The Characterization and Stability of Powdered Oil Loaded with β-Carotene Prepared from a Sodium Caseinate–Carrageenan Complex: The Effect of Vacuum Freeze-Drying and Spray-Drying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Characterization of Powdered Oils
2.2.1. Preparation of the NaCas-CA Complex
2.2.2. Preparation of the NaCas-CA-Loaded BC Emulsions and Powdered Oils
2.2.3. Surface Oil Content
2.2.4. Scanning Electron Microscopy (SEM)
2.2.5. Fourier Transform Infrared (FTIR)
2.3. Preparation and Characterization of the Reconstituted Emulsion
2.3.1. Reconstitution of Powdered Oils
2.3.2. Determination of the Particle Size and Zeta Potential
2.3.3. Determination of the Stability of the Reconstituted Emulsion
2.3.4. Analysis of BC Storage Stability
2.4. Statistical Analysis
3. Results
3.1. Characterization of Powdered Oils
3.1.1. Surface Oil Content of Powdered Oils
3.1.2. Microscopic Morphology of Powdered Oils
3.1.3. FTIR Spectroscopy
3.2. Characterization of Reconstituted Emulsions
3.2.1. Particle Size and Zeta Potential
3.2.2. Stability of Reconstituted Emulsions
3.2.3. Storage Stability of BC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tufail, T.; Bader Ul Ain, H.; Noreen, S.; Ikram, A.; Arshad, M.T.; Abdullahi, M.A. Nutritional Benefits of Lycopene and Beta-Carotene: A Comprehensive Overview. Food Sci. Nutr. 2024. online ahead of print. [Google Scholar] [CrossRef]
- Zhao, M.; Wu, X.; Tan, H.; Wu, W. Protein oxidation affected the encapsulation properties of rice bran protein fibril-high internal phase pickering emulsions: Enhanced stability and bioaccessibility of β-carotene. Food Res. Int. 2024, 192, 114779. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.; Liu, B.; Tan, Y.; Wu, P.; Niu, Y.; Fan, G.; Wang, J. Synergistic stabilization of high internal phase Pickering emulsions by peanut isolate proteins and cellulose nanocrystals for β-carotene encapsulation. Int. J. Biol. Macromol. 2024, 267, 131196. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Wang, C.; Liu, X.; Mackie, A.; Zhang, M.; Dai, L.; Liu, J.; Mao, L.; Yuan, F.; Gao, Y. Co-encapsulation of curcumin and β-carotene in Pickering emulsions stabilized by complex nanoparticles: Effects of microfluidization and thermal treatment. Food Hydrocoll. 2022, 122, 107064. [Google Scholar] [CrossRef]
- Patel, S.S.; Pushpadass, H.A.; Franklin, M.E.E.; Battula, S.N.; Vellingiri, P. Microencapsulation of curcumin by spray drying: Characterization and fortification of milk. J. Food Sci. Technol. 2021, 59, 1326–1340. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, W.; Wei, Y.; Tong, Z.; Wang, Y.; Gao, Y. Fabrication, characterization and in vitro digestion of food-grade β-carotene high loaded microcapsules: A wet-milling and spray drying coupling approach. LWT 2021, 151, 112176. [Google Scholar] [CrossRef]
- Drosou, C.; Krokida, M. A Comparative Study of Encapsulation of β-Carotene via Spray-Drying and Freeze-Drying Techniques Using Pullulan and Whey Protein Isolate as Wall Material. Foods 2024, 13, 1933. [Google Scholar] [CrossRef]
- Xu, W.; Sun, H.; Li, H.; Li, Z.; Zheng, S.; Luo, D.; Ning, Y.; Wang, Y.; Shah, B.R. Preparation and characterization of tea oil powder with high water solubility using Pickering emulsion template and vacuum freeze-drying. LWT 2022, 160, 113330. [Google Scholar] [CrossRef]
- Santos, P.D.d.F.; Batista, P.S.; Torres, L.C.R.; Thomazini, M.; de Alencar, S.M.; Favaro-Trindade, C.S. Application of spray drying, spray chilling and the combination of both methods to produce tucumã oil microparticles: Characterization, stability, and β-carotene bioaccessibility. Food Res. Int. 2023, 172, 113174. [Google Scholar] [CrossRef]
- Coşkun, N.; Sarıtaş, S.; Jaouhari, Y.; Bordiga, M.; Karav, S. The Impact of Freeze Drying on Bioactivity and Physical Properties of Food Products. Appl. Sci. 2024, 14, 9183. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, S.; Pan, Y.; Yang, J.; Tang, Y.; Chen, G. Multiphysics Modeling for Microwave Freeze-Drying of Initially Porous Frozen Material Assisted by Wave-Absorptive Medium. Ind. Eng. Chem. Res. 2020, 59, 20903–20915. [Google Scholar] [CrossRef]
- Lin, Q.; Wu, D.; Singh, H.; Ye, A. Improving solubility and stability of β-carotene by microencapsulation in soluble complexes formed with whey protein and OSA-modified starch. Food Chem. 2021, 352, 129267. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Hu, Q.; Chen, X.; Tan, S.; Niu, A.; Qiu, W.; Wang, G. Inclusion complexes of clove essential oil with sodium caseinate and gum arabic prepared by high-pressure homogenization: Characterization and non-contact antimicrobial activity. Food Control 2023, 150, 109765. [Google Scholar] [CrossRef]
- Shi, F.; Chang, Y.; Shen, J.; Chen, G.; Xue, C. A comparative investigation of anionic polysaccharides (sulfated fucan, ι-carrageenan, κ-carrageenan, and alginate) on the fabrication, stability, rheology, and digestion of multilayer emulsion. Food Hydrocoll. 2023, 134, 108081. [Google Scholar] [CrossRef]
- Lin, Q.; Jiang, H.; Li, X.; McClements, D.J.; Sang, S.; Wang, J.; Jiao, A.; Jin, Z.; Qiu, C. Encapsulation and protection of β-carotene in Pickering emulsions stabilized by chitosan-phytic acid-cyclodextrin nanoparticles. Food Biosci. 2024, 59, 103845. [Google Scholar] [CrossRef]
- Tirgarian, B.; Farmani, J.; Farahmandfar, R.; Milani, J.M.; Van Bockstaele, F. Colloidal network oleogels structured by sonothermal conjugates of sodium caseinate and anionic gums. Food Hydrocoll. 2023, 140, 108624. [Google Scholar] [CrossRef]
- Wang, S.; Yang, J.; Shao, G.; Liu, J.; Wang, J.; Yang, L.; Li, J.; Liu, H.; Zhu, D.; Li, Y.; et al. pH-induced conformational changes and interfacial dilatational rheology of soy protein isolated/soy hull polysaccharide complex and its effects on emulsion stabilization. Food Hydrocoll. 2020, 109, 106075. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Q.; Wang, J.; Xu, W.; Wang, G.; Hu, Z.; Hu, C. Fabrication of sodium caseinate-polysaccharide complexes stabilized emulsion for increased stability and control release of β-carotene. LWT 2024, 205, 116496. [Google Scholar] [CrossRef]
- Liu, F.; Wang, D.; Sun, C.; McClements, D.J.; Gao, Y. Utilization of interfacial engineering to improve physicochemical stability of β-carotene emulsions: Multilayer coatings formed using protein and protein–polyphenol conjugates. Food Chem. 2016, 205, 129–139. [Google Scholar] [CrossRef]
- Shao, P.; Qiu, Q.; Xiao, J.; Zhu, Y.; Sun, P. Chemical Stability and in vitro release properties of β-carotene in emulsions stabilized by Ulva fasciata polysaccharide. Int. J. Biol. Macromol. 2017, 102, 225–231. [Google Scholar] [CrossRef]
- Campelo, P.H.; do Carmo, E.L.; Zacarias, R.D.; Yoshida, M.I.; Ferraz, V.P.; de Barros Fernandes, R.V.; Botrel, D.A.; Borges, S.V. Effect of dextrose equivalent on physical and chemical properties of lime essential oil microparticles. Ind. Crops Prod. 2017, 102, 105–114. [Google Scholar] [CrossRef]
- Dai, L.; Sun, C.; Wei, Y.; Mao, L.; Gao, Y. Characterization of Pickering emulsion gels stabilized by zein/gum arabic complex colloidal nanoparticles. Food Hydrocoll. 2018, 74, 239–248. [Google Scholar] [CrossRef]
- Yuan, Y.; Gao, Y.; Zhao, J.; Mao, L. Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res. Int. 2008, 41, 61–68. [Google Scholar] [CrossRef]
- Kim, W.; Wang, Y.; Vongsvivut, J.; Ye, Q.; Selomulya, C. On surface composition and stability of β-carotene microcapsules comprising pea/whey protein complexes by synchrotron-FTIR microspectroscopy. Food Chem. 2023, 426, 136565. [Google Scholar] [CrossRef]
- Foerster, M.; Liu, C.; Gengenbach, T.; Woo, M.W.; Selomulya, C. Reduction of surface fat formation on spray-dried milk powders through emulsion stabilization with λ-carrageenan. Food Hydrocoll. 2017, 70, 163–180. [Google Scholar] [CrossRef]
- Wang, M.; Mu, H.; Peng, L.; Tan, C.; Chen, Y.; Sheng, J.; Tian, Y.; Zhao, C. Effect and application of spray drying and freeze drying on characterization of walnut oil microcapsules. J. Food Eng. 2024, 376, 112083. [Google Scholar] [CrossRef]
- Liang, W.; Deng, F.; Wang, Y.; Yue, W.; Hu, D.; Rong, J.; Liu, R.; Xiong, S.; Hu, Y. Interfacial behavior and micro-rheological performance of Pickering emulsions co-stabilized by β-cyclodextrin and xanthan gum. Food Hydrocoll. 2024, 149, 109611. [Google Scholar] [CrossRef]
- El-Messery, T.M.; Altuntas, U.; Altin, G.; Özçelik, B. The effect of spray-drying and freeze-drying on encapsulation efficiency, in vitro bioaccessibility and oxidative stability of krill oil nanoemulsion system. Food Hydrocoll. 2020, 106, 105890. [Google Scholar] [CrossRef]
- Lucas, J.; Ralaivao, M.; Estevinho, B.N.; Rocha, F. A new approach for the microencapsulation of curcumin by a spray drying method, in order to value food products. Powder Technol. 2020, 362, 428–435. [Google Scholar] [CrossRef]
- Toprakçı, İ.; Güngör, K.K.; Torun, M.; Şahin, S. Spray-drying microencapsulation of plum peel bioactives using Arabic gum and maltodextrin as coating matrix. Food Biosci. 2024, 61, 104824. [Google Scholar] [CrossRef]
- Zheng, L.; Cao, C.; Chen, Z.; Cao, L.; Huang, Q.; Song, B. Evaluation of emulsion stability by monitoring the interaction between droplets. LWT 2020, 132, 109804. [Google Scholar] [CrossRef]
- Teo, A.; Lam, Y.; Lee, S.J.; Goh, K.K.T. Spray drying of whey protein stabilized nanoemulsions containing different wall materials—maltodextrin or trehalose. LWT 2021, 136, 110344. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Microencapsulation of Pineapple Peel Extract by Spray Drying Using Maltodextrin, Inulin, and Arabic Gum as Wall Matrices. Foods 2020, 9, 718. [Google Scholar] [CrossRef] [PubMed]
- Franco Ribeiro, E.; Carregari Polachini, T.; Dutra Alvim, I.; Quiles, A.; Hernando, I.; Nicoletti, V.R. Microencapsulation of roasted coffee oil Pickering emulsions using spray- and freeze-drying: Physical, structural and in vitro bioaccessibility studies. Int. J. Food Sci. Technol. 2021, 57, 145–153. [Google Scholar] [CrossRef]
- Napiórkowska, A.; Szpicer, A.; Wojtasik-Kalinowska, I.; Perez, M.D.T.; González, H.D.; Kurek, M.A. Microencapsulation of Juniper and Black Pepper Essential Oil Using the Coacervation Method and Its Properties after Freeze-Drying. Foods 2023, 12, 4345. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Vongsvivut, J.; Tobin, M.J.; Adhikari, R.; Barrow, C.; Adhikari, B. Investigation of oil distribution in spray-dried chia seed oil microcapsules using synchrotron-FTIR microspectroscopy. Food Chem. 2019, 275, 457–466. [Google Scholar] [CrossRef]
- Reksamunandar, R.P.; Edikresnha, D.; Munir, M.M.; Damayanti, S.; Khairurrijal. Encapsulation of β-carotene in poly(vinylpyrrolidone) (PVP) by Electrospinning Technique. Procedia Eng. 2017, 170, 19–23. [Google Scholar] [CrossRef]
- Tirgarian, B.; Farmani, J.; Farahmandfar, R.; Milani, J.M.; Van Bockstaele, F. Switchable pH-responsive Biopolymeric Stabilizers Made by Sonothermal Glycation of Sodium Caseinate with κappa-carrageenan. Food Biophys. 2023, 18, 362–378. [Google Scholar] [CrossRef]
- Yin, X.; Lu, J.; Du, W.; Wu, Q.; Han, L.; Su, S. Encapsulation of β-carotene in Pickering emulsions stabilized by self-aggregated chitosan nanoparticles: Factors affecting β-carotene stability. Int. J. Biol. Macromol. 2024, 277, 133696. [Google Scholar] [CrossRef]
- Ren, J.; Liao, M.; Ma, L.; Chen, F.; Liao, X.; Hu, X.; Miao, S.; Fitzpatrick, J.; Ji, J. Effect of spray freeze drying on the structural modification and rehydration characteristics of micellar casein powders. Innov. Food Sci. Emerg. Technol. 2022, 80, 103093. [Google Scholar] [CrossRef]
- Charles, A.L.; Abdillah, A.A.; Saraswati, Y.R.; Sridhar, K.; Balderamos, C.; Masithah, E.D.; Alamsjah, M.A. Characterization of freeze-dried microencapsulation tuna fish oil with arrowroot starch and maltodextrin. Food Hydrocoll. 2021, 112, 106281. [Google Scholar] [CrossRef]
- Wang, Z.-W.; Zhang, Z.-H.; Qiao, Z.-R.; Cai, W.-D.; Yan, J.-K. Construction and characterization of antioxidative ferulic acid-grafted carboxylic curdlan conjugates and their contributions on β-carotene storage stability. Food Chem. 2021, 349, 129166. [Google Scholar] [CrossRef] [PubMed]
- Granados-Vallejo, M.; Espinosa-Andrews, H.; Guatemala-Morales, G.M.; Esquivel-Solis, H.; Arriola-Guevara, E. Oxidative Stability of Green Coffee Oil (Coffea arabica) Microencapsulated by Spray Drying. Processes 2019, 7, 734. [Google Scholar] [CrossRef]
Sample | Particle Size | Zeta Potential |
---|---|---|
(μm) | (mV) | |
Original emulsion-1.3% | 0.440 ± 0.005 f | −49.03 ± 0.42 abc |
Original emulsion-1.5% | 0.357 ± 0.001 g | −52.00 ± 0.99 e |
Original emulsion-1.7% | 0.328 ± 0.015 g | −50.07 ± 0.66 cd |
SD-1.3% | 2.408 ± 0.029 a | −47.27 ± 0.63 a |
SD-1.5% | 2.203 ± 0.009 b | −52.23 ± 0.69 e |
SD-1.7% | 2.227 ± 0.012 b | −48.97 ± 0.95 bc |
VFD-1.3% | 1.940 ± 0.064 c | −47.80 ± 0.41 ab |
VFD-1.5% | 1.773 ± 0 012 d | −51.27 ± 0.54 de |
VFD-1.7% | 1.677 ± 0 017 e | −50.83 ± 0.39 de |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, Y.; Zhang, J.; Li, D.; Zhang, Y.; Cao, Y.; Xu, W.; Hu, Z.; Hu, C. The Characterization and Stability of Powdered Oil Loaded with β-Carotene Prepared from a Sodium Caseinate–Carrageenan Complex: The Effect of Vacuum Freeze-Drying and Spray-Drying. Foods 2024, 13, 3690. https://doi.org/10.3390/foods13223690
Long Y, Zhang J, Li D, Zhang Y, Cao Y, Xu W, Hu Z, Hu C. The Characterization and Stability of Powdered Oil Loaded with β-Carotene Prepared from a Sodium Caseinate–Carrageenan Complex: The Effect of Vacuum Freeze-Drying and Spray-Drying. Foods. 2024; 13(22):3690. https://doi.org/10.3390/foods13223690
Chicago/Turabian StyleLong, Yue, Juan Zhang, Delong Li, Yanpeng Zhang, Yang Cao, Wei Xu, Zhixiong Hu, and Chun Hu. 2024. "The Characterization and Stability of Powdered Oil Loaded with β-Carotene Prepared from a Sodium Caseinate–Carrageenan Complex: The Effect of Vacuum Freeze-Drying and Spray-Drying" Foods 13, no. 22: 3690. https://doi.org/10.3390/foods13223690
APA StyleLong, Y., Zhang, J., Li, D., Zhang, Y., Cao, Y., Xu, W., Hu, Z., & Hu, C. (2024). The Characterization and Stability of Powdered Oil Loaded with β-Carotene Prepared from a Sodium Caseinate–Carrageenan Complex: The Effect of Vacuum Freeze-Drying and Spray-Drying. Foods, 13(22), 3690. https://doi.org/10.3390/foods13223690