Characteristics and Bioactivities of Protein Hydrolysate from Cricket (Acheta domesticus) Powder Defatted Using Ethanol with Aid of Vacuum Impregnation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enzymes and Chemicals
2.2. Preparation of Cricket Powder
2.3. Defatting of Cricket Powder Using Ethanol at Different Times
2.4. Defatting of Cricket Powder Using Ethanol with the Aid of Vacuum Impregnation (VI)
2.4.1. Fatty Acid Profile of Extracted Residual Fat Using GC-FID
2.4.2. Lipid Distribution by Confocal Laser Scanning Microscope (CLSM)
2.5. Preparation of Defatted Cricket Protein Hydrolysate (DC-PH)
2.5.1. Determination of Enzyme Activities
2.5.2. DC-PH Preparation
2.5.3. Characterization of DC-PH
Size Distribution of Peptides in DC-PH
Amino Acid Composition
2.5.4. Bioavailability of the Digests Obtained from Gastrointestinal Tract (GIT) Digestion across Caco-2 Monolayer
Cell Culture
Cell Viability
Bioavailability Study
2.6. Statistical Analysis
3. Results
3.1. Impact of Ethanol at Various Extraction Times on Defatting of Cricket Powder
3.2. Impact of Ethanol in Combination with Vacuum Impregnation (VI) in Different VI Cycles on Defatting of Cricket Powder
3.3. Fatty Acid Profiles of Remaining Lipids in Cricket Powder as Influenced by Different Selected Defatting Processes
3.4. Lipid Distribution in Cricket Powder as Influenced by Different Defatting Processes
3.5. Effect of Different Enzymatic Hydrolysis on Yield, α-Amino Group Content, and Antioxidative Activities of Protein Hydrolysate from Defatted Cricket Powder (DC-PH)
3.5.1. % Yield
3.5.2. The α-Amino Group Content
3.5.3. Antioxidant Activities
3.6. The Size Distribution of the Defatted Cricket Protein Hydrolysate Prepared Using Alcalase at 0.2 Units/g Dry Sample (A-0.2 Sample)
3.7. Amino Acid Composition of A-0.2 Sample
3.8. Effects of the Digest Obtained from GIT Digestion at Various Concentrations on Caco-2 Cell Viability and Bioavailability
3.8.1. Caco-2 Cell Viability
3.8.2. Bioavailability Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loypimai, P.; Moontree, T.; Pranil, T.; Moongngarm, A. A comparative study of nutritional components of Gryllus bimaculatus and Acheta domesticus cricket powder prepared using different drying methods. J. Food Meas. Charact. 2024, 18, 3974–3983. [Google Scholar] [CrossRef]
- Oonincx, D.G.; Van Itterbeeck, J.; Heetkamp, M.J.; Van Den Brand, H.; Van Loon, J.J.; Van Huis, A. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS ONE 2010, 5, e14445. [Google Scholar] [CrossRef] [PubMed]
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; pp. 99–138. [Google Scholar]
- Gravel, A.; Doyen, A. The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innov. Food Sci. Emerg. Technol. 2020, 59, 102272. [Google Scholar] [CrossRef]
- Hall, F.G.; Jones, O.G.; O’Haire, M.E.; Liceaga, A.M. Functional properties of tropical banded cricket (Gryllodes sigillatus) protein hydrolysates. Food Chem. 2017, 224, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Gravel, A.; Marciniak, A.; Couture, M.; Doyen, A. Effects of hexane on protein profile, solubility and foaming properties of defatted proteins extracted from Tenebrio molitor larvae. Molecules 2021, 26, 351. [Google Scholar] [CrossRef]
- de Matos, F.M.; de Lacerda, J.T.J.G.; Zanetti, G.; de Castro, R.J.S. Production of black cricket protein hydrolysates with α-amylase, α-glucosidase and angiotensin I-converting enzyme inhibitory activities using a mixture of proteases. Biocatal. Agric. Biotechnol. 2022, 39, 102276. [Google Scholar] [CrossRef]
- Fashakin, O.O.; Tangjaidee, P.; Unban, K.; Klangpetch, W.; Khumsap, T.; Sringarm, K.; Rawdkuen, S.; Phongthai, S. Isolation and identification of antioxidant peptides derived from cricket (Gryllus bimaculatus) protein fractions. Insects 2023, 14, 674. [Google Scholar] [CrossRef]
- Yoon, S.; Wong, N.A.; Chae, M.; Auh, J.-H. Comparative characterization of protein hydrolysates from three edible insects: Mealworm larvae, adult crickets, and silkworm pupae. Foods 2019, 8, 563. [Google Scholar] [CrossRef]
- de Matos, F.M.; Novelli, P.K.; de Castro, R.J.S. Enzymatic hydrolysis of black cricket (Gryllus assimilis) proteins positively affects their antioxidant properties. J. Food Sci. 2021, 86, 571–578. [Google Scholar] [CrossRef]
- Rose, A.; Jaczynski, J.; Matak, K. Extraction of lipids from insect powders using a one-step organic solvent extraction process. Future Foods 2021, 4, 100073. [Google Scholar] [CrossRef]
- Kim, T.-K.; Yong, H.I.; Kim, Y.-B.; Jung, S.; Kim, H.-W.; Choi, Y.-S. Effects of organic solvent on functional properties of defatted proteins extracted from Protaetia brevitarsis larvae. Food Chem. 2021, 336, 127679. [Google Scholar] [CrossRef] [PubMed]
- Amarender, R.V.; Bhargava, K.; Dossey, A.T.; Gamagedara, S. Lipid and protein extraction from edible insects–Crickets (Gryllidae). LWT 2020, 125, 109222. [Google Scholar] [CrossRef]
- Arnal, M.; Gallego, M.; Mora, L.; Talens, P. Vacuum impregnation as a sustainable technology to obtain iron-fortified broad bean (Vicia faba) flours. Food Funct. 2023, 14, 5429–5441. [Google Scholar] [CrossRef] [PubMed]
- Chotphruethipong, L.; Aluko, R.E.; Benjakul, S. Enhanced Asian sea bass skin defatting using porcine lipase with the aid of pulsed electric field pretreatment and vacuum impregnation. Process Biochem. 2019, 86, 58–64. [Google Scholar] [CrossRef]
- Tulashie, S.K.; Dodoo, D.; Appiah, G.; Kotoka, F.; Adukpoh, K.E. Oil produced from Ghana cocoa bean for potential industrial applications. Ind. Crop. Prod. 2022, 177, 114426. [Google Scholar] [CrossRef]
- Ali, A.M.M.; de la Caba, K.; Prodpran, T.; Benjakul, S. Quality characteristics of fried fish crackers packaged in gelatin bags: Effect of squalene and storage time. Food Hydrocoll. 2020, 99, 105378. [Google Scholar]
- Chotphruethipong, L.; Aluko, R.E.; Benjakul, S. Effect of pulsed electric field-assisted process in combination with porcine lipase on defatting of seabass skin. J. Food Sci. 2019, 84, 1799–1805. [Google Scholar] [CrossRef]
- Barea, P.; Melgosa, R.; Illera, A.; Alonso-Riaño, P.; de Cerio, E.D.; Benito-Román, O.; Beltrán, S.; Sanz, M.T. Production of small peptides and low molecular weight amino acids by subcritical water from fish meal: Effect of pressurization agent. Food Chem. 2023, 418, 135925. [Google Scholar] [CrossRef]
- Chotphruethipong, L.; Aluko, R.E.; Benjakul, S. Hydrolyzed collagen from porcine lipase-defatted seabass skin: Antioxidant, fibroblast cell proliferation, and collagen production activities. J. Food Biochem. 2019, 43, e12825. [Google Scholar] [CrossRef]
- Sharma, K.; Nilsuwan, K.; Zhang, B.; Hong, H.; Benjakul, S. Protein hydrolysate from salmon frame debittered by plastein reaction: Amino acid composition, characteristics and antioxidant activities. Int. J. Food Sci. 2023, 58, 154–166. [Google Scholar] [CrossRef]
- Theerawitayaart, W.; Prodpran, T.; Benjakul, S. Enhancement of hydrophobicity of fish skin gelatin via molecular modification with oxidized linoleic acid. J. Chem. 2019, 2019, 5462471. [Google Scholar] [CrossRef]
- Patil, U.; Saetang, J.; Zhang, B.; Benjakul, S. Use of tuna visceral pepsin in combination with trypsin as digestion aid: Enhanced protein hydrolysis and bioavailability. Foods 2022, 12, 125. [Google Scholar] [CrossRef] [PubMed]
- Steel, R.G.; Torrie, J.H. Principles and Procedures of Statistics, a Biometrical Approach, 2nd ed.; McGraw-Hill Kogakusha, Ltd.: Tokyo, Japan, 1981. [Google Scholar]
- Chen, Q.; Dong, W.; Wei, C.; Hu, R.; Long, Y. Combining integrated ultrasonic-microwave technique with ethanol to maximise extraction of green coffee oil from Arabica coffee beans. Ind. Crop. Prod. 2020, 151, 112405. [Google Scholar] [CrossRef]
- Wu, H.; Richards, M.P.; Undeland, I. Lipid oxidation and antioxidant delivery systems in muscle food. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1275–1299. [Google Scholar] [CrossRef] [PubMed]
- Muzaifa, M.; Safriani, N.; Zakaria, F. Production of protein hydrolysates from fish by-product prepared by enzymatic hydrolysis. Aquac. Aquar. Conserv. Legis. 2012, 5, 36–39. [Google Scholar]
- Firmansyah, M.; Abduh, M.Y. Production of protein hydrolysate containing antioxidant activity from Hermetia illucens. Heliyon 2019, 5, e02005. [Google Scholar] [CrossRef]
- Esfandi, R.; Willmore, W.G.; Tsopmo, A. Peptidomic analysis of hydrolyzed oat bran proteins, and their in vitro antioxidant and metal chelating properties. Food Chem. 2019, 279, 49–57. [Google Scholar] [CrossRef]
- Ghribi, A.M.; Gafsi, I.M.; Sila, A.; Blecker, C.; Danthine, S.; Attia, H.; Bougatef, A.; Besbes, S. Effects of enzymatic hydrolysis on conformational and functional properties of chickpea protein isolate. Food Chem. 2015, 187, 322–330. [Google Scholar] [CrossRef]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar] [CrossRef]
- Yeerong, K.; Chantawannakul, P.; Anuchapreeda, S.; Wangtueai, S.; Chaiyana, W. Optimization of hydrolysis conditions, isolation, and identification of biologically active peptides derived from Acheta domesticus for antioxidant and collagenase Inhibition. Antioxidants 2024, 13, 367. [Google Scholar] [CrossRef]
- Karami, Z.; Akbari-Adergani, B. Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. J. Food Technol. 2019, 56, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Zhong, Y. Novel antioxidants in food quality preservation and health promotion. Eur. J. Lipid Sci. Technol. 2010, 112, 930–940. [Google Scholar] [CrossRef]
- Mudd, N.; San Martin-Gonzalez, F.; Ferruzzi, M.; Liceaga, A.M. In vivo antioxidant effect of edible cricket (Gryllodes sigillatus) peptides using a Caenorhabditis elegans model. Food Hydrocoll. Health 2022, 2, 100083. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, Q.; Lu, Q. Purification, structural analysis, and stability of antioxidant peptides from purple wheat bran. BMC Chem. 2020, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Je, J.-Y.; Qian, Z.-J.; Byun, H.-G.; Kim, S.-K. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochem. 2007, 42, 840–846. [Google Scholar] [CrossRef]
- Iñarra, B.; Bald, C.; Gutierrez, M.; San Martin, D.; Zufía, J.; Ibarruri, J. Production of bioactive peptides from hake by-catches: Optimization and scale-up of enzymatic hydrolysis process. Mar. Drugs 2023, 21, 552. [Google Scholar] [CrossRef]
- Kittiphattanabawon, P.; Benjakul, S.; Visessanguan, W.; Shahidi, F. Effect of extraction temperature on functional properties and antioxidative activities of gelatin from shark skin. Food Bioproc. Technol. 2012, 5, 2646–2654. [Google Scholar] [CrossRef]
- Chalisova, N.; Linkova, N.; Zhekalov, A.; Orlova, A.; Ryzhak, G.; Khavinson, V.K. Short peptides stimulate cell regeneration in skin during aging. Adv. Gerontol. 2015, 5, 176–179. [Google Scholar] [CrossRef]
- Petsantad, P.; Sangtanoo, P.; Srimongkol, P.; Saisavoey, T.; Reamtong, O.; Chaitanawisuti, N.; Karnchanatat, A. The antioxidant potential of peptides obtained from the spotted babylon snail (Babylonia areolata) in treating human colon adenocarcinoma (Caco-2) cells. RSC Adv. 2020, 10, 25746–25757. [Google Scholar] [CrossRef]
- Guha, S.; Alvarez, S.; Majumder, K. Transport of dietary anti-inflammatory peptide, γ-glutamyl valine (γ-EV), across the intestinal caco-2 monolayer. Nutrients 2021, 13, 1448. [Google Scholar] [CrossRef]
- Zhang, T.; Su, M.; Jiang, X.; Xue, Y.; Zhang, J.; Zeng, X.; Wu, Z.; Guo, Y.; Pan, D. Transepithelial transport route and liposome encapsulation of milk-derived ACE-inhibitory peptide Arg-Leu-Ser-Phe-Asn-Pro. J. Agric. Food Chem. 2019, 67, 5544–5551. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, J.; Sun, Y.; Wang, Y.; He, Z. Prodrug design targeting intestinal PepT1 for improved oral absorption: Design and performance. Curr. Drug Metab. 2013, 14, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.-M.; Tanaka, M.; Koyanagi, R.; Shen, W.; Matsui, T. Structural design of oligopeptides for intestinal transport model. J. Agric. Food Chem. 2016, 64, 2072–2079. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Hong, H.; Wu, J.; Yan, X. Bioavailability of bioactive peptides derived from food proteins across the intestinal epithelial membrane: A review. Trends Food Sci. 2019, 86, 399–411. [Google Scholar] [CrossRef]
Defatting Time (h) | Lipid Removal (%) |
---|---|
1 | 78.42 ± 1.28 b |
2 | 80.38 ± 0.66 a |
3 | 81.15 ± 1.08 a |
4 | 81.73 ± 0.70 a |
VI Cycle | Lipid Removal (%) |
---|---|
1 | 81.96 ± 1.15 c,C |
2 | 82.86 ± 0.28 bc,BC |
3 | 83.86 ± 0.43 b,B |
4 | 86.83 ± 0.78 a,A |
E-2 | 80.38 ± 0.66 d |
Samples | %Yield | α-Amino Group Content (mmol L-Leucine/g Dry Sample) | Antioxidant Activities | |||
---|---|---|---|---|---|---|
ABTS Radical-Scavenging Activity (µmol TE/g Dry Sample) | DPPH Radical Scavenging Activity (µmol TE/g Dry Sample) | FRAP (µmol TE/g Dry Sample) | MCA (µmol EDTA/g Dry Sample) | |||
A-0.2 | 20.01 ± 0.11 b,B | 6.27 ± 0.05 a,A | 19.53 ± 0.15 a,B | 6.50 ± 0.10 a,C | 5.90 ± 0.10 a,B | 6.48 ± 0.33 a,A |
A-0.3 | 21.56 ± 0.11 a,A | 6.24 ± 0.13 a,A | 17.33 ± 0.82 b,C | 6.88 ± 0.10 a,B | 5.38 ± 0.14 b,C | 5.37 ± 0.31 b,C |
A-0.4 | 21.24 ± 0.36 a,A | 6.22 ± 0.05 a,A | 17.39 ± 0.25 b,C | 6.86 ± 0.12 a,B | 5.37 ± 0.07 b,C | 5.23 ± 0.13 b,C |
F-0.2 | 9.72 ± 0.17 b,D | 4.85 ± 0.05 a,B | 15.36 ± 0.19 a,D | 5.64 ± 0.13 a,D | 3.42 ± 0.07 a,D | 6.32 ± 0.07 a,A |
F-0.3 | 11.69 ± 0.09 a,C | 4.79 ± 0.01 ab,B | 15.19 ± 0.15 a,D | 5.58 ± 0.12 b,DE | 2.63 ± 0.07 b,E | 5.95 ± 0.05 b,B |
F-0.4 | 11.13 ± 0.82 a,C | 4.73 ± 0.05 b,B | 15.09 ± 0.15 a,D | 5.35 ± 0.22 b,E | 2.61 ± 0.02 b,E | 6.16 ± 0.05 b,B |
AA | - | - | 21.88 ± 0.53 A | 764.00 ± 10.14 A | 530.67 ± 6.29 A | 5.04 ± 0.27 C |
Amino Acids | Residues/1000 Residues |
---|---|
Aspartic acid | 96.16 ± 4.60 |
Cystine | 2.22 ± 0.00 |
Glutamic acid | 177.68 ± 5.14 |
Glycine | 80.11 ± 4.94 |
Histidine | 28.69 ± 0.02 |
Hydroxylysine | 0.47 ± 0.07 |
Hydroxyproline | 1.40 ± 0.04 |
Isoleucine | 25.74 ± 0.03 |
L-Alanine | 97.25 ± 4.67 |
L-Arginine | 126.51 ± 0.94 |
Leucine | 54.74 ± 5.44 |
Lysine | 65.36 ± 0.23 |
Methionine | 9.61 ± 0.04 |
Phenylalanine | 19.72 ± 0.11 |
Proline | 71.38 ± 4.96 |
Serine | 42.91 ± 4.79 |
Threonine | 33.24 ± 0.48 |
Tryptophan | 4.13 ± 0.04 |
Tyrosine | 23.61 ± 0.05 |
Valine | 39.04 ± 4.60 |
Total amino acids | 1000.00 |
Hydrophobic amino acids | 330.36 ± 19.87 |
Essential amino acids | 387.07 ± 11.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chotphruethipong, L.; Senphan, T.; Sigh, A.; Hutamekalin, P.; Nuthong, P.; Benjakul, S. Characteristics and Bioactivities of Protein Hydrolysate from Cricket (Acheta domesticus) Powder Defatted Using Ethanol with Aid of Vacuum Impregnation. Foods 2024, 13, 3250. https://doi.org/10.3390/foods13203250
Chotphruethipong L, Senphan T, Sigh A, Hutamekalin P, Nuthong P, Benjakul S. Characteristics and Bioactivities of Protein Hydrolysate from Cricket (Acheta domesticus) Powder Defatted Using Ethanol with Aid of Vacuum Impregnation. Foods. 2024; 13(20):3250. https://doi.org/10.3390/foods13203250
Chicago/Turabian StyleChotphruethipong, Lalita, Theeraphol Senphan, Avtar Sigh, Pilaiwanwadee Hutamekalin, Pornpot Nuthong, and Soottawat Benjakul. 2024. "Characteristics and Bioactivities of Protein Hydrolysate from Cricket (Acheta domesticus) Powder Defatted Using Ethanol with Aid of Vacuum Impregnation" Foods 13, no. 20: 3250. https://doi.org/10.3390/foods13203250
APA StyleChotphruethipong, L., Senphan, T., Sigh, A., Hutamekalin, P., Nuthong, P., & Benjakul, S. (2024). Characteristics and Bioactivities of Protein Hydrolysate from Cricket (Acheta domesticus) Powder Defatted Using Ethanol with Aid of Vacuum Impregnation. Foods, 13(20), 3250. https://doi.org/10.3390/foods13203250