Evolution of Bionanocomposites: Innovations and Applications in Food Packaging
Abstract
:1. Introduction
2. Classification of Nanocomposites
3. Synthesis of Nanocomposites
4. Properties of Bionanocomposites
4.1. Characteristics of the Nanoreinforcement and the Matrix Material
4.2. Arrangement of Nanoreinforcements in Nanocomposites
4.3. Concentration
Matrix Material | Reinforcement | Concentrations Tested (wt%) | Optimal Concentration (wt%) | Analyzed Properties | References |
---|---|---|---|---|---|
Potato starch | Cellulose nanofibres | 0, 1, 2, 3, 4 | 3 | Contact angle, water sorption, and moisture barrier properties | [42] |
Pectin | Cellulose nanocrystals | 0, 2, 5, 7 | 5 | Mechanical and moisture barrier properties | [23] |
Sugar palm starch | Sugar palm nanocrystalline cellulose | 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1 | 0.5 | Mechanical properties | [43] |
Sesame seed meal protein | Cloisite Na+ | 0, 1, 3, 5, 7 | 5 | Mechanical and moisture barrier properties | [25] |
Agar-Carboxymethyl cellulose | Silver-modified montmorillonite | 0, 2, 3, 5, 8 | 5 | Mechanical properties | [32] |
Chitosan | Montmorillonite –copper oxide | 0, 1, 3, 5 | 3 | Mechanical, moisture and gas barrier, and antimicrobial properties | [33] |
Poly (lactic acid) | Halloysite clay | 0, 2, 4, 6, 8 | 2 | Mechanical properties | [44] |
Gelatin | Chitin nanoparticles | 0, 3, 5, 10 | 5 | Mechanical and antimicrobial properties | [24] |
Soybean polysaccharide | Montmorillonite | 0, 5, 10, 15 | 10 | Mechanical properties | [45] |
Agar | Silver nanoparticles | 0.5, 1, 1.5, 2 | 1 | Mechanical and moisture barrier properties | [46] |
Chitosan | Titanium dioxide | 0, 0.25, 0.5, 1, 2 | 1 | Mechanical, moisture barrier, and ethylene scavenging activity | [47] |
4.4. Method of Synthesis
4.5. Addition of External Additives
4.6. External Factors
4.7. Prediction Studies
5. Trends and Advances in Bionanocomposites Research
6. Application of Bionanocomposites in Food Packaging
6.1. Active Packaging
6.1.1. Antimicrobial Applications
6.1.2. Oxygen Scavenging Systems
6.1.3. Ethylene Scavenging Systems
Matrix | Reinforcements and/or Additives | Antimicrobial Agent | Concentration | Microorganisms Tested * | Research Findings | References |
---|---|---|---|---|---|---|
Guar gum | Silver–copper alloy nanoparticles | Reinforcement | 0.5, 1, 2 wt% | L. monocytogenes, S. typhimurium | Antimicrobial activity increased with an increase in reinforcement concentration. Salmonella typhimurium was more susceptible compared to L. monocytogenes. | [83] |
Bovine skin gelatin | Zinc oxide nanorods; clove essential oil | Reinforcement and antimicrobial additive | Zinc oxide—2 wt% gelatin; essential oil—25 and 50% wt of protein content | L. monocytogenes, S. typhimurium | Maximum microbial inactivation at higher essential oil concentrations. Complete inactivation of microorganisms after 7 days of incubation. | [84] |
Chitosan | Nanosized titanium dioxide | Matrix material and reinforcement | 1 wt% | E. coli, S. typhimurium, P.aeruginosa, A. oryzae, P. roqueforti | Synergistic antimicrobial activity against the tested microorganisms due to photocatalytic activity of titanium dioxide and antimicrobial properties of chitosan. | [85] |
Starch | Halloysite; nisin | Antimicrobial additive | Halloysite—3, 6 wt%; Nisin—2, 6 wt% | L.monocytogenes, S. aureus, C. perfringens | Nisin added nanocomposite exhibited the highest antimicrobial activity against C. perfringens, followed by L. monocytogenes.Antimicrobial activity increased with an increase in nisin concentration and decrease in nanoclay concentration. | [86] |
Agar/banana powder | Silver nanoparticles | Reinforcement | 1 mM silver; 4/0, 3/1, 2/2, 1/3, and 0/4—blending rations of agar and banana powder | E. coli, L. monocytogenes | Increase in antimicrobial activity with an increase in banana powder.Only bacteriostatic activity against L. monocytogenes.Bactericidal and bacteriostatic activity against E. coli were observed at higher and lower concentrations of banana powder. | [87] |
Cellulose Acetate Butyrate | Cloisite 30B; carvacrol and cinnamaldehyde | Reinforcement and antimicrobial additive | Cloisite 30B—5 wt%; carvacrol—10 wt%; cinnamaldehyde—10 wt% | L. innocua, E. coli, S. cerevisiae, S. aureus | Antimicrobial activity against S. cerevisiae with the addition of Cloisite 30B. Higher log reduction in cinnamaldehyde-incorporated films compared to carvacrol. | [88] |
Chitosan | Zinc oxide nanoparticles; Neem essential oil | Matrix, reinforcement, and antimicrobial additive | Zinc oxide nanoparticles—0.1, 0.3, and 0.5% | E. coli | Increase in antimicrobial activity with increase in nanoparticle concentration. | [89] |
Agar | Silver nanoparticles | Reinforcement | 0.5, 1, 1.5, 2 wt% | E. coli, L. monocytogenes | Higher antimicrobial activity against E. coli compared to L. monocytogenes. Increase in antimicrobial activity with increase in nanoparticle concentration. | [46] |
Chitosan/ Carboxymethyl cellulose | Zinc oxide nanoparticles | Reinforcement | 2, 4, 8 wt% | S. aureus, P. aeruginosa, B. cereus, B. subtilus, L. monocytogenes, E. coli, C. albicans, A. niger | Antimicrobial activity against all the microorganisms tested. Higher zone of inhibition (range: 5 to 15 nm) for B. cereus and S. aureus. S. aureus. | [90] |
Chitosan/ guar gum | Zinc oxide nanoparticles (prepared with roselle calyx extract) | Reinforcement | 1, 3 wt% | B. cereus, L. monocytogenes, A. flavus, E. coli, S. typhimurium, A. niger, S. aureus, Y. enterocolitica, A. terries, P. aeruginosa | Higher nanocomposite activity than reselle calyx coating.Higher inhibition zone for E. coli, followed by L. monocytogenes, and A. terries.Lowest inhibition for P. aeruginosa. | [91] |
6.1.4. Multiple Active Applications
6.2. Intelligent Packaging
6.2.1. Time–Temperature Indicators
6.2.2. Freshness Indicators
6.3. Dual-Function Packaging
6.4. Packaging Material for Selected Food Commodities
Matrix | Reinforcements | Other Additional Materials | Food Material | Analyzed Properties of Food Material | Storage Period | Research Findings | References |
---|---|---|---|---|---|---|---|
Agar (obtained from Gracilaria vermiculophylla) | Zinc oxide nanoparticles | - | Smoked salmon | Microbial analysis, lipid oxidation (peroxide value and Thiobarbituric Acid Reactive Substances (TBARS)) | 4 °C; 8 days | Samples with 3% reinforcement had lower lipid oxidation and higher antimicrobial activity against Listeria monocytogenes and Salmonella typhimurium | [113] |
Bovine skin gelatin | Zinc oxide nanorods | Clove essential oil | Shrimp | Microbial analysis | 4 °C; 20 days | Bionanocomposites with 50% essential oil and 2% reinforcement exhibited maximum antimicrobial activity against Listeria monocytogenes and Salmonella typhimurium in shrimp. | [84] |
Chitosan | Nanosized titanium dioxide | - | Cherry tomatoes | Firmness, weight loss, color, total soluble content, lycopene content, ascorbic acid, concentration of ethylene, carbon dioxide | 20 °C; 14 days | Films exhibited ethylene photodegradation under ultraviolet light, delaying tomato-ripening and extending shelf life. | [85] |
Chitosan | Cellulose nanocrystals | Carvacrol | Banana and Mango | Morphological changes, weight loss, hardness | 25 °C; 7 days | Bionanocomposite-coated fruits exhibited superior qualities, with an increased hardness and reduced weight loss | [114] |
Whey protein isolate | Starch nanocrystal | Jujube polysaccharide | Carrot | pH, weight loss, hardness, color, total psychotropic bacteria and total fungi, sensory properties | 4 °C; 2 weeks | Bionanocomposite-wrapped carrots exhibited better stability and reduced microbial growth compared to PVC-wrapped carrots | [115] |
Chitosan | Cloisite Na+ and Cloisite Ca2+ | Rosemary and ginger essential oil | Poultry meat | Moisture, ash content, pH, total acidity, lipid oxidation, microbial analysis | 5 ± 2 °C; 15 days | Nanoclay-reinforced nanocomposite reduced lipid oxidation by 50% and microbial contamination by 6–16% compared to pure chitosan film.Essential oil films significantly reduced oxidation. | [116] |
Chitosan | Zinc oxide nanoparticles | Neem essential oil | Carrot | Microbial analysis, weight loss | - | Bionanocomposite-wrapped carrots had reduced weight loss and colony-forming units compared to those wrapped in commercial film or left uncovered on the 1st and 5th days | [89] |
Chitosan | Sodium montmorillonite | Ginger essential oil | Poultry meat | Moisture, pH, titratable acidity, color, TBARS, Index, microbial analysis | 5 ± 2 °C; 15 days | Meat samples covered with bionanocomposites showed extended shelf life with a reduced microbial count, no significant change in color orpH, and a slight increase in TBARS. The addition of essential oil to chitosan reduced lipid oxidation and microbial count, while in nanoclay-reinforced chitosan, it was less effective due to nanoclay blocking oil release. | [117] |
Chitosan/Carboxymethyl cellulose | Zinc oxide nanoparticles | - | Egyptian soft white cheese | Rheological properties, color measurements, moisture, titratable acidity, pH, microbial analysis | 7 °C; 30 days | Cheese packaged in bionanocomposites showed superior properties compared to traditional polystyrene package | [90] |
Chitosaan/Guar gum | Zinc oxide nanoparticles | - | Ras cheese | pH, dry matter, soluble nitrogen, fat, ash, total and titratable acidity, microbial analysis | 12 °C; 4 months | Cheese packed in bionanocomposites had a better shelf life, and improved chemical, microbial, and sensorial properties, compared to chitosan and guar gum coated and uncoated cheese | [91] |
Pectin | Zinc oxide nanoparticles | - | Fresh poultry meat | Microbial analysis, pH, titratable acidity, moisture, total volatile basic nitrogen, color, TBARS | 5 °C; 15 days | Pectin-based films reduced microbial growth on poultry meat, and the addition of zinc oxide nanoparticles further enhanced this effect. Bionanocomposite films greatly reduced the degradation of meat | [118] |
Carboxymethyl cellulose/Okra mucilage | Zinc oxide nanoparticles | Nanostructured lipid carriers containing savory essential oil | Beef | Total volatile nitrogen, color, pH, TBARS, microbial analysis | 4 °C; 12 days | Bionanocomposite-coated beef showed a significantly reduced microbial growth rate. | [119] |
Gelatin | Nanocrystalline cellulose | Nanopropolis | Strawberry | Water content, vitamin C, hardness, total dissolved solids, pH, shelf life | 5, 10 and 30 °C; 21 days | At 5 and 10 °C, the bionanocomposite coating increased the shelf life of strawberries. | [120] |
Fish skin gelatin | Zinc oxide nanoparticles | Ginger essential oil | Meat | Total volatile bases’ nitrogen, peroxide value, microbial analysis | 4 °C; 9 days | Bionanocomposites with a higher concentration of ginger essential oil, when used to wrap meat samples, showed a significant reduction in lower total volatile bases’ nitrogen, lipid oxidation, and microbial count | [121] |
Poly (lactic acid) | Cloisite Na+ | - | Processed meat product | Lipid oxidation (hexanal, TBARS, p-anisdine) | 5 °C; 90 days | Bionanocomposites reduced lipid oxidation and extended the shelf life of the packaged food. | [122] |
Starch | Halloysite | Nisin | Minas Frescal Cheese | Antimicrobial analysis | 4 ± 2 °C; 14 days | The nanocomposite with a higher clay content delayed nisin diffusion, reducing antimicrobial activity among microorganisms compared to the composite with same nisin content and lower nanoclay contents. However, nanocomposites with higher concentrations of nisin (6 g/ 100 g) showed a significant invrease in inactivation after 4 days, continuing through the 14-day study period | [86] |
7. Nanomaterial Migration and Environmental Concerns
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Niaounakis, M. Biopolymers: Applications and Trends; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Mohan, S.; Oluwafemi, O.S.; Kalarikkal, N.; Thomas, S.; Songca, S.P. Biopolymers—Application in Nanoscience and Nanotechnology. In Recent Advances in Biopolymers; InTech Open: Rijeka, Croatia, 2016; Volume 1, pp. 47–66. [Google Scholar]
- Fortunati, E.; Luzi, F.; Yang, W.; Kenny, J.M.; Torre, L.; Puglia, D. Bio-Based Nanocomposites in Food Packaging. In Nanomaterials for Food Packaging; Cerqueira, M.A.P.R., Lagaron, J.M., Castro, L.M.P., Vicente, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 71–110. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Misra, M.; Drzal, L.T.; Selke, S.E.; Harte, B.R.; Hinrichsen, G. Natural Fibers, Biopolymers, and Biocomposites: An Introduction. In Natural Fibers, Biopolymers, and Biocomposites; Mohanty, A.K., Misra, M., Drzal, L.T., Eds.; Taylor & Francis: Oxfordshire, UK, 2005. [Google Scholar]
- Telis, V.R.N. (Ed.) An Introduction to Biopolymer Applications in Food Engineering. In Biopolymer Engineering in Food Processing; CRC Press: Boca Raton, FL, USA, 2012; pp. 1–16. [Google Scholar]
- Vieira, M.G.A.; Da Silva, M.A.; Dos Santos, L.O.; Beppu, M.M. Natural-Based Plasticizers and Biopolymer Films: A Review. Eur. Polym. J. 2011, 47, 254–263. [Google Scholar] [CrossRef]
- Vijayendra, S.V.N.; Shamala, T.R. Film Forming Microbial Biopolymers for Commercial Applications-A Review. Crit. Rev. Biotechnol. 2013, 34, 338–357. [Google Scholar] [CrossRef] [PubMed]
- Zafar, R.; Zia, K.M.; Tabasum, S.; Jabeen, F.; Noreen, A.; Zuber, M. Polysaccharide Based Bionanocomposites, Properties and Applications: A Review. Int. J. Biol. Macromol. 2016, 92, 1012–1024. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.S.; Gunasundari, E. Nanocomposites: Recent Trends and Engineering Applications. Nano Hybrids Compos. 2018, 20, 65–80. [Google Scholar] [CrossRef]
- Otoni, C.G.; Avena-Bustillos, R.J.; Olsen, C.W.; Bilbao-Sáinz, C.; McHugh, T.H. Mechanical and Water Barrier Properties of Isolated Soy Protein Composite Edible Films as Affected by Carvacrol and Cinnamaldehyde Micro and Nanoemulsions. Food Hydrocoll. 2016, 57, 72–79. [Google Scholar] [CrossRef]
- Okpala, C.C. Nanocomposites: An Overview. Int. J. Eng. Res. Dev. 2013, 8, 17–23. [Google Scholar] [CrossRef]
- Salavati-niasari, M.; Ghanbari, D. Polymeric Nanocomposite Materials. In Advances in Diverse Industrial Applications of Nanocomposites; Reddy, B., Ed.; InTech Open: Rijeka, Croatia, 2011; pp. 501–521. [Google Scholar] [CrossRef]
- Kushwaha, R.K.; Srivastava, A. Recent Developments in Bio-Nanocomposites: A Review. Res. J. Nanosci. Eng. 2018, 2, 1–4. [Google Scholar]
- Nandi, S.; Guha, P. A Review on Preparation and Properties of Cellulose Nanocrystal—Incorporated Natural Biopolymer. J. Packag. Technol. Res. 2018, 2, 149–166. [Google Scholar] [CrossRef]
- de Azeredo, H.M.C. Nanocomposites for Food Packaging Applications. Food Res. Int. 2009, 42, 1240–1253. [Google Scholar] [CrossRef]
- Othman, S.H. Bio-Nanocomposite Materials for Food Packaging Applications: Types of Biopolymer and Nano-Sized Filler. Agric. Agric. Sci. Procedia 2014, 2, 296–303. [Google Scholar] [CrossRef]
- Azeez, A.A.; Rhee, K.Y.; Park, S.J.; Hui, D. Epoxy Clay Nanocomposites—Processing, Properties and Applications: A Review. Compos. B Eng. 2012, 45, 308–320. [Google Scholar] [CrossRef]
- Attaran, S.A.; Hassan, A.; Wahit, M.U. Materials for Food Packaging Applications Based on Bio-Based Polymer Nanocomposites. J. Thermoplast. Compos. Mater. 2015, 30, 143–173. [Google Scholar] [CrossRef]
- Mousa, M.H.; Dong, Y.; Davies, I.J. Recent Advances in Bionanocomposites: Preparation, Properties, and Applications. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 225–254. [Google Scholar] [CrossRef]
- Theng, B.K.G. Formation and Properties of Clay-Polymer Complexes, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Bhushani, J.A.; Anandharamakrishnan, C. Electrospinning and Electrospraying Techniques: Potential Food Based Applications. Trends Food Sci. Technol. 2014, 38, 21–33. [Google Scholar] [CrossRef]
- Srithep, Y.; Ellingham, T.; Peng, J.; Sabo, R.; Clemons, C.; Turng, L.S.; Pilla, S. Melt Compounding of Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate)/ Nanofibrillated Cellulose Nanocomposites. Polym. Degrad. Stab. 2013, 98, 1439–1449. [Google Scholar] [CrossRef]
- Chaichi, M.; Hashemi, M.; Badii, F.; Mohammadi, A. Preparation and Characterization of a Novel Bionanocomposite Edible Film Based on Pectin and Crystalline Nanocellulose. Carbohydr. Polym. 2017, 157, 167–175. [Google Scholar] [CrossRef]
- Sahraee, S.; Milani, J.M.; Ghanbarzadeh, B.; Hamishehkar, H.; Kafil, H.S. Physicochemical and Antifungal Properties of Bio-Nanocomposite Film Based on Gelatin-Chitin Nanoparticles. Int. J. Biol. Macromol. 2017, 97, 373–381. [Google Scholar] [CrossRef]
- Lee, J.H.; Song, N.B.; Jo, W.S.; Song, K.B. Effects of Nano-Clay Type and Content on the Physical Properties of Sesame Seed Meal Protein Composite Films. Int. J. Food Sci. Technol. 2014, 49, 1869–1875. [Google Scholar] [CrossRef]
- Toro-márquez, L.A.; Merino, D.; Gutiérrez, T.J. Bionanocomposite Films Prepared from Corn Starch with and without Nanopackaged Jamaica ( Hibiscus Sabdariffa) Flower Extract. Food Bioproc Tech. 2018, 11, 1955–1973. [Google Scholar] [CrossRef]
- Chatterjee, S.; Nafezarefi, F.; Tai, N.H.; Schlagenhauf, L.; Nüesch, F.A.; Chu, B.T.T. Size and Synergy Effects of Nanofiller Hybrids Including Graphene Nanoplatelets and Carbon Nanotubes in Mechanical Properties of Epoxy Composites. Carbon. N. Y. 2012, 50, 5380–5386. [Google Scholar] [CrossRef]
- Shankar, S.; Wang, L.F.; Rhim, J.W. Preparation and Properties of Carbohydrate-Based Composite Films Incorporated with CuO Nanoparticles. Carbohydr. Polym. 2017, 169, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.W.; Paul, D.R. Nylon 6 Nanocomposites by Melt Compounding. Polymer 2001, 42, 1083–1094. [Google Scholar] [CrossRef]
- Ali, A.; Xie, F.; Yu, L.; Liu, H.; Meng, L.; Khalid, S.; Chen, L. Preparation and Characterization of Starch-Based Composite Films Reinfoced by Polysaccharide-Based Crystals. Compos. B Eng. 2018, 133, 122–128. [Google Scholar] [CrossRef]
- Monika; Dhar, P.; Katiyar, V. Thermal Degradation Kinetics of Polylactic Acid/Acid Fabricated Cellulose Nanocrystal Based Bionanocomposites. Int. J. Biol. Macromol. 2017, 104, 827–836. [Google Scholar] [CrossRef]
- Makwana, D.; Castano, J.; Somani, R.S.; Bajaj, H.C. Characterization of Agar-CMC / Ag-MMT Nanocomposite and Evaluation of Antibacterial and Mechanical Properties for Packaging Applications. Arab. J. Chem. 2018, 13, 3092–3099. [Google Scholar] [CrossRef]
- Nouri, A.; Yaraki, M.T.; Ghorbanpour, M.; Agarwal, S.; Gupta, V.K. Enhanced Antibacterial Effect of Chitosan Film Using Montmorillonite/CuO Nanocomposite. Int. J. Biol. Macromol. 2018, 109, 1219–1231. [Google Scholar] [CrossRef]
- Marvizadeh, M.M.; Oladzadabbasabadi, N.; Mohammadi Nafchi, A.; Jokar, M. Preparation and Characterization of Bionanocomposite Film Based on Tapioca Starch/Bovine Gelatin/Nanorod Zinc Oxide. Int. J. Biol. Macromol. 2017, 99, 1–7. [Google Scholar] [CrossRef]
- Llanos, J.H.R.; Tadini, C.C. Preparation and Characterization of Bio-Nanocomposite Films Based on Cassava Starch or Chitosan, Reinforced with Montmorillonite or Bamboo Nanofibers. Int. J. Biol. Macromol. 2018, 107, 371–382. [Google Scholar] [CrossRef]
- Romero-Bastida, C.A.; Chávez Gutiérrez, M.; Bello-Pérez, L.A.; Abarca-Ramírez, E.; Velazquez, G.; Mendez-Montealvo, G. Rheological Properties of Nanocomposite-Forming Solutions and Film Based on Montmorillonite and Corn Starch with Different Amylose Content. Carbohydr. Polym. 2018, 188, 121–127. [Google Scholar] [CrossRef]
- Wolf, C.; Angellier-Coussy, H.; Gontard, N.; Doghieri, F.; Guillard, V. How the Shape of Fillers Affects the Barrier Properties of Polymer/Non-Porous Particles Nanocomposites: A Review. J. Memb. Sci. 2018, 556, 393–418. [Google Scholar] [CrossRef]
- Bhatt, C.; Swaroop, R.; Arya, A.; Sharma, A.L. Effect of Nano-Filler on the Properties of Polymer Nanocomposite Films of PEO/PAN Complexed with NaPF6. J. Mater. Sci. Eng. B 2015, 5, 418–434. [Google Scholar] [CrossRef]
- Castro-Mayorga, J.L.; Fabra, M.J.; Lagaron, J.M. Stabilized Nanosilver Based Antimicrobial Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Nanocomposites of Interest in Active Food Packaging. Innov. Food Sci. Emerg. Technol. 2015, 33, 524–533. [Google Scholar] [CrossRef]
- Butnaru, E.; Cheaburu, C.N.; Yilmaz, O.; Pricope, G.M.; Vasile, C. Poly(Vinyl Alcohol)/Chitosan/Montmorillonite Nanocomposites for Food Packaging Applications: Influence of Montmorillonite Content. High. Perform. Polym. 2016, 28, 1124–1138. [Google Scholar] [CrossRef]
- Swain, S.K.; Pradhan, G.C.; Dash, S.; Mohanty, F.; Behera, L. Preparation and Characterization of Bionanocomposites Based on Soluble Starch/ Nano CaCO3. Polym. Compos. 2017, 39, 82–89. [Google Scholar] [CrossRef]
- Balakrishnan, P.; Gopi, S.; Sreekala, M.S.; Thomas, S. UV Resistant Transparent Bionanocomposite Films Based on Potato Starch/Cellulose for Sustainable Packaging. Starch/Staerke 2018, 70, 1700139. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Ishak, M.R.; Zainudin, E.S. Development and Characterization of Sugar Palm Nanocrystalline Cellulose Reinforced Sugar Palm Starch Bionanocomposites. Carbohydr. Polym. 2018, 202, 186–202. [Google Scholar] [CrossRef]
- Risyon, N.P.; Othman, S.H.; Hassan, N.; Talib, R.A.; Kadir Basha, R. Effect of Halloysite Nanoclay Concentration and Addition of Glycerol on Mechanical Properties of Bionanocomposite Films. Polym. Polym. Compos. 2016, 24, 795–802. [Google Scholar] [CrossRef]
- Salarbashi, D.; Noghabi, M.S.; Bazzaz, B.S.F.; Shahabi-Ghahfarrokhi, I.; Jafari, B.; Ahmadi, R. Eco-Friendly Soluble Soybean Polysaccharide/Nanoclay Na+ Bionanocomposite: Properties and Characterization. Carbohydr. Polym. 2017, 169, 524–532. [Google Scholar] [CrossRef]
- Shankar, S.; Rhim, J. Preparation and Characterization of Agar / Lignin / Silver Nanoparticles Composite Fi Lms with Ultraviolet Light Barrier and Antibacterial Properties. Food Hydrocoll. 2017, 71, 76–84. [Google Scholar] [CrossRef]
- Siripatrawan, U.; Harte, B.R. Food Hydrocolloids Physical Properties and Antioxidant Activity of an Active Fi Lm from Chitosan Incorporated with Green Tea Extract. Food Hydrocoll. 2010, 24, 770–775. [Google Scholar] [CrossRef]
- Zhou, M.; Gao, M.; Kong, Q.; Zhu, P. High-Performance Starch/Clay Bionanocomposite for Textile Warp Sizing. Polym. Compos. 2017, 39, 441–447. [Google Scholar] [CrossRef]
- Asrofi, M.; Abral, H.; Kasim, A.; Pratoto, A.; Mahardika, M.; Hafizulhaq, F. Mechanical Properties of a Water Hyacinth Nanofiber Cellulose Reinforced Thermoplastic Starch Bionanocomposite: Effect of Ultrasonic Vibration during Processing. Fibers 2018, 6, 40. [Google Scholar] [CrossRef]
- Goudarzi, V.; Shahabi-Ghahfarrokhi, I. Photo-Producible and Photo-Degradable Starch/TiO2bionanocomposite as a Food Packaging Material: Development and Characterization. Int. J. Biol. Macromol. 2018, 106, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Slavutsky, A.M.; Bertuzzi, M.A.; Armada, M. Water Barrier Properties of Starch-Clay Nanocomposite Films. Braz. J. Food Technol. 2012, 15, 208–218. [Google Scholar] [CrossRef]
- Gutiérrez, T.J.; Alvarez, V.A. Bionanocomposite Films Developed from Corn Starch and Natural and Modified Nano-Clays with or without Added Blueberry Extract. Food Hydrocoll. 2018, 77, 407–420. [Google Scholar] [CrossRef]
- Oliveira, T.Í.S.; Rosa, M.F.; Ridout, M.J.; Cross, K.; Brito, E.S.; Silva, L.M.A.; Mazzetto, S.E.; Waldron, K.W.; Azeredo, H.M.C. Bionanocomposite Films Based on Polysaccharides from Banana Peels. Int. J. Biol. Macromol. 2017, 101, 1–8. [Google Scholar] [CrossRef]
- Yun, Y.H.; Kim, E.S.; Shim, W.G.; Yoon, S.D. Physical Properties of Mungbean Starch/PVA Bionanocomposites Added Nano-ZnS Particles and Its Photocatalytic Activity. J. Ind. Eng. Chem. 2018, 68, 57–68. [Google Scholar] [CrossRef]
- Barzegar, H.; Azizi, M.H.; Barzegar, M.; Hamidi-esfahani, Z. Effect of Potassium Sorbate on Antimicrobial and Physical Properties of Starch—Clay Nanocomposite Films. Carbohydr. Polym. 2014, 110, 26–31. [Google Scholar] [CrossRef]
- Oymaci, P.; Altinkaya, S.A. Improvement of Barrier and Mechanical Properties of Whey Protein Isolate Based Food Packaging Fi Lms by Incorporation of Zein Nanoparticles as a Novel Bionanocomposite. Food Hydrocoll. 2016, 54, 1–9. [Google Scholar] [CrossRef]
- Madhusudana Rao, K.; Kumar, A.; Han, S.S. Polysaccharide Based Bionanocomposite Hydrogels Reinforced with Cellulose Nanocrystals: Drug Release and Biocompatibility Analyses. Int. J. Biol. Macromol. 2017, 101, 165–171. [Google Scholar] [CrossRef]
- Ng, H.M.; Sin, L.T.; Bee, S.T.; Tee, T.T.; Rahmat, A.R. Evaluation of Microwave Activity on Starch-Based Nanocomposites Reinforced at Different Loading Fraction Organic-to-Inorganic Nanofillers. Polym.-Plast. Technol. Eng. 2017, 56, 1043–1058. [Google Scholar] [CrossRef]
- Barrer, R.M.; Petropoulos, J.H. Diffusion in Heterogeneous Media: Lattices of Parallelepipeds in a Continuous Phase. Br. J. Appl. Phys. 1961, 12, 691–697. [Google Scholar] [CrossRef]
- Nielsen, L.E. Models for the Permeability of Filled Polymer Systems. J. Macromol. Sci. Part. A-Chem. 1967, A1, 929–942. [Google Scholar] [CrossRef]
- Bharadwaj, R.K. Modeling the Barrier Properties of Polymer-Layered Silicate Nanocomposites. Macromolecules 2001, 34, 9189–9192. [Google Scholar] [CrossRef]
- Fredrickson, G.H.; Bicerano, J. Barrier Properties of Oriented Disk Composites. J. Chem. Phys. 1999, 110, 2181–2188. [Google Scholar] [CrossRef]
- Cussler, E.L.; Hughes, S.E.; Ward, W.J., III; Aris, R. Barrier Membranes. J. Memb. Sci. 1988, 38, 161–174. [Google Scholar] [CrossRef]
- Gusev, B.A.A.; Lusti, H.R. Rational Design of Nanocomposites for Barrier Applications. Adv. Mater. 2001, 13, 1641–1643. [Google Scholar] [CrossRef]
- Sun, L.; Boo, W.; Clearfield, A.; Sue, H.; Pham, H.Q. Barrier Properties of Model Epoxy Nanocomposites. J. Memb. Sci. 2008, 318, 129–136. [Google Scholar] [CrossRef]
- Minelli, M.; Baschetti, M.G.; Doghieri, F. A 3-D Approach to Model Diffusion in Randomly Distributed Nanocomposite. In Proceedings of the 2008 Annual Meeting, Ottawa, ON, Canada, 13–15 November 2008; pp. 1–8. [Google Scholar]
- Beall. New Conceptual Model for Interpreting Nanocomposite Behavior. In Polymer Clay Nanocomposites; Pinnavaia, T.J., Beall, G.W., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2000; pp. 267–279. [Google Scholar]
- Adame, D.; Beall, G.W. Direct Measurement of the Constrained Polymer Region in Polyamide / Clay Nanocomposites and the Implications for Gas Diffusion. Appl. Clay Sci. 2009, 42, 545–552. [Google Scholar] [CrossRef]
- Yildirim, S.; Röcker, B. Active Packaging. In Nanomaterials for Food Packaging: Materials, Processing Technologies, and Safety Issues; Cerqueira, M.A.P.R., Lagaron, J.M., Castro, L.M.P., Vicente, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 173–202. [Google Scholar] [CrossRef]
- Ioannou, I.; Ghoul, M. Prevention of Enzymatic Browning in Fruit and Vegetables. Eur. Sci. J. 2013, 9, 310–341. [Google Scholar]
- Otoni, C.G.; Pontes, S.F.O.; Medeiros, E.A.A.; Soares, N.D.F.F. Edible Films from Methylcellulose and Nanoemulsions of Clove Bud (Syzygium Aromaticum) and Oregano (Origanum Vulgare) Essential Oils as Shelf Life Extenders for Sliced Bread. J. Agric. Food Chem. 2014, 62, 5214–5219. [Google Scholar] [CrossRef] [PubMed]
- Gan, I.; Chow, W.S. Antimicrobial Poly(Lactic Acid)/Cellulose Bionanocomposite for Food Packaging Application: A Review. Food Packag. Shelf Life 2018, 17, 150–161. [Google Scholar] [CrossRef]
- Carbone, M.; Donia, D.T.; Sabbatella, G.; Antiochia, R. Silver Nanoparticles in Polymeric Matrices for Fresh Food Packaging. J. King Saud. Univ. Sci. 2016, 28, 273–279. [Google Scholar] [CrossRef]
- dos Santos Junior, V.E.; Targino, A.G.R.; Flores, M.A.P.; Rodríguez-Díaz, J.M.; Teixeira, J.A.; Heimer, M.V.; de Luna Feire Pessoa, H.; Galembeck, A.; Rosenblatt, A. Antimicrobial Activity of Silver Nanoparticle Colloids of Different Sizes and Shapes against Streptococcus Mutans. Res. Chem. Intermed. 2017, 43, 5889–5899. [Google Scholar] [CrossRef]
- Brasil, M.S.L.; Filgueiras, A.L.; Campos, M.B.; Neves, M.S.L.; Eugenio, M.; Sena, L.A.; Sant’Anna Celso, B.; da Silva Vania, L.; Diniz, C.G.; Sant’Ana, A.C. Synergism in the Antibacterial Action of Ternary Mixtures Involving Silver Nanoparticles, Chitosan and Antibiotics. J. Braz. Chem. Soc. 2018, 29, 2026–2033. [Google Scholar] [CrossRef]
- Han, Y.S.; Lee, S.H.; Choi, K.H.; Park, I. Preparation and Characterization of Chitosan-Clay Nanocomposites with Antimicrobial Activity. J. Phys. Chem. Solids 2010, 71, 464–467. [Google Scholar] [CrossRef]
- Gutiérrez, L.; Batlle, R.; Andújar, S.; Sánchez, C.; Nerín, C. Evaluation of Antimicrobial Active Packaging to Increase Shelf Life of Gluten-Free Sliced Bread. Packag. Technol. Sci. 2011, 24, 485–494. [Google Scholar] [CrossRef]
- Brody, A.; Strupinsky, E.; Kline, L. Active Packaging for Food Applications; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar] [CrossRef]
- Ramos, M.; Valdés, A.; Mellinas, A.C.; Garrigós, M.C. New Trends in Beverage Packaging Systems: A Review. Beverages 2015, 1, 248–272. [Google Scholar] [CrossRef]
- Byun, Y.; Bae, H.J.; Whiteside, S. Active Warm-Water Fish Gelatin Film Containing Oxygen Scavenging System. Food Hydrocoll. 2012, 27, 250–255. [Google Scholar] [CrossRef]
- Byun, Y.; Whiteside, S.; Cooksey, K.; Darby, D.; Dawson, P.L. α-Tocopherol-Loaded Polycaprolactone (PCL) Nanoparticles as a Heat-Activated Oxygen Scavenger. J. Agric. Food Chem. 2011, 59, 1428–1431. [Google Scholar] [CrossRef]
- Cherpinski, A.; Gozutok, M.; Sasmazel, H.T.; Lagaron, J.M. Electrospun Oxygen Scavenging Films of Poly (3-Hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications. Nanomaterials 2018, 8, 469. [Google Scholar] [CrossRef] [PubMed]
- Arfat, Y.A.; Ejaz, M.; Jacob, H.; Ahmed, J. Deciphering the Potential of Guar Gum / Ag-Cu Nanocomposite Films as an Active Food Packaging Material. Carbohydr. Polym. 2017, 157, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, M.; Arfat, Y.A.; Mulla, M.; Ahmed, J. Zinc Oxide Nanorods/Clove Essential Oil Incorporated Type B Gelatin Composite Films and Its Applicability for Shrimp Packaging. Food Packag. Shelf Life 2018, 15, 113–121. [Google Scholar] [CrossRef]
- Kaewklin, P.; Siripatrawan, U.; Suwanagul, A.; Lee, Y.S. Active Packaging from Chitosan-Titanium Dioxide Nanocomposite Film for Prolonging Storage Life of Tomato Fruit. Int. J. Biol. Macromol. 2018, 112, 523–529. [Google Scholar] [CrossRef]
- Meira, S.M.M.; Zehetmeyer, G.; Scheibel, J.M.; Werner, J.O.; Brandelli, A. Starch-Halloysite Nanocomposites Containing Nisin: Characterization and Inhibition of Listeria Monocytogenes in Soft Cheese. LWT-Food Sci. Technol. 2016, 68, 226–234. [Google Scholar] [CrossRef]
- Orsuwan, A.; Shankar, S.; Wang, L.; Sothornvit, R.; Rhim, J. Preparation of Antimicrobial Agar/Banana Powder Blend Fi Lms Reinforced with Silver Nanoparticles. Food Hydrocoll. 2016, 60, 476–485. [Google Scholar] [CrossRef]
- Quintero, R.I.; Galotto, M.J.; Rodriguez, F.; Guarda, A. Preparation and Characterization of Cellulose Acetate Butyrate/Organoclay Nanocomposites Produced by Extrusion. Packag. Technol. Sci. 2014, 27, 495–507. [Google Scholar] [CrossRef]
- Sanuja, S.; Agalya, A.; Umapathy, M.J. Synthesis and Characterization of Zinc Oxide-Neem Oil-Chitosan Bionanocomposite for Food Packaging Application. Int. J. Biol. Macromol. 2015, 74, 76–84. [Google Scholar] [CrossRef]
- Youssef, A.M.; El-Sayed, S.M.; El-Sayed, H.S.; Salama, H.H.; Dufresne, A. Enhancement of Egyptian Soft White Cheese Shelf Life Using a Novel Chitosan/Carboxymethyl Cellulose/Zinc Oxide Bionanocomposite Film. Carbohydr. Polym. 2016, 151, 9–19. [Google Scholar] [CrossRef]
- El-Sayed, S.M.; El-Sayed, H.S.; Ibrahim, O.A.; Youssef, A.M. Rational Design of Chitosan/Guar Gum/Zinc Oxide Bionanocomposites Based on Roselle Calyx Extract for Ras Cheese Coating. Carbohydr. Polym. 2020, 239, 116234. [Google Scholar] [CrossRef]
- Gaikwad, K.K.; Singh, S.; Lee, Y.S. High Adsorption of Ethylene by Alkali-Treated Halloysite Nanotubes for Food-Packaging Applications. Environ. Chem. Lett. 2018, 16, 1055–1062. [Google Scholar] [CrossRef]
- Tas, C.E.; Hendessi, S.; Baysal, M.; Unal, S.; Cebeci, F.C.; Menceloglu, Y.Z.; Unal, H. Halloysite Nanotubes/Polyethylene Nanocomposites for Active Food Packaging Materials with Ethylene Scavenging and Gas Barrier Properties. Food Bioprocess Technol. 2017, 10, 789–798. [Google Scholar] [CrossRef]
- Joung, J.; Boonsiriwit, A.; Kim, M.; Lee, Y.S. Application of Ethylene Scavenging Nanocomposite Film Prepared by Loading Potassium Permanganate-Impregnated Halloysite Nanotubes into Low-Density Polyethylene as Active Packaging Material for Fresh Produce. LWT-Food Sci. Technol. 2021, 145, 111309. [Google Scholar] [CrossRef]
- Riahi, Z.; Ezati, P.; Rhim, J.W.; Bagheri, R.; Pircheraghi, G. Cellulose Nanofiber-Based Ethylene Scavenging Antimicrobial Films Incorporated with Various Types of Titanium Dioxide Nanoparticles to Extend the Shelf Life of Fruits. ACS Appl. Polym. Mater. 2022, 4, 4765–4773. [Google Scholar] [CrossRef]
- Upadhyay, A.; Kumar, P.; Kardam, S.K.; Gaikwad, K.K. Ethylene Scavenging Film Based on Corn Starch-Gum Acacia Impregnated with Sepiolite Clay and Its Effect on Quality of Fresh Broccoli Florets. Food Biosci. 2022, 46, 101556. [Google Scholar] [CrossRef]
- Fan, X.; Rong, L.; Li, Y.; Cao, Y.; Kong, L.; Zhu, Z.; Huang, J. Fabrication of Bio-Based Hierarchically Structured Ethylene Scavenger Films via Electrospraying for Fruit Preservation. Food Hydrocoll. 2022, 133, 107837. [Google Scholar] [CrossRef]
- Fernández, A.; Picouet, P.; Lloret, E. Cellulose-Silver Nanoparticle Hybrid Materials to Control Spoilage-Related Microflora in Absorbent Pads Located in Trays of Fresh-Cut Melon. Int. J. Food Microbiol. 2010, 142, 222–228. [Google Scholar] [CrossRef]
- Saenjaiban, A.; Singtisan, T.; Suppakul, P.; Jantanasakulwong, K.; Punyodom, W.; Rachtanapun, P. Novel Color Change Film as a Time–Temperature Indicator Using Polydiacetylene/Silver Nanoparticles Embedded in Carboxymethyl Cellulose. Polymers 2020, 12, 2306. [Google Scholar] [CrossRef]
- Zhu, Y.; Gao, X.; Gao, X.; Jiang, Z.; Alhomrani, M.; Alamri, A.S.; Alsanie, W.F.; Cui, H. Development of Polysaccharide Based Intelligent Packaging System for Visually Monitoring of Food Freshness. Int. J. Biol. Macromol. 2024, 277, 134588. [Google Scholar] [CrossRef]
- Khezerlou, A.; Alizadeh Sani, M.; Tavassoli, M.; Abedi-Firoozjah, R.; Ehsani, A.; McClements, D.J. Halochromic (PH-Responsive) Indicators Based on Natural Anthocyanins for Monitoring Fish Freshness/Spoilage. J. Compos. Sci. 2023, 7, 143. [Google Scholar] [CrossRef]
- Abu-Thabit, N.; Hakeem, A.S.; Mezghani, K.; Ratemi, E.; Elzagheid, M.; Umar, Y.; Primartomo, A.; Batty, S.A.; Azad, A.K.; Anazi, S.A.; et al. Preparation of Ph-Indicative and Flame-Retardant Nanocomposite Films for Smart Packaging Applications. Sensors 2020, 20, 5462. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh-Sani, M.; Tavassoli, M.; Mohammadian, E.; Ehsani, A.; Khaniki, G.J.; Priyadarshi, R.; Rhim, J.W. PH-Responsive Color Indicator Films Based on Methylcellulose/Chitosan Nanofiber and Barberry Anthocyanins for Real-Time Monitoring of Meat Freshness. Int. J. Biol. Macromol. 2021, 166, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, W.; Cheng, J.; Xia, Y.; Duan, C.; Zhong, R.; Zhao, X.; Li, X.; Ni, Y. Nanolignin-Containing Cellulose Nanofibrils (LCNF)-Enabled Multifunctional Ratiometric Fluorescent Bio-Nanocomposite Films for Food Freshness Monitoring. Food Chem. 2024, 453, 139673. [Google Scholar] [CrossRef] [PubMed]
- Ezati, P.; Khan, A.; Rhim, J.W. Cellulose Nanofiber-Based PH Indicator Integrated with Resazurin-Modified Carbon Dots for Real-Time Monitoring of Food Freshness. Food Biosci. 2023, 53, 102679. [Google Scholar] [CrossRef]
- Kwon, S.; Ko, S. Colorimetric Freshness Indicator Based on Cellulose Nanocrystal–Silver Nanoparticle Composite for Intelligent Food Packaging. Polymers 2022, 14, 3695. [Google Scholar] [CrossRef]
- Sadi, A.; Ferfera-Harrar, H. Cross-Linked CMC/Gelatin Bio-Nanocomposite Films with Organoclay, Red Cabbage Anthocyanins and Pistacia Leaves Extract as Active Intelligent Food Packaging: Colorimetric PH Indication, Antimicrobial/Antioxidant Properties, and Shrimp Spoilage Tests. Int. J. Biol. Macromol. 2023, 242, 124964. [Google Scholar] [CrossRef]
- Sharaby, M.R.; Soliman, E.A.; Khalil, R. Halochromic Smart Packaging Film Based on Montmorillonite/Polyvinyl Alcohol-High Amylose Starch Nanocomposite for Monitoring Chicken Meat Freshness. Int. J. Biol. Macromol. 2024, 258, 128910. [Google Scholar] [CrossRef]
- Amaregouda, Y.; Kamanna, K.; Kamath, A. Multifunctional Bionanocomposite Films Based on Chitosan/Polyvinyl Alcohol with ZnO NPs and Carissa Carandas Extract Anthocyanin for Smart Packaging Materials. ACS Food Sci. Technol. 2023, 3, 1411–1422. [Google Scholar] [CrossRef]
- Saputri, A.E.; Praseptiangga, D.; Rochima, E.; Panatarani, C.; Joni, I.M. Mechanical and Solubility Properties of Bio-Nanocomposite Film of Semi Refined Kappa Carrageenan/ZnO Nanoparticles. AIP Conf. Proc. 2018, 1927, 1–6. [Google Scholar] [CrossRef]
- López, O.V.; Castillo, L.A.; García, M.A.; Villar, M.A.; Barbosa, S.E. Food Packaging Bags Based on Thermoplastic Corn Starch Reinforced with Talc Nanoparticles. Food Hydrocoll. 2015, 43, 18–24. [Google Scholar] [CrossRef]
- Röcker, B.; Rüegg, N.; Glöss, A.N.; Yeretzian, C.; Yildirim, S. Inactivation of Palladium-based Oxygen Scavenger System by Volatile Sulfur Compounds Present in the Headspace of Packaged Food. Packag. Technol. Sci. 2017, 30, 427–442. [Google Scholar] [CrossRef]
- Baek, S.; Song, K.B. Development of Gracilaria Vermiculophylla Extract Films Containing Zinc Oxide Nanoparticles and Their Application in Smoked Salmon Packaging. LWT-Food Sci. Technol. 2018, 89, 269–275. [Google Scholar] [CrossRef]
- Li, C.; Li, F.; Wang, K.; Xie, D. Green and Facile Fabrication of Multifunctional Cellulose Nanocrystal and Carvacrol Together Reinforced Chitosan Bio-Nanocomposite Coatings for Fruit Preservation. Int. J. Biol. Macromol. 2024, 265, 130651. [Google Scholar] [CrossRef] [PubMed]
- Gharibzahedi, S.M.T.; Ahmadigol, A.; Khubber, S.; Altintas, Z. Bionanocomposite Films with Plasticized WPI-Jujube Polysaccharide/Starch Nanocrystal Blends for Packaging Fresh-Cut Carrots. Food Packag. Shelf Life 2023, 36, 101042. [Google Scholar] [CrossRef]
- Pires, J.R.A.; de Souza, V.G.L.; Fernando, A.L. Chitosan / Montmorillonite Bionanocomposites Incorporated with Rosemary and Ginger Essential Oil as Packaging for Fresh Poultry Meat. Food Packag. Shelf Life 2018, 17, 142–149. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Pires, J.R.A.; Vieira, É.T.; Coelhoso, I.M.; Duarte, M.P.; Fernando, A.L. Shelf Life Assessment of Fresh Poultry Meat Packaged in Novel Bionanocomposite of Chitosan/Montmorillonite Incorporated with Ginger Essential Oil. Coatings 2018, 8, 177. [Google Scholar] [CrossRef]
- Przybyszewska, A.; Barbosa, C.H.; Pires, F.; Pires, J.R.A.; Rodrigues, C.; Galus, S.; Souza, V.G.L.; Alves, M.M.; Santos, C.F.; Coelhoso, I.; et al. Packaging of Fresh Poultry Meat with Innovative and Sustainable ZnO/Pectin Bionanocomposite Films—A Contribution to the Bio and Circular Economy. Coatings 2023, 13, 1208. [Google Scholar] [CrossRef]
- Ghasemi, M.A.G.; Hamishehkar, H.; Javadi, A.; Homayouni-Rad, A.; Jafarizadeh-Malmiri, H. Natural-Based Edible Nanocomposite Coating for Beef Meat Packaging. Food Chem. 2024, 435, 137582. [Google Scholar] [CrossRef]
- Ratna, R.; Aprilia, S.; Arahman, N.; Munawar, A.A. Effect of Edible Film Gelatin Nano-Biocomposite Packaging and Storage Temperature on the Store Quality of Strawberry (Fragaria x Ananassa Var. Duchesne). Future Foods 2023, 8, 100276. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, A.; Wang, W.; Ye, R.; Liu, Y.; Xiao, J.; Wang, K. Characterisation of Microemulsion Nanofilms Based on Tilapia Fish Skin Gelatine and ZnO Nanoparticles Incorporated with Ginger Essential Oil: Meat Packaging Application. Int. J. Food Sci. Technol. 2017, 52, 1670–1679. [Google Scholar] [CrossRef]
- Vilarinho, F.; Andrade, M.; Buonocore, G.G.; Stanzione, M.; Vaz, M.F.; Sanches Silva, A. Monitoring Lipid Oxidation in a Processed Meat Product Packaged with Nanocomposite Poly (Lactic Acid) Film. Eur. Polym. J. 2018, 98, 362–367. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, X.; Li, Y.C.; Xiao, H.; Wang, X. Novel Chitosan Films with Laponite Immobilized Ag Nanoparticles for Active Food Packaging. Carbohydr. Polym. 2018, 199, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Arfat, Y.A.; Benjakul, S.; Vongkamjan, K.; Sumpavapol, P.; Yarnpakdee, S. Shelf-Life Extension of Refrigerated Sea Bass Slices Wrapped with Fish Protein Isolate / Fish Skin Gelatin-ZnO Nanocomposite Film Incorporated with Basil Leaf Essential Oil. J. Food Sci. Technol. 2015, 52, 6182–6193. [Google Scholar] [CrossRef]
- Sasidharan, S.; Tey, L.H.; Djearamane, S.; Rashid, N.K.M.A.; PA, R.; Rajendran, V.; Syed, A.; Wong, L.S.; Santhanakrishnan, V.K.; Asirvadam, V.S.; et al. Innovative Use of Chitosan/ZnO NPs Bio-Nanocomposites for Sustainable Antimicrobial Food Packaging of Poultry Meat. Food Packag. Shelf Life 2024, 43, 101298. [Google Scholar] [CrossRef]
- Metak, A.M.; Nabhani, F.; Connolly, S.N. Migration of Engineered Nanoparticles from Packaging into Food Products. LWT-Food Sci. Technol. 2015, 64, 781–787. [Google Scholar] [CrossRef]
- Rajendran, N.; Runge, T.; Bergman, R.D.; Nepal, P.; Pottackal, N.T.; Rahman, M.M. Economic and Environmental Analysis of Producing Soy Protein-Cellulose-Based Bionanocomposite Fruit Coating. Ind. Crops Prod. 2024, 211, 118213. [Google Scholar] [CrossRef]
- Leite, L.S.F.; Ferreira, C.M.; Corrêa, A.C.; Moreira, F.K.V.; Mattoso, L.H.C. Scaled-up Production of Gelatin-Cellulose Nanocrystal Bionanocomposite Films by Continuous Casting. Carbohydr. Polym. 2020, 238, 116198. [Google Scholar] [CrossRef]
- (EC) 1935/2004; Food Contact Materials—Regulation (EC) 1935/2004-European Implementation Assessment. EPRS: Brussels, Belgium, 2016. [CrossRef]
- European Commission. EU Guidance to the Commission Regulation (EC) No. 450/2009 of 29 May 2009 on Active and Intelligent Materials and Articles Intended to Come into Contact with Food. (Version 1.0); European Parliamentary Research Service (EPRS): Brussels, Belgium, 2009. [Google Scholar]
- Melini, V.; Melini, F. Strategies to Extend Bread and GF Bread Shelf-Life: From Sourdough to Antimicrobial Active Packaging and Nanotechnology. Fermentation 2018, 4, 9. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bharathi, V.S.K.; Jayas, D.S. Evolution of Bionanocomposites: Innovations and Applications in Food Packaging. Foods 2024, 13, 3787. https://doi.org/10.3390/foods13233787
Bharathi VSK, Jayas DS. Evolution of Bionanocomposites: Innovations and Applications in Food Packaging. Foods. 2024; 13(23):3787. https://doi.org/10.3390/foods13233787
Chicago/Turabian StyleBharathi, Vimala S. K., and Digvir S. Jayas. 2024. "Evolution of Bionanocomposites: Innovations and Applications in Food Packaging" Foods 13, no. 23: 3787. https://doi.org/10.3390/foods13233787
APA StyleBharathi, V. S. K., & Jayas, D. S. (2024). Evolution of Bionanocomposites: Innovations and Applications in Food Packaging. Foods, 13(23), 3787. https://doi.org/10.3390/foods13233787