Spinacia oleracea L. Baby Leaves as a Source of Bioactive Principles: The Chemical Profiling of Eco-Sustainable Extracts by Using LC-ESI/HRMS- and 1H NMR-Based Metabolomics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction Workflow
2.2. LC-ESI/HRMSMS Analysis and Multivariate Data Analysis of Specialized Metabolites
2.3. Isolation Procedures
2.4. H-NMR Analysis and Multivariate Data Analysis of Primary Metabolites
2.5. Quantitative Analysis of 20-Hydroxyecdysone (6)
2.6. Determination of Total Phenolic Content, Flavonoid Content, and Radical Scavenging Activity by Spectrophotometric Assays
3. Results and Discussion
3.1. Fingerprint of Extracts of S. oleracea by LC-ESI/HRMSMS
3.2. PCA of LC-ESI/HRMS Data of S. oleracea Extracts by Targeted Analysis
3.3. Isolation of Main Specialized Metabolites of Extracts of S. oleracea Baby Leaves
3.4. Fingerprint of Eco-Sustainable Extracts of S. oleracea by 1H-NMR Analysis
3.5. PCA of 1H-NMR Data Obtained for Different Extracts
3.6. Evaluation of Total Phenolic Content, Flavonoid Content, and Radical Scavenging Activity of Eco-Sustainable Extracts of S. oleracea Baby Leaves
3.7. Quantitative Analysis of 20-Hydroxyecdysone (6) in Extracts of S. oleracea
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, S.; Feng, L.; Zhang, C.; Bao, Y.; He, Y. Identifying Freshness of Spinach Leaves Stored at Different Temperatures Using Hyperspectral Imaging. Foods 2019, 8, 356. [Google Scholar] [CrossRef]
- Niklas, A.A.; Borge, G.I.A.; Rødbotten, R.; Berget, I.; Müller, M.H.B.; Herrmann, S.S.; Granby, K.; Kirkhus, B. Levels of nitrate, nitrite and nitrosamines in model sausages during heat treatment and in vitro digestion—The impact of adding nitrite and spinach (Spinacia oleracea L.). Food Res. Int. 2023, 166, 112595. [Google Scholar] [CrossRef]
- Prasad, R.V.; Dhital, S.; Williamson, G.; Barber, E. Nutrient Composition, Physical Characteristics and Sensory Quality of Spinach-Enriched Wheat Bread. Foods 2024, 13, 2401. [Google Scholar] [CrossRef]
- Bergman, M.; Varshavsky, L.; Gottlieb, H.E.; Grossman, S. The antioxidant activity of aqueous spinach extract: Chemical identification of active fractions. Phytochemistry 2001, 58, 143–152. [Google Scholar] [CrossRef]
- Watanabe, M.; Ayugase, J. Effect of low temperature on flavonoids, oxygen radical absorbance capacity values and major components of winter sweet spinach (Spinacia oleracea L.). J. Sci. Food Agric. 2015, 95, 2095–2104. [Google Scholar] [CrossRef]
- Vázquez, E.; García-Risco, M.R.; Jaime, L.; Reglero, G.; Fornari, T. Simultaneous extraction of rosemary and spinach leaves and its effect on the antioxidant activity of products. J. Supercrit. Fluids 2013, 82, 138–145. [Google Scholar] [CrossRef]
- Howard, L.; Pandjaitan, N. Pressurized Liquid Extraction of Flavonoids from Spinach. J. Food Sci. 2008, 73, C151–C157. [Google Scholar] [CrossRef]
- Bhengu, N.M.; Mianda, S.M.; Maboko, M.M.; Sivakumar, D. The Effects of Nitrogen Application and Varietal Variation on the Product Quality and In Vitro Bioaccessibility of Bioactive Compounds of Baby Spinach Varieties Grown in a Soilless Growth Medium. Foods 2024, 13, 2667. [Google Scholar] [CrossRef]
- Soleimani, H.; Ghanadian, M.; Mostowfizadeh-Ghalamfarsa, R. Spinach flavonoid-rich extract: Unleashing plant defense mechanisms against cucumber powdery mildew. Sustain. Chem. Pharm. 2024, 41, 101740. [Google Scholar] [CrossRef]
- Bajkacz, S.; Rusin, K.; Wolny, A.; Adamek, J.; Erfurt, K.; Chrobok, A. Highly Efficient Extraction Procedures Based on Natural Deep Eutectic Solvents or Ionic Liquids for Determination of 20-Hydroxyecdysone in Spinach. Molecules 2020, 25, 4736. [Google Scholar] [CrossRef]
- Modlin, R.F.; Alred, P.A.; Tjerneld, F. Utilization of temperature-induced phase separation for the purification of ecdysone and 20-hydroxyecdysone from spinach. J. Chromatogr. A 1994, 668, 229–236. [Google Scholar] [CrossRef]
- Ivanova, S.; Delattre, C.; Karcheva-Bahchevanska, D.; Benbasat, N.; Nalbantova, V.; Ivanov, K. Plant-Based Diet as a Strategy for Weight Control. Foods 2021, 10, 3052. [Google Scholar] [CrossRef]
- Buniam, J.; Chansela, P.; Weerachayaphorn, J.; Saengsirisuwan, V. Dietary Supplementation with 20-Hydroxyecdysone Ameliorates Hepatic Steatosis and Reduces White Adipose Tissue Mass in Ovariectomized Rats Fed a High-Fat, High-Fructose Diet. Biomedicines 2023, 11, 2071. [Google Scholar] [CrossRef] [PubMed]
- Dinan, L.; Dioh, W.; Veillet, S.; Lafont, R. 20-Hydroxyecdysone, from Plant Extracts to Clinical Use: Therapeutic Potential for the Treatment of Neuromuscular, Cardio-Metabolic and Respiratory Diseases. Biomedicines 2021, 9, 492. [Google Scholar] [CrossRef]
- FAOSTAT. Statistics Division of the Food and Agriculture Organization (FAO) of the United Nations [WWW Document]. 2023. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 6 May 2024).
- Lin, H.; Black, M.J.; Walsh, L.; Giordano, F.S.; Borrion, A. Life cycle assessment of baby leaf spinach: Reduction of waste through interventions in growing treatments and packaging. J. Clean. Prod. 2024, 449, 141723. [Google Scholar] [CrossRef]
- Santos, J.; Oliveira, M.B.P.P.; Ibáñez, E.; Herrero, M. Phenolic profile evolution of different ready-to-eat baby-leaf vegetables during storage. J. Chromatogr. A 2014, 1327, 118–131. [Google Scholar] [CrossRef]
- Sabaragamuwa, R.; Perera, C.O. Total Triterpenes, Polyphenols, Flavonoids, and Antioxidant Activity of Bioactive Phytochemicals of Centella asiatica by Different Extraction Techniques. Foods 2023, 12, 3972. [Google Scholar] [CrossRef] [PubMed]
- Naviglio, D.; Scarano, P.; Ciaravolo, M.; Gallo, M. Rapid Solid-Liquid Dynamic Extraction (RSLDE): A Powerful and Greener Alternative to the Latest Solid-Liquid Extraction Techniques. Foods 2019, 8, 245. [Google Scholar] [CrossRef]
- Becerra-Martínez, E.; Florentino-Ramos, E.; Pérez-Hernández, N.; Gerardo Zepeda-Vallejo, L.; Villa-Ruano, N.; Velázquez-Ponce, M.; García-Mendoza, F.; Bañuelos-Hernández, A.E. 1H NMR-based metabolomic fingerprinting to determine metabolite levels in serrano peppers (Capsicum annum L.) grown in two different regions. Food Res. Int. 2017, 102, 163–170. [Google Scholar]
- Crescenzi, M.A.; Cerulli, A.; Montoro, P.; Piacente, S. Metabolite Profiling for Typization of “Rucola della Piana del Sele” (PGI), Eruca sativa, through UHPLC-Q-Exactive-Orbitrap-MS/MS Analysis. Foods 2023, 12, 3384. [Google Scholar] [CrossRef]
- Cerulli, A.; Masullo, M.; Pizza, C.; Piacente, S. Metabolite Profiling of “Green” Extracts of Cynara cardunculus subsp. scolymus, Cultivar “Carciofo di Paestum” PGI by 1H NMR and HRMS-Based Metabolomics. Molecules 2022, 27, 3328. [Google Scholar] [PubMed]
- Kureshi, A.A.; Ghoshal, S.; Adsare, S.; Saste, G.; Mirgal, A.; Girme, A.; Hingorani, L. Distinct Morphological and Analytical Features of Spinacia oleracea Differentiating from Conventional Spinach Plants. Food Sci. Technol. 2023, 3, 273–282. [Google Scholar]
- Cerulli, A.; Lauro, G.; Masullo, M.; Cantone, V.; Olas, B.; Kontek, B.; Nazzaro, F.; Bifulco, G.; Piacente, S. Cyclic Diarylheptanoids from Corylus avellana Green Leafy Covers: Determination of Their Absolute Configurations and Evaluation of Their Antioxidant and Antimicrobial Activities. J. Nat. Prod. 2017, 80, 1703–1713. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, N.; Piacente, S.; Burke, A.; Khan, A.; Pizza, C. Constituents of Cuscuto reflexa are anti-HIV Agents. Antivir. Chem. Chemother. 1997, 8, 70–74. [Google Scholar] [CrossRef]
- Bottino, A.; Degl’Innocenti, E.; Guidi, L.; Graziani, G.; Fogliano, V. Bioactive Compounds during Storage of Fresh-Cut Spinach: The Role of Endogenous Ascorbic Acid in the Improvement of Product Quality. J. Agric. Food Chem. 2009, 57, 2925–2931. [Google Scholar] [CrossRef]
- Grace, M.H.; Hoskin, R.T.; Hayes, M.; Iorizzo, M.; Kay, C.; Ferruzzi, M.G.; Lila, M.A. Spray-dried and freeze-dried protein-spinach particles; effect of drying technique and protein type on the bioaccessibility of carotenoids, chlorophylls, and phenolics. Food Chem. 2022, 388, 133017. [Google Scholar] [CrossRef]
- Cerulli, A.; Napolitano, A.; Hošek, J.; Masullo, M.; Pizza, C.; Piacente, S. Antioxidant and in vitro preliminary anti-inflammatory activity of Castanea sativa (Italian cultivar “marrone di roccadaspide” PGI) burs, leaves and chestnuts extracts and their metabolite profiles by LC-ESI/LTQORBITRAP/MS/MS. Antioxidants 2021, 10, 278. [Google Scholar] [CrossRef]
- Verhulst, E.P.; Brunton, N.P.; Rai, D.K. Polyphenols in Agricultural Grassland Crops and Their Health-Promoting Activities—A Review. Foods 2023, 12, 4122. [Google Scholar] [CrossRef]
- Todorova, V.; Ivanova, S.; Chakarov, D.; Kraev, K.; Ivanov, K. Ecdysterone and Turkesterone—Compounds with Prominent Potential in Sport and Healthy Nutrition. Nutrients 2024, 16, 1382. [Google Scholar] [CrossRef]
- Cerulli, A.; Masullo, M.; Piacente, S. Metabolite profiling of Helichrysum italicum derived food supplements by 1H-nmr-based metabolomics. Molecules 2021, 26, 6619. [Google Scholar] [CrossRef]
- Oroian, M.; Escriche, I. Antioxidants: Characterization, natural sources, extraction and analysis. Food Res. Int. 2015, 74, 10–36. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.S.; So, H.M.; Kim, S.; Kim, J.K.; Kim, J.-C.; Kang, D.-M.; Ahn, M.-J.; Ko, Y.-J.; Kim, K.H. Comparative evaluation of bioactive phytochemicals in Spinacia oleracea cultivated under greenhouse and open field conditions. Arch. Pharmacal. Res. 2022, 45, 795–805. [Google Scholar] [CrossRef] [PubMed]
- Villa-Ruano, N.; Pérez-Hernández, N.; Zepeda-Vallejo, L.G.; Quiroz-Acosta, T.; Mendieta-Moctezuma, A.; Montoya-García, C.; García-Nava, M.L.; Becerra-Martínez, E. 1H-NMR Based Metabolomics Profiling of Citrus Juices Produced in Veracruz, México. Chem. Biodivers. 2019, 16, e1800479. [Google Scholar] [CrossRef] [PubMed]
- Md Nor, S.; Ding, P.; Abas, F.; Mediani, A. 1H NMR Reveals Dynamic Changes of Primary Metabolites in Purple Passion Fruit (Passiflora edulis Sims) Juice during Maturation and Ripening. Agriculture 2022, 12, 156. [Google Scholar] [CrossRef]
- Dobrijević, D.; Pastor, K.; Nastić, N.; Özogul, F.; Krulj, J.; Kokić, B.; Bartkiene, E.; Rocha, J.M.; Kojić, J. Betaine as a Functional Ingredient: Metabolism, Health-Promoting Attributes, Food Sources, Applications and Analysis Methods. Molecules 2023, 28, 4824. [Google Scholar] [CrossRef]
- Lafont, R.; Serova, M.; Didry-Barca, B.; Raynal, S.; Guibout, L.; Dinan, L.; Veillet, S.; Latil, M.; Dioh, W.; Dilda, P.J. 20-Hydroxyecdysone activates the protective arm of the RAAS via the MAS receptor. J. Mol. Endocrinol. 2022, 68, 77–87. [Google Scholar] [CrossRef]
Rt (min) | Compound | Molecular Formula | [M−H]− | Δppm | MS/MS | |
---|---|---|---|---|---|---|
1 | 1.71 | allantoin | C4H6N4O3 | 157.0358 | 0.92 | 114.0296 (C4H6N2O2), |
2 | 10.89 | patuletin-3-O-β-D-(2″-feruloylglucopyranosyl)-(1→6)-β-D-glucopyranoside | C31H44O26 | 831.1992 | −5.47 | 655.1519 (C28H31O18), 331.0451 (C16H11O8) |
3 | 12.79 | patuletin-3-O-β-D-glucopyranosyl-(1→6)-[β-D-apiofuranosyl-(1→2)]-β-D-glucopyranoside | C33H40O22 | 787.1937 | 1.25 | 331.0457 (C16H11O8) |
4 | 13.27 | patuletin-3-O-β-D-glucopyranosyl-(1→5)-[β-D-apiofuranosyl-(1→2)]-β-D-glucopyranoside | C51H32O8 | 771.1996 | −1.69 | 331.0449 (C16H11O8) |
5 | 13.31 | spinacetin-3-O-β-D-glucopyranosyl-(1→6)-[β-D-apiofuranosyl-(1→2)]-β-D-glucopyranoside | C52H34O9 | 801.2090 | 0.81 | 345.0608 (C17H13O8), 329.0303 (C16H9O8) |
6 | 13.39 | 20-hydroxyecdysone | C28H46O9 | 525.3069 * | 3.33 | 479.3014 (C27H43O7), 319.1911 (C19H27O4), 159.1016 (C8H15O3) |
7 | 13.95 | patuletin-3-O-β-D-(2″-β-coumaroylglucopyranosyl)-(1→6)-[β-D-apiofuranosyl-(1→2)]-β-D-glucopyranoside | C60H38O11 | 933.2311 | −2.10 | 331.0440 (C16H11O8), 315.0149 (C15H7O8) |
8 | 14.00 | spinacetin-3-O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranoside | C29H34O18 | 669.1673 | 1.73 | 345.0616 (C17H13O8), 331.0417 (C16H11O8) |
9 | 14.04 | patuletin-3-O-β-D-(2″-β-feruloylglucopyranosyl)-(1→6)-[β-D-apiofuranosyl-(1→2)]-β-D-glucopyranoside | C43H48O25 | 963.2413 | 1.22 | 331.0444 (C16H11O8), 315.0147 (C15H7O8) |
10 | 14.43 | spinacetin--3-O-β-D-(2″-β-coumaroylglucopyranosyl)-(1→6)-[β-D-apiofuranosyl-(1→2)]-β-D-glucopyranoside | C36H52O29 | 947.2465 | 1.35 | 345.0619 (C17H13O8), 331.0407 (C16H11O8) |
11 | 14.47 | spinacetin-3-O-β-D-(2″-β-feruloylglucopyranosyl)-(1→6)-[β-D-apiofurnaosyl-(1→2)]-β-D-glucopyranoside | C37H54O30 | 977.2575 | 1.81 | 345.0605 (C17H13O8), 330.0378 (C16H10O8) |
12 | 15.33 | spinacetin-3-O-β-D-(2″-feruloylglucopyranosyl)-(1→6)-β-D-glucopyranoside | C32H46O26 | 845.2165 | −3.32 | 345.0614 (C17H13O8), 330.0381 (C16H10O8) |
13 | 15.50 | spinacetin-3-O-β-D-(2″-coumaroylglucopyranosyl)-(1→6)-β-D-glucopyranoside | C31H44O25 | 815.2040 | −5.03 | 345.0613 (C17H13O8), 330.0781 (C16H10O8) |
14 | 15.81 | 6 metoxyapigenin-5-methylether | C18H16O8 | 359.0775 * | 3.80 | 285.2070 (C15H9O6) |
15 | 15.85 | satuletin-3-methoxy-4′-O-β-D-glucuronide | C23H22O14 | 521.0938 | 2.36 | 345.0617 (C17H13O8), 331.0381 (C16H11O8), 315.0149 (C15H7O8) |
16 | 16.24 | isorhamnetin | C16H12O7 | 315.0590 | 2.38 | 301.1105 (C15H9O7) |
17 | 16.24 | jaceidin-4′-O-β-D-glucuronide | C24H24O14 | 535.1093 | 2.01 | 359.0775 (C18H15O8), 329.0302 (C16H9O8) |
18 | 16.80 | 5,3′,4′-trihydroxy-3-methoxy-6:7-methylenedioxyflavone-4′-O-β-glucuronide | C23H20O14 | 519.0779 | 1.83 | 343.0460 (C17H11O8), 328.0225 (C16H8O8) |
19 | 17.45 | 5,4′-dihydroxy-3-methoxy-6:7-methylenedioxiflavone-4′-O-β-D-glucuronide | C23H20O13 | 503.0830 | 1.42 | 327.0509 (C17H11O7), 312.0276 (C16H8O7) |
20 | 17.73 | 5,4′-dihydroxy-3,3′-dimethoxy-6:7-methylenedioxiflavone-4′-O-β-glucuronide | C24H22O14 | 533.0933 | 1.38 | 357.0617 (C18H13O8), 327.0145 (C16H7O8) |
21 | 18.05 | TriHODE | C18H32O5 | 327.2178 | 3.76 | 229.1441 (C12H21O4), 171.1018 (C9H15O3) |
22 | 18.83 | TriHOME | C18H34O5 | 329.2338 | 4.49 | 229.1144 (C12H21O4), 171.1018 (C9H15O3) |
23 | 19.34 | spinasaponin B | C42H66O15 | 809.4330 | 1.24 | 473.2382 (C23H37O10) |
24 | 20.17 | trimethylellagic acid | C17H12O8 | 343.0461 | 3.60 | 328.0224 (C16H8O8), 299.0195 (C15H7O7) |
25 | 20.98 | SCMG (18:3) | C31H52O14 | 647.3291 * | 1.77 | 341.1089 (C12H21O11), 277.2172 (C18H29O2) |
26 | 22.71 | DGMG (18:3) | C34H58O16 | 721.3647 * | 0.64 | 397.1353 (C15H25O12), 277.2173 (C18H29O2) |
27 | 23.23 | l-PC (18:3) | C27H50O9NP | 562.3145 * | 0.56 | 502.2941 (C29H42O7), 277.2171 (C18H29O2) |
28 | 23.57 | SCMG (18:3) | C31H52O14 | 647.3289 * | 1.53 | 341.1089 (C12H21O11), 277.2172 (C18H29O2) |
29 | 23.87 | SCMG (18:2) | C31H54O14 | 649.3442 * | 1.84 | 341.1093 (C12H21O11), 279.2328 (C18H31O2) |
30 | 24.65 | MGMG (C18:3) | C28H48O11 | 559.3125 * | 3.92 | 277.2173 (C18H29O2), 253.0927 (C9H17O8) |
31 | 25.08 | HOTre | C18H30O3 | 293.2120 | 0.92 | 171.1018 (C9H15O3) |
32 | 25.94 | SCMG (16:2) | C28H52O12 | 579.3387 | 1.25 | 341.1079 (C12H21O11), 255.2328 (C16H31O2) |
33 | 26.60 | HODE | C18H32O3 | 295.2284 | 0.71 | 295.2277 (C18H31O3), 277.2171 (C18H29O2), 171.1017 (C9H15O3) |
34 | 27.02 | MGMG (C16:0) | C25H48O9 | 491.3222 | 1.51 | 255.2329 (C16H31O2) |
35 | 27.62 | DGDG (C18:3) | C25H45O8P | 503.2759 | 1.77 | 277.2173 (C18H29O2) |
36 | 30.77 | DGDG (C18:3, C18:2–10) | C51H84O16 | 997.5746 * | 1.73 | 397.1353 (C15H25O12), 277.2172 (C18H29O2) |
37 | 34.27 | DGDG (18:3, C19:3) | C49H80O15 | 907.5429 | 0.53 | 397.1088 (C15H25O12), 341.1088 (C12H21O11), 291.2331 (C19H31O2), 277.2171 (C18H29O2) |
38 | 36.81 | DGDG (18:3, 18:3) | C51H84O15 | 935.5743 | 1.81 | 397.1353 (C15H25O12), 277.2172 (C18H29O2) |
39 | 37.68 | MGDG (16:3, 18:2) | C43H70O10 | 745.4893 | 0.99 | 490.3276 (C29H46O6), 277.2172 (C18H29O2), 249.1859 (C16H25O2) |
40 | 38.06 | DGDG (18:2, 18:3) | C51H86O15 | 937.5895 | 1.26 | 397.1341 (C15H25O12), 279.2332 (C18H31O2), 277.2172 (C18H29O2) |
41 | 40.31 | MGDG (18:3, 18:3) | C45H74O10 | 773.5209 | 1.35 | 277.2173 (C18H29O2) |
42 | 41.17 | DGDG (16:0, 18:3) | C49H86O15 | 913.5892 | 1.02 | 397.1352 (C15H25O12), 277.2173 (C18H29O2), 255.2329 (C16H31O2) |
Extract | MAC50 ± SD | MAC70 ± SD | MAC80 ± SD | MAC100 ± SD | NAV50 ± SD | NAV70 ± SD | NAV80 ± SD | NAV100 ± SD | UAE50 ± SD | UAE70 ± SD | UAE80 ± SD | UAE100 ± SD | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
amino acid derivatives | ||||||||||||||||||||||||
alanine | 0.32 * | 0.02 | 0.26 | 0.04 | 0.20 * | 0.02 | 0.23 * | 0.02 | 0.27 * | 0.02 | 1.12 * | 0.14 | 0.60 * | 0.03 | 0.17 * | 0.01 | 0.10 * | 0.02 | 0.65 * | 0.08 | 0.23 * | 0.01 | 0.08 * | 0.01 |
asparagine | 0.80 * | 0.06 | 0.96 | 0.22 | 0.93 * | 0.07 | 0.36 * | 0.09 | 4.46 ** | 0.03 | 5.00 * | 0.96 | 3.27 * | 0.16 | 0.26 * | 0.10 | 0.84 * | 0.01 | 1.59 * | 0.04 | 0.51 * | 0.04 | 0.26 * | 0.04 |
aspartic acid | 0.93 * | 0.03 | 0.94 | 0.10 | 0.85 * | 0.05 | 0.18 * | 0.08 | 0.37 * | 0.03 | 2.38 * | 0.77 | 1.07 * | 0.11 | 0.10 * | 0.03 | 0.71 * | 0.01 | 1.17 * | 0.13 | 0.44 * | 0.02 | 0.28 * | 0.10 |
betaine | 16.23 * | 3.94 | 18.21 ** | 0.21 | 13.60 ** | 0.16 | 12.95 * | 0.99 | 15.27 ** | 0.86 | 28.42 * | 4.04 | 15.52 * | 2.08 | 16.28 ** | 0.57 | 1.88 * | 0.05 | 8.07 * | 1.45 | 7.28 * | 0.07 | 6.51 * | 0.05 |
glutamine | 0.66 * | 0.05 | 0.59 * | 0.07 | 0.55 * | 0.03 | 0.27 * | 0.04 | 0.31 * | 0.03 | 2.65 * | 0.61 | 1.28 * | 0.09 | 0.12 * | 0.03 | 0.17 * | 0.03 | 0.72 * | 0.07 | 0.17 * | 0.01 | 0.10 * | 0.03 |
isoleucine | 0.40 * | 0.03 | 0.28 * | 0.07 | 0.16 * | 0.01 | 0.22 * | 0.03 | 0.23 * | 0.02 | 0.97 * | 0.06 | 0.30 * | 0.04 | 0.26 * | 0.01 | 0.05 * | 0.01 | 0.62 * | 0.10 | 0.21 * | 0.01 | 0.11 * | 0.06 |
leucine | 0.46 * | 0.02 | 0.36 * | 0.03 | 0.24 * | 0.04 | 0.24 * | 0.02 | 0.33 * | 0.04 | 0.78 * | 0.07 | 0.42 * | 0.01 | 0.21 * | 0.01 | 0.08 * | 0.01 | 0.79 * | 0.09 | 0.28 * | 0.03 | 0.11 * | 0.01 |
phenylalanine | 0.17 * | 0.01 | 0.17 * | 0.02 | 0.10 * | 0.01 | 0.11 * | 0.01 | 0.14 * | 0.01 | 1.27 * | 0.51 | 0.44 * | 0.14 | 0.09 * | 0.01 | 0.05 * | 0.01 | 0.34 * | 0.01 | 0.09 * | 0.01 | 0.10 * | 0.01 |
threonine | 0.31 * | 0.03 | 0.25 * | 0.03 | 0.19 * | 0.01 | 0.18 * | 0.04 | 0.37 * | 0.06 | 0.56 * | 0.06 | 0.31 * | 0.02 | 0.15 * | 0.01 | 0.09 * | 0.01 | 0.66 * | 0.05 | 0.24 * | 0.01 | 0.08 * | 0.02 |
tryptophan | 0.18 * | 0.02 | 0.21 * | 0.03 | 0.15 * | 0.02 | 0.08 * | 0.02 | 0.15 * | 0.02 | 1.37 * | 0.13 | 0.53 * | 0.09 | 0.08 * | 0.02 | 0.06 * | 0.01 | 0.25 * | 0.06 | 0.07 * | 0.01 | 0.07 * | 0.04 |
valine | 0.17 * | 0.02 | 0.20 * | 0.07 | 0.17 * | 0.01 | 0.21 * | 0.01 | 0.20 * | 0.01 | 0.46 * | 0.10 | 0.29 * | 0.03 | 0.17 * | 0.01 | 0.04 * | 0.01 | 0.46 * | 0.04 | 0.15 * | 0.02 | 0.07 | 0.01 |
sugars | ||||||||||||||||||||||||
fructose | 1.91 * | 0.55 | 1.55 * | 0.32 | 1.32 * | 0.25 | 0.66 * | 0.04 | 1.49 * | 0.14 | 1.83 * | 0.33 | 1.64 * | 0.47 | 0.44 * | 0.04 | 0.98 * | 0.07 | 1.37 * | 0.39 | 0.68 * | 0.09 | 0.36 * | 0.06 |
glucose | 0.40 * | 0.04 | 0.37 * | 0.05 | 0.26 * | 0.01 | 0.16 * | 0.03 | 0.33 * | 0.03 | 0.65 * | 0.01 | 0.36 * | 0.09 | 0.08 * | 0.02 | 0.13 * | 0.02 | 0.36 * | 0.05 | 0.04 * | 0.01 | 0.07 * | 0.01 |
sucrose | 0.66 * | 0.04 | 1.01 * | 0.05 | 0.80 * | 0.02 | 0.78 * | 0.06 | 0.83 * | 0.06 | 1.86 * | 0.08 | 1.78 ** | 0.19 | 0.44 * | 0.04 | 0.97 * | 0.01 | 2.35 * | 0.36 | 0.87 * | 0.02 | 0.47 * | 0.01 |
organic acids | ||||||||||||||||||||||||
malic acid | 1.40 ** | 0.07 | 1.37 * | 0.08 | 1.13 * | 0.03 | 0.28 * | 0.04 | 0.76 * | 0.04 | 3.27 * | 0.81 | 1.89 * | 0.15 | 0.17 * | 0.05 | 1.22 * | 0.07 | 2.09 * | 0.34 | 0.55 * | 0.01 | 0.31 * | 0.03 |
protocatechuic acid | 0.17 * | 0.01 | 0.25 * | 0.04 | 0.16 * | 0.03 | 0.14 * | 0.02 | 0.14 * | 0.02 | 0.67 * | 0.01 | 0.44 * | 0.05 | 0.11 * | 0.03 | 0.09 * | 0.02 | 0.35 * | 0.05 | 0.11 * | 0.02 | 0.07 * | 0.02 |
succinic acid | 0.16 * | 0.01 | 0.07 * | 0.02 | 0.15 * | 0.01 | 0.15 * | 0.01 | 0.13 * | 0.02 | 0.19 * | 0.01 | 0.13 * | 0.01 | 0.06 * | 0.01 | 0.06 * | 0.01 | 0.29 * | 0.03 | 0.09 * | 0.01 | 0.05 * | 0.01 |
other primary metabolites | ||||||||||||||||||||||||
allantoin | 0.63 * | 0.03 | 0.74 * | 0.03 | 0.38 * | 0.05 | 0.55 * | 0.10 | 0.74 * | 0.04 | 2.71 * | 0.62 | 1.29 * | 0.78 | 0.40 * | 0.04 | 0.17 * | 0.01 | 0.95 * | 0.02 | 0.27 * | 0.02 | 0.17 * | 0.04 |
folic acid | 0.10 * | 0.06 | 0.33 * | 0.05 | 0.10 * | 0.02 | 0.07 * | 0.04 | 0.08 * | 0.02 | 1.33 * | 0.91 | 0.34 * | 0.07 | 0.04 * | 0.02 | 0.03 * | 0.02 | 0.09 * | 0.02 | 0.12 * | 0.02 | 0.12 * | 0.01 |
GABA | 0.33 * | 0.04 | 0.32 * | 0.06 | 0.21 * | 0.02 | 0.22 * | 0.02 | 0.23 * | 0.02 | 1.70 * | 0.77 | 0.64 * | 0.17 | 0.18 * | 0.02 | 0.12 * | 0.02 | 0.62 * | 0.08 | 0.12 * | 0.01 | 0.09 * | 0.01 |
3-hydroxyisobutyric acid | 0.22 * | 0.01 | 0.25 * | 0.03 | 0.18 * | 0.01 | 0.16 * | 0.04 | 0.11 * | 0.02 | 0.38 * | 0.03 | 0.35 * | 0.02 | 0.13 * | 0.01 | 0.05 * | 0.01 | 0.39 * | 0.07 | 0.17 * | 0.05 | 0.04 * | 0.01 |
homocysteine | 1.01 * | 0.11 | 0.75 * | 0.03 | 0.91 * | 0.22 | 0.58 * | 0.13 | 0.97 * | 0.09 | 0.87 * | 0.07 | 0.59 * | 0.08 | 0.15 * | 0.06 | 0.22 * | 0.01 | 0.24 * | 0.05 | 0.22 * | 0.01 | 0.06 * | 0.02 |
trigonelline | 0.08 * | 0.02 | 0.13 * | 0.07 | 0.06 * | 0.03 | 0.07 * | 0.01 | 0.07 * | 0.02 | 0.53 * | 0.05 | 0.21 * | 0.02 | 0.05 * | 0.02 | 0.02 * | 0.01 | 0.13 * | 0.03 | 0.05 * | 0.02 | 0.03 * | 0.01 |
tyramine | 0.14 * | 0.01 | 0.17 * | 0.03 | 0.09 * | 0.01 | 0.08 * | 0.02 | 0.11 * | 0.01 | 0.73 * | 0.07 | 0.41 * | 0.09 | 0.04 * | 0.01 | 0.05 * | 0.01 | 0.30 * | 0.02 | 0.08 * | 0.01 | 0.04 * | 0.01 |
uridine | 0.06 * | 0.02 | 0.08 * | 0.01 | 0.05 * | 0.01 | 0.04 * | 0.01 | 0.17 * | 0.01 | 0.05 * | 0.01 | 0.18 * | 0.01 | 0.09 * | 0.01 | 0.05 * | 0.01 | 0.09 * | 0.02 | 0.02 * | 0.01 | 0.02 * | 0.01 |
Extract | Total Phenol Content a (mg GAE/g ± SD b) | Total Flavonoid Content c (mg rutin/g ± SD b) | TEAC d (mg/mL ± SD b) |
---|---|---|---|
MAC50 | 123.43 ± 0.95 *** | 12.72 ± 0.66 *** | 1.79 ± 0.12 *** |
MAC70 | 130.73 ± 0.55 *** | 10.90 ± 0.13 *** | 1.76 ± 0.13 *** |
MAC80 | 142.48 ± 0.95 *** | 25.45 ± 0.13 *** | 1.74 ± 0.10 *** |
MAC100 | 119.94 ± 1.10 *** | 11.20 ± 0.10 ** | 1.63 ± 0.09 *** |
NAV50 | 139.62 ± 0.55 *** | 27.87 ± 0.14 *** | 1.77 ± 0.13 *** |
NAV70 | 206.60 ± 5.50 *** | 41.05 ± 0.15 *** | 2.05 ± 0.23 *** |
NAV80 | 181.84 ± 0.10 *** | 40.14 ± 0.13 *** | 1.91 ± 0.10 *** |
NAV100 | 118.35 ± 0.55 ** | 14.08 ± 0.23 *** | 1.73 ± 0.05 *** |
UAE50 | 157.40 ± 0.55 *** | 24.31 ± 0.13 *** | 1.77 ± 0.12 *** |
UAE70 | 166.28 ± 1.46 *** | 23.02 ± 0.23 *** | 1.75 ± 0.09 *** |
UAE80 | 139.62 ± 3.30 *** | 15.96 ± 0.35 *** | 1.74 ± 0.08 *** |
UAE100 | 120.41 ± 3.85 *** | 11.98 ± 0.45 ** | 1.76 ± 0.09 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerulli, A.; Polcaro, L.M.; Masullo, M.; Piacente, S. Spinacia oleracea L. Baby Leaves as a Source of Bioactive Principles: The Chemical Profiling of Eco-Sustainable Extracts by Using LC-ESI/HRMS- and 1H NMR-Based Metabolomics. Foods 2024, 13, 3699. https://doi.org/10.3390/foods13223699
Cerulli A, Polcaro LM, Masullo M, Piacente S. Spinacia oleracea L. Baby Leaves as a Source of Bioactive Principles: The Chemical Profiling of Eco-Sustainable Extracts by Using LC-ESI/HRMS- and 1H NMR-Based Metabolomics. Foods. 2024; 13(22):3699. https://doi.org/10.3390/foods13223699
Chicago/Turabian StyleCerulli, Antonietta, Luciana Maria Polcaro, Milena Masullo, and Sonia Piacente. 2024. "Spinacia oleracea L. Baby Leaves as a Source of Bioactive Principles: The Chemical Profiling of Eco-Sustainable Extracts by Using LC-ESI/HRMS- and 1H NMR-Based Metabolomics" Foods 13, no. 22: 3699. https://doi.org/10.3390/foods13223699
APA StyleCerulli, A., Polcaro, L. M., Masullo, M., & Piacente, S. (2024). Spinacia oleracea L. Baby Leaves as a Source of Bioactive Principles: The Chemical Profiling of Eco-Sustainable Extracts by Using LC-ESI/HRMS- and 1H NMR-Based Metabolomics. Foods, 13(22), 3699. https://doi.org/10.3390/foods13223699