Antioxidant Bioaccessibility of Cooked Gluten-Free Pasta Enriched with Tomato Pomace or Linseed Meal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.2.1. Pasta Making
2.2.2. Pasta Cooking
2.2.3. Cooked Pasta Milling
2.2.4. In Vitro Digestion
2.3. Analyses
2.3.1. Carotenoid and Tocol Quantification
2.3.2. Phenol Quantification
2.3.3. Antioxidant Capacity Tests
2.4. Statistical Analysis
3. Results
3.1. Carotenoids
3.2. Tocols
3.3. Free Soluble Polyphenols
3.4. Bound Insoluble Polyphenols
3.5. Antioxidant Capacity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zerbini, C.; De Canio, F.; Martinelli, E.; Luceri, B. Are Gluten-Free Products Healthy for Non-Celiac Consumers? How the Perception of Well-Being Moderates Gluten-Free Addiction. Food Qual. Prefer. 2024, 118, 105183. [Google Scholar] [CrossRef]
- Larrosa, V.; Lorenzo, G.; Zaritzky, N.; Califano, A. Optimization of Rheological Properties of Gluten-Free Pasta Dough Using Mixture Design. J. Cereal Sci. 2013, 57, 520–526. [Google Scholar] [CrossRef]
- Lasa, A.; del Pilar Fernández-Gil, M.; Bustamante, M.Á.; Miranda, J. Nutritional and Sensorial Aspects of Gluten-Free Products. In Nutritional and Analytical Approaches of Gluten-Free Diet in Celiac Disease; Simón, E., Larretxi, I., Churruca, I., Lasa, A., Bustamante, M.Á., Navarro, V., Fernández-Gil, M.d.P., Miranda, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 59–78. ISBN 978-3-319-53342-1. [Google Scholar]
- Miranda, J.; Lasa, A.; Bustamante, M.A.; Churruca, I.; Simon, E. Nutritional Differences Between a Gluten-Free Diet and a Diet Containing Equivalent Products with Gluten. Plant Food Hum. Nutr. 2014, 69, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Difonzo, G.; de Gennaro, G.; Pasqualone, A.; Caponio, F. Potential Use of Plant-Based by-Products and Waste to Improve the Quality of Gluten-Free Foods. J. Sci. Food Agric. 2022, 102, 2199–2211. [Google Scholar] [CrossRef] [PubMed]
- Nakov, G.; Brandolini, A.; Hidalgo, A.; Ivanova, N.; Stamatovska, V.; Dimov, I. Effect of Grape Pomace Powder Addition on Chemical, Nutritional and Technological Properties of Cakes. LWT 2020, 134, 109950. [Google Scholar] [CrossRef]
- Nakov, G.; Brandolini, A.; Estivi, L.; Bertuglia, K.; Ivanova, N.; Jukić, M.; Komlenić, D.K.; Lukinac, J.; Hidalgo, A. Effect of Tomato Pomace Addition on Chemical, Technological, Nutritional, and Sensorial Properties of Cream Crackers. Antioxidants 2022, 11, 2087. [Google Scholar] [CrossRef]
- Gattuso, A.; De Bruno, A.; Piscopo, A.; Santacaterina, S.; Frutos, M.J.; Poiana, M. Bergamot Pomace Flour: From Byproduct to Bioactive Ingredient for Pasta Production. Sustainability 2024, 16, 7784. [Google Scholar] [CrossRef]
- Betrouche, A.; Estivi, L.; Colombo, D.; Pasini, G.; Benatallah, L.; Brandolini, A.; Hidalgo, A. Antioxidant Properties of Gluten-Free Pasta Enriched with Vegetable by-Products. Molecules 2022, 27, 8993. [Google Scholar] [CrossRef]
- Aydin, E.; Turgut, S.S.; Aydin, S.; Cevik, S.; Ozcelik, A.; Aksu, M.; Ozcelik, M.M.; Ozkan, G. A New Approach for the Development and Optimization of Gluten-Free Noodles Using Flours from Byproducts of Cold-Pressed Okra and Pumpkin Seeds. Foods 2023, 12, 2018. [Google Scholar] [CrossRef]
- Oniszczuk, A.; Widelska, G.; Wójtowicz, A.; Oniszczuk, T.; Wojtunik-Kulesza, K.; Dib, A.; Matwijczuk, A. Content of Phenolic Compounds and Antioxidant Activity of New Gluten-Free Pasta with the Addition of Chestnut Flour. Molecules 2019, 24, 2623. [Google Scholar] [CrossRef]
- Costantini, M.; Summo, C.; Faccia, M.; Caponio, F.; Pasqualone, A. Kabuli and Apulian Black Chickpea Milling By-Products as Innovative Ingredients to Provide High Levels of Dietary Fibre and Bioactive Compounds in Gluten-Free Fresh Pasta. Molecules 2021, 26, 4442. [Google Scholar] [CrossRef] [PubMed]
- Melini, V.; Melini, F.; Acquistucci, R. Phenolic Compounds and Bioaccessibility Thereof in Functional Pasta. Antioxidants 2020, 9, 343. [Google Scholar] [CrossRef] [PubMed]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static in Vitro Digestion Method Suitable for Food—An International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- AACC International. Approved Methods of Analysis, 11th ed.; Cereals & Grains Association: St. Paul, MN, USA, 1999. [Google Scholar]
- Brandolini, A.; Glorio-Paulet, P.; Estivi, L.; Locatelli, N.; Cordova-Ramos, J.S.; Hidalgo, A. Tocopherols, Carotenoids and Phenolics Changes during Andean Lupin (Lupinus mutabilis Sweet) Seeds Processing. J. Food Comp. Anal. 2022, 106, 104335. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Hidalgo, A.; Di Prima, R.; Fongaro, L.; Cappa, C.; Lucisano, M. Tocols, Carotenoids, Heat Damage and Technological Quality of Diced Tomatoes Processed in Different Industrial Lines. LWT 2017, 83, 254–261. [Google Scholar] [CrossRef]
- Oduro-Obeng, H.; Apea-Bah, F.B.; Wang, K.; Fu, B.X.; Beta, T. Effect of Cooking Duration on Carotenoid Content, Digestion and Potential Absorption Efficiencies among Refined Semolina and Whole Wheat Pasta Products. Food Funct. 2022, 13, 5953–5970. [Google Scholar] [CrossRef]
- Ćetković, G.; Šeregelj, V.; Brandolini, A.; Čanadanović-Brunet, J.; Tumbas Šaponjac, V.; Vulić, J.; Šovljanski, O.; Četojević-Simin, D.; Škrobot, D.; Mandić, A.; et al. Composition, Texture, Sensorial Quality, and Biological Activity after in Vitro Digestion of Durum Wheat Pasta Enriched with Carrot Waste Extract Encapsulates. Int. J. Food Sci. Nutr. 2022, 73, 638–649. [Google Scholar] [CrossRef]
- Hidalgo, A.; Ferraretto, A.; De Noni, I.; Bottani, M.; Cattaneo, S.; Galli, S.; Brandolini, A. Bioactive Compounds and Antioxidant Properties of Pseudocereals-Enriched Water Biscuits and Their in Vitro Digestates. Food Chem. 2018, 240, 799–807. [Google Scholar] [CrossRef]
- Werner, S.; Böhm, V. Bioaccessibility of Carotenoids and Vitamin E from Pasta: Evaluation of an in Vitro Digestion Model. J. Agric. Food Chem. 2011, 59, 1163–1170. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Bi, J.; Chen, Q.; Wu, X.; Qiao, Y.; Hou, H.; Zhang, X. Bioaccessibility of Carotenoids and Antioxidant Capacity of Seed-Used Pumpkin Byproducts Powders as Affected by Particle Size and Corn Oil during in Vitro Digestion Process. Food Chem. 2021, 343, 128541. [Google Scholar] [CrossRef]
- Hossain, A.; Jayadeep, A. Determination of Tocopherol and Tocotrienol Contents in Maize by in Vitro Digestion and Chemical Methods. J. Cereal Sci. 2018, 83, 90–95. [Google Scholar] [CrossRef]
- Conti, V.; Piccini, C.; Romi, M.; Salusti, P.; Cai, G.; Cantini, C. Pasta Enriched with Carrot and Olive Leaf Flour Retains High Levels of Accessible Bioactives after in Vitro Digestion. Foods 2023, 12, 3540. [Google Scholar] [CrossRef]
- Liyana-Pathirana, C.M.; Shahidi, F. Antioxidant Activity of Commercial Soft and Hard Wheat (Triticum aestivum L.) as Affected by Gastric pH Conditions. J. Agric. Food Chem. 2005, 53, 2433–2440. [Google Scholar] [CrossRef] [PubMed]
- Gawlik-Dziki, U.; Dziki, D.; Świeca, M.; Sȩczyk, Ł.; Rózyło, R.; Szymanowska, U. Bread Enriched with Chenopodium quinoa Leaves Powder—The Procedures for Assessing the Fortification Efficiency. LWT 2015, 62, 1226–1234. [Google Scholar] [CrossRef]
- Tian, W.; Hu, R.; Chen, G.; Zhang, Y.; Wang, W.; Li, Y. Potential Bioaccessibility of Phenolic Acids in Whole Wheat Products during in Vitro Gastrointestinal Digestion and Probiotic Fermentation. Food Chem. 2021, 362, 130135. [Google Scholar] [CrossRef]
- Lucas-González, R.; Ángel Pérez-Álvarez, J.; Moscaritolo, S.; Fernández-López, J.; Sacchetti, G.; Viuda-Martos, M. Evaluation of Polyphenol Bioaccessibility and Kinetic of Starch Digestion of Spaghetti with Persimmon (Dyospyros kaki) Flours Coproducts during in Vitro Gastrointestinal Digestion. Food Chem. 2021, 338, 128142. [Google Scholar] [CrossRef]
- Ziółkiewicz, A.; Kasprzak-Drozd, K.; Wójtowicz, A.; Oniszczuk, T.; Gancarz, M.; Kowalska, I.; Mołdoch, J.; Kondracka, A.; Oniszczuk, A. The Effect of in Vitro Digestion on Polyphenolic Compounds and Antioxidant Properties of Sorghum (Sorghum bicolor (L.) Moench) and Sorghum-Enriched Pasta. Molecules 2023, 28, 1706. [Google Scholar] [CrossRef]
- Kasprzak-Drozd, K.; Mołdoch, J.; Gancarz, M.; Wójtowicz, A.; Kowalska, I.; Oniszczuk, T.; Oniszczuk, A. In Vitro Digestion of Polyphenolic Compounds and the Antioxidant Activity of Acorn Flour and Pasta Enriched with Acorn Flour. Int. J. Mol. Sci. 2024, 25, 5404. [Google Scholar] [CrossRef]
- Montalbano, A.; Tesoriere, L.; Diana, P.; Barraja, P.; Carbone, A.; Spanò, V.; Parrino, B.; Attanzio, A.; Livrea, M.A.; Cascioferro, S.; et al. Quality Characteristics and in Vitro Digestibility Study of Barley Flour Enriched Ditalini Pasta. LWT 2016, 72, 223–228. [Google Scholar] [CrossRef]
- Podio, N.S.; Baroni, M.V.; Pérez, G.T.; Wunderlin, D.A. Assessment of Bioactive Compounds and Their in Vitro Bioaccessibility in Whole-Wheat Flour Pasta. Food Chem. 2019, 293, 408–417. [Google Scholar] [CrossRef]
- Bustos, M.C.; Vignola, M.B.; Paesani, C.; León, A.E. Berry Fruits-Enriched Pasta: Effect of Processing and in Vitro Digestion on Phenolics and Its Antioxidant Activity, Bioaccessibility and Potential Bioavailability. Int. J. Food Sci. Technol. 2020, 55, 2104–2112. [Google Scholar] [CrossRef]
- Paucar-Menacho, L.M.; Vásquez Guzmán, J.C.; Simpalo-Lopez, W.D.; Castillo-Martínez, W.E.; Martínez-Villaluenga, C. Enhancing Nutritional Profile of Pasta: The Impact of Sprouted Pseudocereals and Cushuro on Digestibility and Health Potential. Foods 2023, 12, 4395. [Google Scholar] [CrossRef] [PubMed]
- Gawlik-Dziki, U.; Dziki, D.; Baraniak, B.; Lin, R. The Effect of Simulated Digestion in Vitro on Bioactivity of Wheat Bread with Tartary Buckwheat Flavones Addition. LWT 2009, 42, 137–143. [Google Scholar] [CrossRef]
- Marinelli, V.; Padalino, L.; Conte, A.; Del Nobile, M.A.; Briviba, K. Red Grape Marc Flour as Food Ingredient in Durum Wheat Spaghetti: Nutritional Evaluation and Bioaccessibility of Bioactive Compounds. Food Sci. Technol. Res. 2018, 24, 1093–1100. [Google Scholar] [CrossRef]
- Pigni, N.B.; Aranibar, C.; Lucini Mas, A.; Aguirre, A.; Borneo, R.; Wunderlin, D.; Baroni, M.V. Chemical Profile and Bioaccessibility of Polyphenols from Wheat Pasta Supplemented with Partially-Deoiled Chia Flour. LWT—Food Sci. Technol. 2020, 124, 109134. [Google Scholar] [CrossRef]
- Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bound Phenolics in Foods, a Review. Food Chem. 2014, 152, 46–55. [Google Scholar] [CrossRef]
- Rocchetti, G.; Lucini, L.; Chiodelli, G.; Giuberti, G.; Gallo, A.; Masoero, F.; Trevisan, M. Phenolic Profile and Fermentation Patterns of Different Commercial Gluten-Free Pasta during in Vitro Large Intestine Fermentation. Food Res. Int. 2017, 97, 78–86. [Google Scholar] [CrossRef]
- Camelo-Méndez, G.A.; Agama-Acevedo, E.; Rosell, C.M.; Perea-Flores, M.d.J.; Bello-Pérez, L.A. Starch and Antioxidant Compound Release during in Vitro Gastrointestinal Digestion of Gluten-Free Pasta. Food Chem. 2018, 263, 201–207. [Google Scholar] [CrossRef]
- Palavecino, P.M.; Ribotta, P.D.; León, A.E.; Bustos, M.C. Gluten-Free Sorghum Pasta: Starch Digestibility and Antioxidant Capacity Compared with Commercial Products. J. Sci. Food Agric. 2019, 99, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Takács, K.; Wiczkowski, W.; Cattaneo, S.; Szerdahelyi, E.; Stuknytė, M.; Casiraghi, M.C.; Nehir El, S.; De Noni, I. Occurrence of Targeted Nutrients and Potentially Bioactive Compounds during in Vitro Digestion of Wheat Spaghetti. J. Funct. Foods 2018, 44, 118–126. [Google Scholar] [CrossRef]
Control | 10% TO | 15% TO | 10% LI | 15% LI | |
---|---|---|---|---|---|
Cooked | |||||
Lycopene + β-carotene | 0.08 d ± 0.00 | 0.60 b ± 0.01 | 0.76 a ± 0.01 | 0.07 d ± 0.01 | 0.10 c ± 0.00 |
β-cryptoxanthin | 0.04 ± 0.00 | 0.05 ± 0.00 | 0.05 ± 0.00 | 0.05 ± 0.01 | 0.06 ± 0.01 |
Lutein | 0.88 b ± 0.03 | 0.65 c ± 0.01 | 0.65 c ± 0.05 | 0.91 b ± 0.09 | 1.13 a ± 0.09 |
Zeaxanthin | 0.03 c ± 0.00 | 0.06 ab ± 0.00 | 0.07 a ± 0.01 | 0.05 b ± 0.00 | 0.07 ab ± 0.01 |
Digested | |||||
Soluble | |||||
Lycopene + β-carotene | 0.06 b ± 0.03 | 0.30 a ± 0.02 | 0.35 a ± 0.01 | 0.05 b ± 0.04 | 0.08 b ± 0.01 |
β-cryptoxanthin | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | nd | nd |
Lutein | 0.58 a ± 0.03 | 0.28 c ± 0.01 | 0.26 c ± 0.01 | 0.58 a ± 0.03 | 0.53 b ± 0.02 |
Zeaxanthin | 0.04 ± 0.01 | 0.02 ± 0.00 | 0.01 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0.00 |
Insoluble | |||||
Lycopene + β-carotene | 0.03 c ± 0.01 | 0.23 b ± 0.03 | 0.36 a ± 0.04 | 0.02 c ± 0.01 | 0.02 c ± 0.01 |
β-cryptoxanthin | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0.00 | 0.01 ± 0.00 |
Lutein | 0.26 ± 0.04 | 0.33 ± 0.01 | 0.28 ± 0.02 | 0.26 ± 0.02 | 0.31 ± 0.00 |
Zeaxanthin | 0.04 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0.00 | 0.01 ± 0.01 |
Control | 10% TO | 15% TO | 10% LI | 15% LI | |
---|---|---|---|---|---|
Cooked | |||||
α-tocopherol | nd | 1.08 ± 0.09 | 1.08 ± 0.01 | nd | nd |
β-tocotrienol | nd | nd | nd | 5.05 b ± 0.80 | 9.30 a ± 0.69 |
γ-tocopherol | 6.35 d ± 0.06 | 7.24 c ± 0.29 | 11.27 a ± 0.20 | 9.01 b ± 0.04 | 11.73 a ± 0.63 |
γ-tocotrienol | 0.66 b ± 0.02 | 0.51 c ± 0.02 | 0.46 c ± 0.02 | 0.81 a ± 0.02 | 0.68 b ± 0.05 |
Digested | |||||
Soluble | |||||
α-tocopherol | nd | 0.27 b ± 0.05 | 0.31 b ± 0.03 | 0.38 a ± 0.02 | 0.34 ab ± 0.02 |
β-tocopherol | nd | 0.20 ± 0.08 | 0.12 ± 0.03 | 0.16 ± 0.02 | 0.30 ± 0.03 |
β-tocotrienol | nd | nd | nd | 3.92 ± 0.52 | 6.09 ± 0.83 |
γ-tocopherol | 1.83 d ± 0.02 | 3.72 c ± 0.24 | 4.20 c ± 0.25 | 6.03 b ± 0.24 | 7.48 a ± 0.49 |
γ-tocotrienol | 0.15 c ± 0.02 | 0.28 b ± 0.02 | 0.27 b ± 0.00 | 0.31 ab ± 0.03 | 0.39 a ± 0.05 |
δ-tocopherol | 0.15 ± 0.01 | nd | nd | nd | nd |
Insoluble | |||||
α-tocopherol | 0.17 c ± 0.02 | 0.75 b ± 0.04 | 0.92 a ± 0.04 | 0.06 d ± 0.01 | 0.07 d ± 0.01 |
β-tocotrienol | nd | nd | nd | 1.82 ± 0.59 | 3.68 ± 0.79 |
β-tocopherol | 0.19 ± 0.01 | 0.10 ± 0.03 | 0.17 ± 0.03 | 0.16 ± 0.00 | nd |
γ-tocopherol | 3.24 b ± 0.05 | 3.40 b ± 0.08 | 5.03 a ± 0.08 | 1.94 c ± 0.76 | 2.58 bc ± 0.54 |
γ-tocotrienol | 0.27 a ± 0.01 | 0.17 bc ± 0.02 | 0.21 bc ± 0.03 | 0.20 ab ± 0.02 | 0.14 c ± 0.05 |
Control | 10% TO | 15% TO | 10% LI | 15% LI | |
---|---|---|---|---|---|
Cooked | |||||
Phenolic acids | |||||
Protocatechuic | 48.1 ± 2.1 | 54.8 ± 2.5 | 52.3 ± 0.7 | 52.3 ± 2.6 | 52.7 ± 4.8 |
p-hydroxybenzoic | 1.96 ± 0.08 | nd | nd | nd | nd |
Syringic | 8.80 c ± 0.29 | 12.50 b ± 1.46 | 21.39 a ± 1.96 | 10.95 bc ± 0.22 | 9.97 bc ± 0.09 |
p-coumaric | 5.45 a ± 0.02 | 2.59 b ± 0.59 | 2.33 bc ± 0.30 | 1.69 cd ± 0.07 | 1.49 d ± 0.02 |
Ferulic | 3.58 d ± 0.54 | 4.03 cd ± 0.09 | 4.87 b ± 0.42 | 4.80 bc ± 0.12 | 5.71 a ± 0.15 |
Flavonoids | |||||
Catechin | 129.5 ± 11.2 | 139.9 ± 3.7 | 139.4 ± 4.4 | 147.8 ± 9.2 | 142.5 ± 0.8 |
Epicatechin | 2.48 c ± 0.42 | 2.55 c ± 0.05 | 2.38 c ± 0.08 | 3.40 b ± 0.02 | 4.32 a ± 0.15 |
Rutin | nd | 4.54 b ± 0.23 | 8.23 a ± 0.67 | nd | nd |
Quercetin | nd | 2.35 ± 0.17 | 3.36 ± 0.41 | nd | nd |
Quercetin der | 0.86 c ± 0.03 | 1.07 bc ± 0.06 | 1.47 a ± 0.21 | 1.32 ab ± 0.09 | 1.04 bc ± 0.16 |
Naringenin | nd | 13.3 b ± 0.1 | 22.7 a ± 0.7 | nd | nd |
Apigenin | 0.23 ± 0.01 | 0.20 ± 0.03 | 0.22 ± 0.04 | 0.36 ± 0.18 | 0.36 ± 0.20 |
Tryptophan * | 4.76 d ± 0.43 | 14.09 c ± 0.57 | 21.48 c ± 0.51 | 15.36 b ± 0.57 | 19.74 a ± 0.38 |
Digested | |||||
Phenolic acids | |||||
Protocatechuic | 48.9 a ± 0.8 | 49.9 a ± 0.4 | 44.5 b ± 1.8 | 47.7 ab ± 2.8 | 44.5 b ± 0.6 |
Syringic | 19.4 b ± 0.9 | 27.0 a ± 2.6 | 28.8 a ± 0.7 | 19.6 b ± 0.4 | 20.2 b ± 0.9 |
p-coumaric | 2.71 bc ± 0.18 | 2.82 b ± 0.93 | 4.27 a ± 0.03 | 1.79 cd ± 0.07 | 1.58 d ± 0.02 |
Ferulic | 4.40 c ± 0.62 | 6.14 b ± 0.54 | 8.58 a ± 0.03 | 5.09 d ± 0.13 | 6.05 d ± 0.16 |
Flavonoids | |||||
Catechin | 127.9 ± 1.1 | 121.6 ± 6.7 | 117.9 ± 6.2 | 122.2 ± 4.2 | 116.1 ± 3.1 |
Epicatechin | 19.3 b ± 0.05 | 17.7 b ± 2.86 | 28.1 a ± 0.05 | 28.8 a ± 4.84 | 31.8 a ± 0.86 |
Naringenin | nd | 4.82b ± 0.10 | 6.86a ± 0.13 | nd | nd |
Tryptophan * | 227.8 c ± 2.6 | 267.5 c ± 26.72 | 267.4 c ± 3.5 | 339.7 b ± 21.6 | 403.5 a ± 4.8 |
Control | 10% TO | 15% TO | 10% LI | 15% LI | |
---|---|---|---|---|---|
Cooked | |||||
Phenolic acids | |||||
Protocatechuic | 0.86 cd ± 0.19 | 0.62 d ± 0.09 | 1.23 c ± 0.08 | 21.71 b ± 0.09 | 37.15 a ± 0.21 |
p-hydroxybenzoic | 0.97 d ± 0.01 | 2.55 b ± 0.30 | 3.47 a ± 0.04 | 1.98 c ± 0.03 | 3.46 a ± 0.11 |
Caffeic | nd | 0.46 c ± 0.07 | 2.08 ab ± 0.18 | 1.29 bc ± 0.06 | 3.11 a ± 1.33 |
p-coumaric | 3.57 ᵉ ± 0.32 | 17.21 b ± 2.21 | 29.98 a ± 0.69 | 6.58 d ± 0.53 | 8.81 c ± 0.32 |
Sinapic | 0.25 c ± 0.02 | 0.61 c ± 0.11 | 0.70 c ± 0.03 | 2.30 b ± 0.22 | 3.96 a ± 0.41 |
Ferulic | 94.7 b ± 1.2 | 62.7 c ± 4.0 | 64.5 c ± 0.2 | 95.9 b ± 0.1 | 119.8 a ± 1.5 |
Cinnamic der | 0.89 c ± 0.01 | 4.44 b ± 0.56 | 6.87 a ± 0.02 | 0.87 c ± 0.07 | 0.83 c ± 0.16 |
Flavonoids | |||||
Quercetin | 1.00 c ± 0.01 | 28.0 b ± 0.4 | 35.4 a ± 3.4 | 1.42 c ± 0.19 | 0.89 c ± 0.02 |
Naringenin | 0.54 c ± 0.01 | 20.6 b ± 0.2 | 34.0 a ± 0.1 | 1.90 c ± 0.14 | 0.40 c ± 0.02 |
Digested | |||||
Phenolic acids | |||||
Protocatechuic | nd | nd | nd | 23.71 b ± 2.11 | 39.26 a ± 3.32 |
p-hydroxybenzoic | 2.41 cd ± 0.47 | 7.31 b ± 0.69 | 8.64 a ± 0.55 | 2.16 d ± 0.27 | 3.55 c ± 0.00 |
Caffeic | nd | 2.90 b ± 0.28 | 3.37 ab ± 0.04 | 2.91 b ± 0.10 | 3.67 a ± 0.28 |
p-coumaric | 2.96 d ± 0.15 | 14.40 b ± 1.95 | 19.81 a ± 1.28 | 6.40 c ± 0.63 | 7.39 c ± 0.82 |
Sinapic | 0.68 c ± 0.14 | 0.82 c ± 0.18 | 0.87 c ± 0.03 | 2.08 b ± 0.15 | 3.27 a ± 0.12 |
Ferulic | 79.4 b ± 11.0 | 63.1 c ± 4.1 | 53.3 c ± 1.6 | 93.7 ab ± 6.5 | 102.5 a ± 1.1 |
Cinnamic der | 0.85 bc ± 0.02 | 0.97 a ± 0.04 | 0.83 c ± 0.03 | 0.93 ab ± 0.00 | 0.99 a ± 0.06 |
Flavonoids | |||||
Epicatechin | 0.20 b ± 0.09 | 1.21 a ± 0.30 | 0.59 b ± 0.01 | nd | 0.15 b ± 0.00 |
Quercetin | nd | 10.0 b ± 0.6 | 12.7 a ± 0.2 | nd | nd |
Naringenin der | 3.07 ± 0.28 | 2.76 ± 0.12 | 2.81 ± 0.38 | 2.87 ± 0.48 | 3.76 ± 0.01 |
Naringenin | nd | 36.2 b ± 1.7 | 54.2 a ± 3.3 | nd | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estivi, L.; Pasini, G.; Betrouche, A.; Traviĉić, V.; Becciu, E.; Brandolini, A.; Hidalgo, A. Antioxidant Bioaccessibility of Cooked Gluten-Free Pasta Enriched with Tomato Pomace or Linseed Meal. Foods 2024, 13, 3700. https://doi.org/10.3390/foods13223700
Estivi L, Pasini G, Betrouche A, Traviĉić V, Becciu E, Brandolini A, Hidalgo A. Antioxidant Bioaccessibility of Cooked Gluten-Free Pasta Enriched with Tomato Pomace or Linseed Meal. Foods. 2024; 13(22):3700. https://doi.org/10.3390/foods13223700
Chicago/Turabian StyleEstivi, Lorenzo, Gabriella Pasini, Amel Betrouche, Vanja Traviĉić, Elena Becciu, Andrea Brandolini, and Alyssa Hidalgo. 2024. "Antioxidant Bioaccessibility of Cooked Gluten-Free Pasta Enriched with Tomato Pomace or Linseed Meal" Foods 13, no. 22: 3700. https://doi.org/10.3390/foods13223700
APA StyleEstivi, L., Pasini, G., Betrouche, A., Traviĉić, V., Becciu, E., Brandolini, A., & Hidalgo, A. (2024). Antioxidant Bioaccessibility of Cooked Gluten-Free Pasta Enriched with Tomato Pomace or Linseed Meal. Foods, 13(22), 3700. https://doi.org/10.3390/foods13223700