237,510.34 ± 85,488.53 bc | 3,200,661.16 ± 136,909.63 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, J.; Liu, H.; Lai, H.; Xu, Y.; Wu, J.; Yu, Y.; Huang, W.; Fu, M.; Liu, H. Widely Targeted Metabolomics Reveal the Distribution of Metabolites in Shatian Pomelo Fruit. Foods 2024, 13, 3698. https://doi.org/10.3390/foods13223698
Wen J, Liu H, Lai H, Xu Y, Wu J, Yu Y, Huang W, Fu M, Liu H. Widely Targeted Metabolomics Reveal the Distribution of Metabolites in Shatian Pomelo Fruit. Foods. 2024; 13(22):3698. https://doi.org/10.3390/foods13223698
Chicago/Turabian StyleWen, Jing, Haocheng Liu, Huining Lai, Yujuan Xu, Jijun Wu, Yuanshan Yu, Wenqian Huang, Manqin Fu, and Haiyang Liu. 2024. "Widely Targeted Metabolomics Reveal the Distribution of Metabolites in Shatian Pomelo Fruit" Foods 13, no. 22: 3698. https://doi.org/10.3390/foods13223698
APA StyleWen, J., Liu, H., Lai, H., Xu, Y., Wu, J., Yu, Y., Huang, W., Fu, M., & Liu, H. (2024). Widely Targeted Metabolomics Reveal the Distribution of Metabolites in Shatian Pomelo Fruit. Foods, 13(22), 3698. https://doi.org/10.3390/foods13223698