Preparation, Characterization and In Vitro Anticancer Activity of Sulforaphene-Loaded Solid Lipid Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of SFE Crude Extract (Free SFE)
2.3. SFE Content Detection
2.4. Preparation of SFE-SLNs
2.4.1. Production of SFE-SLNs
2.4.2. SFE Loading Parameters
2.5. Characterization of SLNs
2.5.1. Particle Size, Polydispersity Index and Zeta Potential
2.5.2. Transmission Electron Microscope (TEM)
2.5.3. Fourier Infrared Spectroscopy (FTIR)
2.6. Stability Assessment
2.7. In Vitro Release Study
2.8. In Vitro Anticancer Activity
2.8.1. Cell Culture
2.8.2. Cell Activity Assay
2.8.3. Cytomorphological Observations
2.9. Statistical Analysis
3. Results and Discussion
3.1. Determination of Particle Size, Zeta Potential and PDI
3.2. Transmission Electron Microscope (TEM) of SFE-SLNs
3.3. Fourier Transform Infrared Spectrum (FTIR) Study
3.4. Study on Thermal Stability, pH Stability, and Long-Term Stability
3.5. In Vitro Release Study
3.6. In Vitro Anticancer Activity of SFE-SLNs Against A549 Cells
3.7. Morphological Observation of the Nucleus of Cancer Cells After Subjecting to SFE-SLNs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Li, X.; Ge, P.; Zhang, B.; Wen, L.; Gu, C.; Zhou, X. Sulforaphene: Formation, stability, separation, purification, determination and biological activities. Sep. Purif. Rev. 2022, 51, 330–339. [Google Scholar] [CrossRef]
- Deng, W.W.; Mei, X.P.; Cheng, Z.J.; Tian, X.; Hu, J.N.; Zang, C.R.; Sun, B.; Wu, J.; Deng, Y.; Ghiladi, R.A. Extraction of weak hydrophobic sulforaphane from broccoli by salting-out assisted hydrophobic deep eutectic solvent extraction. Food Chem. 2023, 405, 134817. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yu, H.; Zhou, X. Covalent immobilization of thioglucosidase from radish seeds for continuous preparation of sulforaphene. Chem. Eng. Res. Des. 2020, 155, 146–155. [Google Scholar] [CrossRef]
- Mahn, A.; Castillo, A. Potential of sulforaphane as a natural immune system enhancer: A review. Molecules 2021, 26, 752. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jiang, H.; Liang, X.; Zhou, W.; Qiu, Y.; Xue, C.; Sun, J.; Mao, X. Preparation of sulforaphene from radish seed extracts with recombinant food-grade Yarrowia lipolytica harboring high myrosinase activity. J. Agric. Food Chem. 2021, 69, 5363–5371. [Google Scholar] [CrossRef]
- Kaur, I.P. Inhibition of cooked food-induced mutagenesis by dietary constituents: Comparison of two natural isothiocyanates. Food Chem. 2009, 112, 977–981. [Google Scholar] [CrossRef]
- Men, X.; Han, X.; Oh, G.; Im, J.H.; Lim, J.S.; Cho, G.H.; Choi, S.I.; Lee, O.H. Plant sources, extraction techniques, analytical methods, bioactivity, and bioavailability of sulforaphane: A review. Food Sci. Biotechnol. 2024, 33, 539–556. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, M.; Rosen, R.T.; Ho, C.T. Thermal degradation of sulforaphane in aqueous solution. J. Agric. Food Chem. 1999, 47, 3121–3123. [Google Scholar] [CrossRef]
- Singla, A.; Kaur, I. Inhibition of mutagenicity of food-derived heterocyclic amines by sulphoraphene—An isothiocyanate isolated from radish. Planta Medica 2003, 69, 184–186. [Google Scholar] [CrossRef]
- Tian, G.; Li, Y.; Yuan, Q.; Cheng, L.; Kuang, P.; Tang, P. The stability and degradation kinetics of sulforaphene in microcapsules based on several biopolymers via spray drying. Carbohydr. Polym. 2015, 122, 5–10. [Google Scholar] [CrossRef]
- Barkat, M.A.; Das, S.S.; Pottoo, F.H.; Beg, S.; Rahman, Z. Lipid-based nanosystem as intelligent carriers for versatile drug delivery applications. Curr. Pharm. Des. 2020, 26, 1167–1180. [Google Scholar] [CrossRef]
- Beg, S.; Malik, A.K.; Ansari, M.J.; Malik, A.A.; Ali, A.M.A.; Theyab, A.; Algahtani, M.; Almalki, W.H.; Alharbi, K.S.; Alenezi, S.K. Systematic development of solid lipid nanoparticles of abiraterone acetate with improved oral bioavailability and anticancer activity for prostate carcinoma treatment. ACS Omega 2022, 7, 16968–16979. [Google Scholar] [CrossRef] [PubMed]
- Bayón-Cordero, L.; Alkorta, I.; Arana, L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials 2019, 9, 474. [Google Scholar] [CrossRef] [PubMed]
- Trucillo, P.; Campardelli, R. Production of solid lipid nanoparticles with a supercritical fluid assisted process. J. Supercrit. Fluids 2019, 143, 16–23. [Google Scholar] [CrossRef]
- Chae, J.; Choi, Y.; Hong, J.; Kim, N.; Kim, J.; Lee, H.Y.; Choi, J. Anticancer and antibacterial properties of curcumin-loaded mannosylated solid lipid nanoparticles for the treatment of lung diseases. ACS Appl. Bio Mater. 2024, 7, 2175–2185. [Google Scholar] [CrossRef]
- Salah, E.; Abouelfetouh, M.M.; Pan, Y.; Chen, D.; Xie, S. Solid lipid nanoparticles for enhanced oral absorption: A review. Colloids Surf. B Biointerfaces 2020, 196, 111305. [Google Scholar] [CrossRef]
- Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021, 6, 1078–1094. [Google Scholar] [CrossRef]
- Oehlke, K.; Keppler, J.K.; Milsmann, J.; Mayer-Miebach, E.; Greiner, R.; Steffen-Heins, A. Adsorption of β-lactoglobulin to solid lipid nanoparticles (SLN) depends on encapsulated compounds. J. Food Eng. 2019, 247, 144–151. [Google Scholar] [CrossRef]
- Beg, S.; Barkat, M.A.; Ahmad, F.J. Advancement in polymer and lipid-based nanotherapeutics for cancer drug targeting. Curr. Pharm. Des. 2020, 26, 1127. [Google Scholar] [CrossRef] [PubMed]
- Poonia, N.; Lather, V.; Narang, J.K.; Beg, S.; Pandita, D. Resveratrol-loaded folate targeted lipoprotein-mimetic nanoparticles with improved cytotoxicity, antioxidant activity and pharmacokinetic profile. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 114, 111016. [Google Scholar] [CrossRef]
- Zambrano, V.; Bustos, R.; Arozarena, Y.; Mahn, A. Optimization of a microencapsulation process using oil-in-water (O/W) emulsion to increase thermal stability of sulforaphane. Foods 2023, 12, 3869. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Ahn, J.C.; Lee, E.J.; Kim, J. Antiproliferation effect of sulforaphene isolated from radish (Raphanus sativus L.) seeds on A549 cells. Appl. Biol. Chem. 2020, 63, 75. [Google Scholar] [CrossRef]
- Huang, W.S.; Mao, S.Q.; Zhang, L.Q.; Lu, B.Y.; Zheng, L.F.; Zhou, F.; Zhao, Y.J.; Li, M.Q. Phenolic compounds, antioxidant potential and antiproliferative potential of 10 common edible flowers from China assessed using a simulated in vitro digestion-dialysis process combined with cellular assays. J. Sci. Food Agric. 2017, 97, 4760–4769. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Sharma, T.; Kumar, R.; Katare, O.P.; Singh, B. Raloxifene-loaded SLNs with enhanced biopharmaceutical potential: QbD-steered development, in vitro evaluation, in vivo pharmacokinetics, and IVIVC. Drug Deliv. Transl. Res. 2022, 12, 1136–1160. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Mudassir, J.; Mohtar, N.; Darwis, Y. Advanced drug delivery to the lymphatic system: Lipid-based nanoformulations. Int. J. Nanomed. 2013, 8, 2733–2744. [Google Scholar] [CrossRef]
- Yao, C.; Zhu, M.; Han, X.; Xu, Q.; Dai, M.; Nie, T.; Liu, X. A bone-targeting enoxacin delivery system to eradicate staphylococcus aureus-related implantation infections and bone loss. Front. Bioeng. Biotechnol. 2021, 9, 749910. [Google Scholar] [CrossRef]
- Masarudin, M.J.; Cutts, S.M.; Evison, B.J.; Phillips, D.R.; Pigram, P.J. Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: Application to the passive encapsulation of (14)C-doxorubicin. Nanotechnol. Sci. Appl. 2015, 8, 67–80. [Google Scholar] [CrossRef]
- Laein, S.S.; Khanzadi, S.; Hashemi, M.; Gheybi, F.; Azizzadeh, M. Improving quality of trout fillet using gelatin coating-contain peppermint essential oil loaded solid lipid nanoparticles (PEO-SLN). J. Food Meas. Charact. 2024, 18, 345–356. [Google Scholar] [CrossRef]
- Nahr, F.K.; Ghanbarzadeh, B.; Hamishehkar, H.; Kafil, H.S. Food grade nanostructured lipid carrier for cardamom essential oil: Preparation, characterization and antimicrobial activity. J. Funct. Foods 2018, 40, 1–8. [Google Scholar] [CrossRef]
- Wang, F.C.; Marangoni, A.G. Advances in the application of food emulsifier α-gel phases: Saturated monoglycerides, polyglycerol fatty acid esters, and their derivatives. J. Colloid Interface Sci. 2016, 483, 394–403. [Google Scholar] [CrossRef]
- Lammari, N.; Louaer, O.; Meniai, A.H.; Fessi, H.; Elaissari, A. Plant oils: From chemical composition to encapsulated form use. Int. J. Pharm. 2021, 601, 120538. [Google Scholar] [CrossRef] [PubMed]
- Dutta, R.S.; Elhassan, G.O.; Devi, T.B.; Bhattacharjee, B.; Singh, M.; Jana, B.K. Enhanced efficacy of β-carotene loaded solid lipid nanoparticles optimized and developed via central composite design on breast cancer cell lines. Heliyon 2024, 10, e28457. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.L.; Bing, L.; Guo, Y.C. Effect of rosemary extract and TBHQ on the stability of radish seed oil. J. Chem. Soc. Pak. 2016, 38, 631–637. [Google Scholar]
- Song, D.; Liang, H.; Kuang, P.Q.; Tang, P.W.; Hu, G.F.; Yuan, Q.P. Instability and structural change of 4-methylsulfinyl-3-butenyl isothiocyanate in the hydrolytic process. J. Agric. Food Chem. 2013, 61, 5097–5102. [Google Scholar] [CrossRef]
- He, J.B.; Huang, S.S.; Sun, X.; Han, L.J.; Zhong, Q.X. Carvacrol loaded solid lipid nanoparticles of propylene glycol monopalmitate and glyceryl monostearate: Preparation, characterization, and synergistic antimicrobial activity. Nanomaterials 2019, 9, 1162. [Google Scholar] [CrossRef]
- Abadi, S.S.; Moin, A.; Veerabhadrappa, G.H. Review article: Fabricated microparticles: An innovative method to minimize the side effects of nsaids in arthritis. Crit. Rev. Ther. Drug Carr. Syst. 2016, 33, 433–488. [Google Scholar] [CrossRef]
- Chatterjee, S.; Rhee, Y.; Chung, P.S.; Ge, R.F.; Ahn, J.C. Sulforaphene enhances the efficacy of photodynamic therapy in anaplastic thyroid cancer through Ras/RAF/MEK/ERK pathway suppression. J. Photochem. Photobiol. B Biol. 2018, 179, 46–53. [Google Scholar] [CrossRef]
- Chatterjee, S.; Rhee, Y.H.; Ahn, J.C. Sulforaphene–carboplatin combination synergistically enhances apoptosis by disruption of mitochondrial membrane potential and cell cycle arrest in human non-small cell lung carcinoma. J. Med. Food 2016, 19, 860–869. [Google Scholar] [CrossRef]
- Jackman, J.A.; Yoon, B.K.; Li, D.; Cho, N.J. Nanotechnology formulations for antibacterial free fatty acids and monoglycerides. Molecules 2016, 21, 305. [Google Scholar] [CrossRef]
TLE (%) | Particle Size (nm) | Zeta Potential (mV) | PDI | ALE (%) | EE (%) |
---|---|---|---|---|---|
0 | 129.9 ± 1.0 a | −32.4 ± 0.8 a | 0.219 ± 0.007 a | 3.50 ± 0.04 e | 32.85 ± 2.58 c |
4 | 127.7 ± 1.5 a | −29.6 ± 1.5 b | 0.210 ± 0.012 a | 10.25 ± 0.72 d | 40.62 ± 2.79 b |
10 | 125.4 ± 1.4 b | −33.0 ± 1.2 a | 0.214 ± 0.006 a | 16.17 ± 0.99 c | 56.94 ± 2.01 a |
16 | 124.4 ± 2.1 b | −28.9 ± 1.5 b c | 0.199 ± 0.016 a | 22.97 ± 0.23 b | 45.88 ± 2.71 b |
22 | 120.1 ± 0.1 c | −27.1 ± 1.3 c | 0.213 ± 0.009 a | 27.76 ± 0.06 a | 31.52 ± 1.97 c |
28 | 113.3 ± 0.4 d | −24.1 ± 1.1 d | 0.210 ± 0.009 a | 3.50 ± 0.04 e | 32.85 ± 2.58 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.; Ma, X.; Chen, M.; He, J.; Zhang, W. Preparation, Characterization and In Vitro Anticancer Activity of Sulforaphene-Loaded Solid Lipid Nanoparticles. Foods 2024, 13, 3898. https://doi.org/10.3390/foods13233898
Han L, Ma X, Chen M, He J, Zhang W. Preparation, Characterization and In Vitro Anticancer Activity of Sulforaphene-Loaded Solid Lipid Nanoparticles. Foods. 2024; 13(23):3898. https://doi.org/10.3390/foods13233898
Chicago/Turabian StyleHan, Lijuan, Xiaobo Ma, Mingwen Chen, Junbo He, and Weinong Zhang. 2024. "Preparation, Characterization and In Vitro Anticancer Activity of Sulforaphene-Loaded Solid Lipid Nanoparticles" Foods 13, no. 23: 3898. https://doi.org/10.3390/foods13233898
APA StyleHan, L., Ma, X., Chen, M., He, J., & Zhang, W. (2024). Preparation, Characterization and In Vitro Anticancer Activity of Sulforaphene-Loaded Solid Lipid Nanoparticles. Foods, 13(23), 3898. https://doi.org/10.3390/foods13233898