Polymorphism and Microstructural Changes in Avocado Pulp (Persea americana Mill.) After Scraped-Surface Heat Exchanger Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Reagents
2.3. Crystallization Process
Crystallization Process in SSHE
2.4. Physicochemical Parameters
2.4.1. Moisture Content
2.4.2. Color
2.4.3. Viscosity Measurements
2.5. Biochemical Analysis
2.5.1. Avocado Oil Extraction
2.5.2. DPPH
2.5.3. Total Phenolic Compounds
2.5.4. Enzymatic Activity
2.6. Microstructure Analysis
2.6.1. Differential Scanning Calorimetry
2.6.2. X-Ray Diffraction
2.6.3. HRTEM
3. Results
3.1. Physicochemical Characterization of Avocado Pulp
Viscosity
3.2. Biochemical Characterization
3.2.1. Oil Content
3.2.2. Antioxidant Capacity and Total Phenolic Compounds
3.2.3. Enzymatic Inactivation
3.3. Microstructure
3.3.1. Differential Scanning Calorimetry
3.3.2. X-Ray Diffraction and HRTEM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- King-Loeza, Y.; Ciprián-Macías, D.A.; Cardador-Martínez, A.; Martín-del-Campo, S.T.; Castañeda-Saucedo, M.C.; del Pilar Ramírez-Anaya, J. Functional Composition of Avocado (Persea americana Mill. Var Hass) Pulp, Extra Virgin Oil, and Residues Is Affected by Fruit Commercial Classification. J. Agric. Food Res. 2023, 12, 100573. [Google Scholar] [CrossRef]
- Tan, C.X.; Tan, S.S.; Tan, S.T. Influence of Geographical Origins on the Physicochemical Properties of Hass Avocado Oil. JAOCS J. Am. Oil Chem. Soc. 2017, 94, 1431–1437. [Google Scholar] [CrossRef]
- Ford, N.A.; Spagnuolo, P.; Kraft, J. Nutritional Composition of Hass Avocado Pulp. Foods 2023, 12, 2516. [Google Scholar] [CrossRef]
- Cárdenas-Castro, A.P.; Fernández-Ochoa, Á.; Cádiz-Gurrea, M.d.l.L.; Segura Carretero, A.; Sáyago-Ayerdi, S.G. Bioactive Phytochemicals from Avocado Oil Processing By-Products. In Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-Products; Reference Series in Phytochemistry; Springer Nature: Berlin/Heidelberg, Germany, 2023; Volume 1, pp. 403–430. ISBN 978-3-030-91380-9. [Google Scholar]
- Nguyen, V.L.; Tran, T.D.; Bui, T.H.; Paxayavong, S.; Tran, T.L.H. Bioactive Compounds, Antioxidant Activity and Lipid Content of Various Avocado Fruits. Carpathian J. Food Sci. Technol. 2022, 14, 36–47. [Google Scholar] [CrossRef]
- Dreher, M.L.; Davenport, A.J. Hass Avocado Composition and Potential Health Effects. Crit. Rev. Food Sci. Nutr. 2013, 53, 738–750. [Google Scholar] [CrossRef]
- Peou, S.; Milliard-Hasting, B.; Shah, S.A. Impact of Avocado-Enriched Diets on Plasma Lipoproteins: A Meta-Analysis. J. Clin. Lipidol. 2016, 10, 161–171. [Google Scholar] [CrossRef]
- Lieu, M.D.; Phuong, T.V.; Nguyen, T.T.B.; Dang, T.K.T.; Nguyen, T.H. A Review of Preservation Approaches for Extending Avocado Fruit Shelf-Life. J. Agric. Food Res. 2024, 16, 101102. [Google Scholar] [CrossRef]
- Assmann, G.; Schulte, H. Relation of High-Density Lipoprotein Cholesterol and Triglycerides to Incidence of Atherosclerotic Coronary Artery Disease (the PROCAM Experience). Am. J. Cardiol. 1992, 70, 733–737. [Google Scholar] [CrossRef]
- Alicia Ortiz, M.; Lidia Dorantes, A.; Juvencio Gallndez, M.; Elizabeth Cárdenas, S. Effect of a Novel Oil Extraction Method on Avocado (Persea americana Mill) Pulp Microstructure. Plant Foods Hum. Nutr. 2004, 59, 11–14. [Google Scholar] [CrossRef]
- Salcedo, R.; Quiñones, Y.; Melgarejo, L.M.; Hernández, M.S.; Fernández-Trujillo, J.P. Variation in the Fatty Acid Profile and Quality of ‘Hass’ Avocados Preserved during Cold Storage. Acta Hortic. 2018, 1194, 1007–1010. [Google Scholar] [CrossRef]
- Pedreschi, R.; Uarrota, V.; Fuentealba, C.; Alvaro, J.E.; Olmedo, P.; Defilippi, B.G.; Meneses, C.; Campos-Vargas, R. Primary Metabolism in Avocado Fruit. Front. Plant Sci. 2019, 10, 795. [Google Scholar] [CrossRef]
- Resende, L.M.B.; de Souza, V.R.; Ferreira, G.M.D.; Nunes, C.A. Changes in Quality and Phytochemical Contents of Avocado Oil under Different Temperatures. J. Food Sci. Technol. 2019, 56, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Hurtado-Fernández, E.; Carrasco-Pancorbo, A.; Fernández-Gutiérrez, A. Profiling LC-DAD-ESI-TOF MS Method for the Determination of Phenolic Metabolites from Avocado (Persea americana). J. Agric. Food Chem. 2011, 59, 2255–2267. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Gutiérrez, P.K.; Hurtado-Fernández, E.; Gómez-Romero, M.; Hormaza, J.I.; Carrasco-Pancorbo, A.; Fernández-Gutiérrez, A. Determination of Changes in the Metabolic Profile of Avocado Fruits (Persea americana) by Two CE-MS Approaches (Targeted and Non-Targeted). Electrophoresis 2013, 34, 2928–2942. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Carpena, J.G.; Morcuende, D.; Andrade, M.J.; Kylli, P.; Estevez, M. Avocado (Persea americana Mill.) Phenolics, in Vitro Antioxidant and Antimicrobial Activities, and Inhibition of Lipid and Protein Oxidation in Porcine Patties. J. Agric. Food Chem. 2011, 59, 5625–5635. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Del Pino-García, R.; Curiel, J.A.; Lozano-Sánchez, J.; Segura-Carretero, A. Functional Ingredient from Avocado Peel: Microwave-Assisted Extraction, Characterization and Potential Applications for the Food Industry. Food Chem. 2021, 352, 129300. [Google Scholar] [CrossRef]
- Tremocoldi, M.A.; Rosalen, P.L.; Franchin, M.; Massarioli, A.P.; Denny, C.; Daiuto, É.R.; Paschoal, J.A.R.; Melo, P.S.; De Alencar, S.M. Exploration of Avocado By-Products as Natural Sources of Bioactive Compounds. PLoS ONE 2018, 13, e0192577. [Google Scholar] [CrossRef]
- Campos, D.; Teran-Hilares, F.; Chirinos, R.; Aguilar-Galvez, A.; García-Ríos, D.; Pacheco-Avalos, A.; Pedreschi, R. Bioactive Compounds and Antioxidant Activity from Harvest to Edible Ripeness of Avocado Cv. Hass (Persea americana) throughout the Harvest Seasons. Int. J. Food Sci. Technol. 2020, 55, 2208–2218. [Google Scholar] [CrossRef]
- Bhuyan, D.J.; Alsherbiny, M.A.; Perera, S.; Low, M.; Basu, A.; Devi, O.A.; Barooah, M.S.; Li, C.G.; Papoutsis, K. The Odyssey of Bioactive Compounds in Avocado (Persea americana) and Their Health Benefits. Antioxidants 2019, 8, 426. [Google Scholar] [CrossRef]
- Weemaes, C.A.; Ludikhuyze, L.R.; Van den Broeck, I.; Hendrickx, M.E. Kinetics of combined pressure-temperature inactivation of avocado polyphenoloxidase. Biotechnol. Bioeng. 1998, 60, 292–300. [Google Scholar] [CrossRef]
- Woolf, A.B.; Wibisono, R.; Farr, J.; Hallett, I.; Richter, L.; Oey, I.; Wohlers, M.; Zhou, J.; Fletcher, G.C.; Requejo-Jackman, C. Effect of High Pressure Processing on Avocado Slices. Innov. Food Sci. Emerg. Technol. 2013, 18, 65–73. [Google Scholar] [CrossRef]
- Ma, H.; Ledward, D.A. High Pressure Processing of Fresh Meat—Is It Worth It? Meat Sci. 2013, 95, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Albahr, Z.; Al-Ghamdi, S.; Tang, J.; Sablani, S.S. Pressure-Assisted Thermal Sterilization and Storage Stability of Avocado Puree in High Barrier Polymeric Packaging. Food Bioprocess Technol. 2022, 15, 2616–2628. [Google Scholar] [CrossRef]
- Dal-Bó, V.; Freire, J.T. Effects of Lyophilization on Colorimetric Indices, Phenolics Content, and Antioxidant Activity of Avocado (Persea americana) Pulp. Food Control. 2022, 132, 108526. [Google Scholar] [CrossRef]
- Toledo, L.; Aguirre, C. Enzymatic Browning in Avocado (Persea americana) Revisited: History, Advances, and Future Perspectives. Crit. Rev. Food Sci. Nutr. 2017, 57, 3860–3872. [Google Scholar] [CrossRef]
- Sato, K. Crystallization Behaviour of Fats and Lipids-A Review. Chem. Eng. Sci. 2001, 56, 2255–2265. [Google Scholar] [CrossRef]
- Fennema, O.R.; Damodaran Srinivasan, P.K.L. Fennema’s Food Chemistry, 5th ed.; Parkin, S.D.K.L., Ed.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-4822-0813-9. [Google Scholar]
- Larsson, K. Classification of Glyceride Crystal Forms. Acta Chem. Scand. 1966, 20, 2255–2260. [Google Scholar] [CrossRef]
- Takeguchi, S.; Sato, A.; Hondoh, H.; Aoki, M.; Uehara, H.; Ueno, S. Multiple β Forms of Saturated Monoacid Triacylglycerol Crystals. Molecules 2020, 25, 5086. [Google Scholar] [CrossRef]
- Ding, Z.; Qin, F.G.F.; Peng, K.; Yuan, J.; Huang, S.; Jiang, R.; Shao, Y. Heat and Mass Transfer of Scraped Surface Heat Exchanger Used for Suspension Freeze Concentration. J. Food Eng. 2021, 288, 110141. [Google Scholar] [CrossRef]
- Hartel, R.W. Crystallization in Foods. In Handbook of Industrial Crystallization; Butterworth-Heinemann: Oxford, UK, 2002; pp. 287–304. [Google Scholar] [CrossRef]
- Herrera, M.L.; Hartel, R.W. Effect of Processing Conditions on Physical Properties of a Milk Fat Model System: Microstructure. JAOCS J. Am. Oil Chem. Soc. 2000, 77, 1197–1205. [Google Scholar] [CrossRef]
- Ray, J.; MacNaughtan, W.; Chong, P.S.; Vieira, J.; Wolf, B. The Effect of Limonene on the Crystallization of Cocoa Butter. JAOCS J. Am. Oil Chem. Soc. 2012, 89, 437–445. [Google Scholar] [CrossRef]
- Nosratpour, M.; Wang, Y.; Woo, M.W.; Selomulya, C. Characterisation of Thermal and Structural Behaviour of Lipid Blends Composed of Fish Oil and Milkfat. Food Res. Int. 2020, 137, 109377. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Parra, O.D.; Plana-Fattori, A.; Alvarez, G.; Ndoye, F.T.; Benkhelifa, H.; Flick, D. Modeling Flow and Heat Transfer in a Scraped Surface Heat Exchanger during the Production of Sorbet. J. Food Eng. 2018, 221, 54–69. [Google Scholar] [CrossRef]
- Shiryan Dehkordi, K.; Fazilati, M.A.; Hajatzadeh, A. Surface Scraped Heat Exchanger for Cooling Newtonian Fluids and Enhancing Its Heat Transfer Characteristics, a Review and a Numerical Approach. Appl. Therm. Eng. 2015, 87, 56–65. [Google Scholar] [CrossRef]
- da Silva, T.L.T.; Martini, S. Crystallization of Interesterified Soybean Oil Using a Scraped Surface Heat Exchanger with High Intensity Ultrasound. J. Food Eng. 2019, 263, 341–347. [Google Scholar] [CrossRef]
- Acevedo, N.; Block, J.; Marangoni, A. Critical Laminar Shear-Temperature Effects on the Nano- and Mesoscale Structure of a Model Fat and Its Relationship to Oil Binding and Rheological Properties. Faraday Discuss. 2012, 158, 171–194; discussion 239. [Google Scholar] [CrossRef]
- Calderón-Oliver, M.; Escalona-Buendía, H.B.; Medina-Campos, O.N.; Pedraza-Chaverri, J.; Pedroza-Islas, R.; Ponce-Alquicira, E. Optimization of the Antioxidant and Antimicrobial Response of the Combined Effect of Nisin and Avocado Byproducts. LWT 2016, 65, 46–52. [Google Scholar] [CrossRef]
- Saavedra, J.; Córdova, A.; Navarro, R.; Díaz-Calderón, P.; Fuentealba, C.; Astudillo-Castro, C.; Toledo, L.; Enrione, J.; Galvez, L. Industrial Avocado Waste: Functional Compounds Preservation by Convective Drying Process. J. Food Eng. 2017, 198, 81–90. [Google Scholar] [CrossRef]
- Odriozola-Serrano, I.; Soliva-Fortuny, R.; Hernández-Jover, T.; Martín-Belloso, O. Carotenoid and Phenolic Profile of Tomato Juices Processed by High Intensity Pulsed Electric Fields Compared with Conventional Thermal Treatments. Food Chem. 2009, 112, 258–266. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A. Comprehensive Characterization of Phenolic and Other Polar Compounds in the Seed and Seed Coat of Avocado by HPLC-DAD-ESI-QTOF-MS. Food Res. Int. 2018, 105, 752–763. [Google Scholar] [CrossRef]
- Rodilla, S.D.; Martínez-Pineda, M.; Yagüe-Ruiz, C.; Vercet, A. Evaluation of Phenolic Compounds, Antioxidant Activity and Pigment Content in Emerging and Traditional Plant-Based Oils in Mediterranean Gastronomy. Int. J. Gastron. Food Sci. 2023, 33, 100771. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Wissemann, W.; Lee, C.Y. Characterization of Polyphenoloxidase from Ravat 51 and Niagara Grapes. J. Food Sci. 1981, 46, 506–508. [Google Scholar] [CrossRef]
- Jacobo-Velázquez, D.A.; Hernández-Brenes, C. Biochemical Changes during the Storage of High Hydrostatic Pressure Processed Avocado Paste. J. Food Sci. 2010, 75, S264–S270. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.; Ashton, O.; Requejo-Jackman, C.; McGhie, T.; White, A.; Eyres, L.; Sherpa, N.; Woolf, A. Avocado Oil: The Color of Quality. ACS Symp. Ser. 2008, 983, 328–349. [Google Scholar] [CrossRef]
- Hörtensteiner, S.; Hauenstein, M.; Kräutler, B. Chlorophyll Breakdown—Regulation, Biochemistry and Phyllobilins as Its Products. Adv. Bot. Res. 2019, 90, 213–271. [Google Scholar] [CrossRef]
- Gorfer, L.M.; Vestrucci, L.; Grigoletto, V.; Lazazzara, V.; Zanella, A.; Robatscher, P.; Scampicchio, M.; Oberhuber, M. Chlorophyll Breakdown during Fruit Ripening: Qualitative Analysis of Phyllobilins in the Peel of Apples (Malus domestica Borkh.) Cv. ‘Gala’ during Different Shelf Life Stages. Food Res. Int. 2022, 162, 112061. [Google Scholar] [CrossRef]
- Sonwai, S.; Mackley, M.R. The Effect of Shear on the Crystallization of Cocoa Butter. JAOCS J. Am. Oil Chem. Soc. 2006, 83, 583–596. [Google Scholar] [CrossRef]
- Mahendran, T.; Brennan, J.G.; Hariharan, G. Aroma Volatiles Components of ‘Fuerte’ Avocado (Persea americana Mill.) Stored under Different Modified Atmospheric Conditions. J. Essent. Oil Res. 2019, 31, 34–42. [Google Scholar] [CrossRef]
- Galvao, M.d.S.; Nunes, M.L.; Constant, P.B.L.; Narain, N. Identification of Volatile Compounds in Cultivars Barker, Collinson, Fortuna and Geada of Avocado (Persea americana, Mill.) Fruit. Food Sci. Technol. 2016, 36, 439–447. [Google Scholar] [CrossRef]
- Hartel, R.W. Advances in Food Crystallization. Annu. Rev. Food Sci. Technol. 2013, 4, 277–292. [Google Scholar] [CrossRef]
- Batista, J.D.F.; Dantas, A.M.; dos Santos Fonseca, J.V.; Madruga, M.S.; Fernandes, F.A.N.; Rodrigues, S.; da Silva Campelo Borges, G. Effects of Cold Plasma on Avocado Pulp (Persea americana Mill.): Chemical Characteristics and Bioactive Compounds. J. Food Process. Preserv. 2021, 45, e15179. [Google Scholar] [CrossRef]
- Gómez-Maqueo, A.; Escobedo-Avellaneda, Z.; Welti-Chanes, J. Phenolic Compounds in Mesoamerican Fruits—Characterization, Health Potential and Processing with Innovative Technologies. Int. J. Mol. Sci. 2020, 21, 8357. [Google Scholar] [CrossRef] [PubMed]
- Velderrain-Rodríguez, G.R.; Salmerón-Ruiz, M.L.; González-Aguilar, G.A.; Martín-Belloso, O.; Soliva-Fortuny, R. Ultraviolet/Visible Intense Pulsed Light Irradiation of Fresh-Cut Avocado Enhances Its Phytochemicals Content and Preserves Quality Attributes. J. Food Process. Preserv. 2021, 45, e15289. [Google Scholar] [CrossRef]
- Stephen, J.; Radhakrishnan, M. Avocado (Persea americana Mill.) Fruit: Nutritional Value, Handling and Processing Techniques, and Health Benefits. J. Food Process. Preserv. 2022, 46, e17207. [Google Scholar] [CrossRef]
- Felton, G.W.; Donato, K.K.; Broadway, R.M.; Duffey, S.S. Impact of Oxidized Plant Phenolics on the Nutritional Quality of Dietar Protein to a Noctuid Herbivore, Spodoptera Exigua. J. Insect Physiol. 1992, 38, 277–285. [Google Scholar] [CrossRef]
- Matheis, G.; Whitaker, J.R. Modification of proteins by polyphenol oxidase and peroxidase and their products. J. Food Biochem. 1984, 8, 137–162. [Google Scholar] [CrossRef]
- Mayer, A.M.; Harel, E. Polyphenol Oxidases in Plants. Phytochemistry 1979, 18, 193–215. [Google Scholar] [CrossRef]
- Wassell, P.; Okamura, A.; Young, N.W.G.; Bonwick, G.; Smith, C.; Sato, K.; Ueno, S. Synchrotron Radiation Macrobeam and Microbeam X-Ray Diffraction Studies of Interfacial Crystallization of Fats in Water-in-Oil Emulsions. Langmuir 2012, 28, 5539–5547. [Google Scholar] [CrossRef]
- Arellano, M.; Norton, I.T.; Smith, P. Specialty Oils and Fats in Margarines and Low-Fat Spreads. Spec. Oils Fats Food Nutr. 2015, 242–270. [Google Scholar] [CrossRef]
- Ghosh, S.; Rousseau, D. Triacylglycerol Interfacial Crystallization and Shear Structuring in Water-in-Oil Emulsions. Cryst. Growth Des. 2012, 12, 4944–4954. [Google Scholar] [CrossRef]
- Tanaka, L.; Tanaka, K.; Yamato, S.; Ueno, S.; Sato, K. Microbeam X-Ray Diffraction Study of Granular Crystals Formed in Water-in-Oil Emulsion. Food Biophys. 2009, 4, 331–339. [Google Scholar] [CrossRef]
- Wang, M.; Yu, P.; Chittiboyina, A.G.; Chen, D.; Zhao, J.; Avula, B.; Wang, Y.H.; Khan, I.A. Characterization, Quantification and Quality Assessment of Avocado (Persea americana Mill.) Oils. Molecules 2020, 25, 1453. [Google Scholar] [CrossRef] [PubMed]
- Vilca, R.; Espinoza-Silva, C.; Alfaro-Cruz, S.; Ponce-Ramírez, J.C.; Quispe-Neyra, J.; Alvarado-Zambrano, F.; Cortés-Avendaño, P.; Condezo-Hoyos, L. Hass and Fuerte Avocado (Persea americana sp.) Oils Extracted by Supercritical Carbon Dioxide: Bioactive Compounds, Fatty Acid Content, Antioxidant Capacity and Oxidative Stability. J. Supercrit. Fluids 2022, 190, 105750. [Google Scholar] [CrossRef]
- Nasri, C.; Halabi, Y.; Hajib, A.; Choukri, H.; Harhar, H.; Lee, L.H.; Mani, V.; Ming, L.C.; Goh, K.W.; Bouyahya, A.; et al. Proximate Composition, Lipid and Elemental Profiling of Eight Varieties of Avocado (Persea americana). Sci. Rep. 2023, 13, 22767. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, Z.; Kang, J.; Wang, S.; Hou, L. Thermal Behavior of CMC Solutions under Simulation of Radio Frequency Pasteurization. Innov. Food Sci. Emerg. Technol. 2023, 87, 103418. [Google Scholar] [CrossRef]
- Chalah, K.; Benmounah, A.; Mahdad, M.; Kheribet, R. Rheological Study of Sodium Carboxymethylcellulose: Effect of Concentration and Molecular Weight. Mater. Today 2022, 53, 185–190. [Google Scholar] [CrossRef]
- Craven, R.J.; Lencki, R.W. Symmetry, Chirality and Crystalline Tendency: The Polymorphism of Triacylglycerols. Food Funct. 2012, 3, 228–233. [Google Scholar] [CrossRef]
- Martínez-Padilla, L.P.; Franke, L.; Juliano, P. Characterisation of the Viscoelastic Properties of Avocado Puree for Process Design Applications. Biosyst. Eng. 2017, 161, 62–69. [Google Scholar] [CrossRef]
- Flöter, E.; Bot, A. 17-Developing Products with Modified Fats. In Improving the Fat Content of Foods; Williams, C., Buttriss, J., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2006; pp. 411–427. ISBN 978-1-85573-965-9. [Google Scholar]
- Rønholt, S.; Mortensen, K.; Knudsen, J.C. The Effective Factors on the Structure of Butter and Other Milk Fat-Based Products. Compr. Rev. Food Sci. Food Saf. 2013, 12, 468–482. [Google Scholar] [CrossRef]
- Hondoh, H.; Ueno, S. Polymorphism of Edible Fat Crystals. Prog. Cryst. Growth Charact. Mater. 2016, 62, 398–399. [Google Scholar] [CrossRef]
Polymorphic Form | Interplanar Spacing (Å) | 2θ Angle | Melting Points | Packing |
---|---|---|---|---|
α | 4.15 | Long spacings: 1–15° Short spacings: 16–25° | Lower | Hexagonal |
β′ | 4.2–4.3 and 3.7–4.0 | Intermediate | Orthorhombic | |
β | 4.6 | Higher | Triclinic |
Stage | |||
---|---|---|---|
Condition | Heating | Pre-Cooling | Cooling |
Medium | Thermal oil | Water | Water |
Mean temperature (°C) of the medium | 150 | 8 | 4 |
Residence time (min) | 4 | 4 | 5 |
Blade rotation speed (rpm) | 300 | 200 | 200 |
Parameter | Before SSHE Processing | After SSHE Processing |
---|---|---|
Moisture content (%) | 61 ± 2.8 a | 57 ± 1.3 a |
Color difference, ΔE* (dimensionless) | 1.89 ± 0.07 b | 5.02 ± 0.06 c |
Sample | TOS (°C) | TE (°C) | Peak (°C) | ΔH (J/g) |
---|---|---|---|---|
APulp | −1.75 | 14.90 | 5.92 | 252.2326 |
A4 | −1.75 | 12.86 | 4.87 | 238.3095 |
Polymorphic Form | Interplanar Spacing (Å) | 2θ Angle | Intensity Counts |
---|---|---|---|
α | 4.15 | 21.353 | 28,410 |
β′ | 4.329 4.055 3.895 3.701 | 20.502 21.900 22.812 24.027 | 28,341 28,685 28,960 29,648 |
β | 4.686 | 18.921 | 25,108 |
Polymorphic Form | Interplanar Spacing (Å) | 2θ Angle | Intensity Counts |
---|---|---|---|
α | 4.158 | 21.353 | 16,303 |
β′ | 4.316 4.229 4.089 3.701 | 20.562 20.988 21.717 24.027 | 17,059 16,647 15,477 11,212 |
β | 4.613 | 19.225 | 17,059 |
Polymorphic Form | Interplanar Spacing (Å) | 2θ Angle | Intensity Counts |
---|---|---|---|
α | 4.158 | 21.353 | 20,430 |
β′ | 4.217 3.835 3.701 | 21.049 23.835 24.027 | 20,361 20,499 20,361 |
β | 4.613 | 19.225 | 18,366 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valle-Gómez, A.; Borja-Urby, R.; Ortiz-Moreno, A.; Téllez-Medina, D.I. Polymorphism and Microstructural Changes in Avocado Pulp (Persea americana Mill.) After Scraped-Surface Heat Exchanger Processing. Foods 2024, 13, 3717. https://doi.org/10.3390/foods13233717
Valle-Gómez A, Borja-Urby R, Ortiz-Moreno A, Téllez-Medina DI. Polymorphism and Microstructural Changes in Avocado Pulp (Persea americana Mill.) After Scraped-Surface Heat Exchanger Processing. Foods. 2024; 13(23):3717. https://doi.org/10.3390/foods13233717
Chicago/Turabian StyleValle-Gómez, Amanda, Raúl Borja-Urby, Alicia Ortiz-Moreno, and Darío Iker Téllez-Medina. 2024. "Polymorphism and Microstructural Changes in Avocado Pulp (Persea americana Mill.) After Scraped-Surface Heat Exchanger Processing" Foods 13, no. 23: 3717. https://doi.org/10.3390/foods13233717
APA StyleValle-Gómez, A., Borja-Urby, R., Ortiz-Moreno, A., & Téllez-Medina, D. I. (2024). Polymorphism and Microstructural Changes in Avocado Pulp (Persea americana Mill.) After Scraped-Surface Heat Exchanger Processing. Foods, 13(23), 3717. https://doi.org/10.3390/foods13233717