Development of Single-Nucleotide Polymorphism (SNP)-Based Species-Specific Real-Time PCR Assays for Authenticating Five Highly Priced Tuna
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. DNA Extraction
2.3. SNP Site Identification and Selection
2.4. PCR Amplification
2.4.1. Design of PCR Primers and Probes
2.4.2. TaqMan PCR Amplification
2.4.3. Cycling Probe PCR Amplification
2.4.4. Sensitivity of the Real-Time PCR Assays
2.5. Commercial Tuna Product Test
3. Results and Discussion
3.1. SNP Markers of Five Tuna Species
3.2. Evaluation of the Primers and Probes for Real-Time PCR Assay
3.2.1. TaqMan Real-Time PCR Assay for ALB, BET, and SBT
3.2.2. Identification of YFT and BFT by Cycling Systems
3.3. Sensitivity Evaluation
3.4. Commercial Fish Product Identification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Díaz-Arce, N.; Arrizabalaga, H.; Murua, H.; Irigoien, X.; Rodríguez-Ezpeleta, N. RAD-seq derived genome-wide nuclear markers resolve the phylogeny of tunas. Mol. Phylogenet. Evol. 2016, 102, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Vinas, J.; Tudela, S. A validated methodology for genetic identification of tuna species (genus Thunnus). PLoS ONE 2009, 4, e7606. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Lu, J.; Qu, M.; Jiang, Y.; Li, F.; Guo, Y.; Wang, L.; Zhai, Y. Methodology and application of PCR-RFLP for species identification in tuna sashimi. Food Sci. Nutr. 2020, 8, 3138–3146. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, Y.; Li, H.; Wang, J.; Chen, W.; Zhou, Y.; Zhou, S. Differentiation of fish species in Taiwan Strait by PCR-RFLP and lab-on-a-chip system. Food Control 2014, 44, 26–34. [Google Scholar] [CrossRef]
- Mata, W.; Chanmalee, T.; Punyasuk, N.; Thitamadee, S. Simple PCR-RFLP detection method for genus- and species-authentication of four types of tuna used in canned tuna industry. Food Control 2020, 108, 106842. [Google Scholar] [CrossRef]
- Servusova, E.; Piskata, Z. Identification of Selected Tuna Species in Commercial Products. Molecules 2021, 26, 1137. [Google Scholar] [CrossRef]
- Gordoa, A.; Carreras, G.; Sanz, N.; Viñas, J. Tuna Species Substitution in the Spanish Commercial Chain: A Knock-On Effect. PLoS ONE 2017, 12, e170809. [Google Scholar] [CrossRef]
- Williams, M.; Hernandez-Jover, M.; Shamsi, S. Fish substitutions which may increase human health risks from zoonotic seafood borne parasites: A review. Food Control 2020, 118, 107429. [Google Scholar] [CrossRef]
- Roungchun, J.B.; Tabb, A.M.; Hellberg, R.S. Identification of tuna species in raw and processed products using DNA mini-barcoding of the mitochondrial control region. Food Control 2022, 134, 108752. [Google Scholar] [CrossRef]
- Lee, G.; Suh, S.; Lee, Y.; Kim, H. Multiplex PCR Assay for Simultaneous Identification of Five Types of Tuna (Katsuwonus pelamis; Thunnus alalonga; T. albacares; T. obesus and T. thynnus). Foods 2022, 11, 280. [Google Scholar] [CrossRef]
- Abdullah, A.; Rehbein, H. The differentiation of tuna (family: Scombridae) products through thePCR-based analysis of the cytochrome b gene and parvalbumin introns. J. Sci. Food Agric. 2016, 96, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Ceruso, M.; Mascolo, C.; Luca, P.D.; Venuti, I.; Biffali, E.; Ambrosio, R.L.; Smaldone, G.; Sordino, P.; Pepe, T. Dentex dentex Frauds: Establishment of a New DNA Barcoding Marker. Foods 2021, 10, 580. [Google Scholar] [CrossRef] [PubMed]
- Kratochwil, C.F.; Kautt, A.F.; Rometsch, S.J.; Meyer, A. Benefits and limitations of a new genome-based PCR-RFLP genotyping assay (GB-RFLP): A SNP-based detection method for identification of species in extremely young adaptive radiations. Ecol. Evol. 2022, 12, e8751. [Google Scholar] [CrossRef] [PubMed]
- Razkin, O.; Sonet, G.; Breugelmans, K.; Madeira, M.J.; Gómez-Moliner, B.J.; Backeljau, T. Species limits; interspecific hybridization and phylogeny in the cryptic land snail complex Pyramidula: The power of RADseq data. Mol. Phylogenet. Evol. 2016, 101, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Leache, A.D.; Banbury, B.L.; Felsenstein, J.; de Oca, A.N.; Stamatakis, A. Short Tree; Long Tree; Right Tree; Wrong Tree: New Acquisition Bias Corrections for Inferring SNP Phylogenies. Syst. Biol. 2015, 64, 1032–1047. [Google Scholar] [CrossRef]
- Rubin, B.E.R.; Ree, R.H.; Moreau, C.S.; Kolokotronis, S. Inferring phylogenies from RAD sequence data. PLoS ONE 2012, 7, e33394. [Google Scholar] [CrossRef]
- Jin, S.B.; Kim, H.B.; Park, S.; Kim, M.J.; Choi, C.W.; Yun, S. Identification of the ‘Haryejosaeng’ mandarin cultivar by multiplex PCR-based SNP genotyping. Mol. Biol. Rep. 2020, 47, 8385–8395. [Google Scholar] [CrossRef]
- Niciura, S.C.M.; Cruvinel, G.G.; Moraes, C.V.; Bressani, F.A.; Malagó Junior, W.; Benavides, M.V.; de Chagas, A.C. PCR-based genotyping of SNP markers in sheep. Mol. Biol. Rep. 2018, 45, 651–656. [Google Scholar] [CrossRef]
- Luo, X.; Shi, X.; Yuan, C.; Ai, M.; Ge, C.; Hu, M.; Feng, Y. Genome-wide SNP analysis using 2b-RAD sequencing identifies the candidate genes putatively associated with resistance to ivermectin in Haemonchus contortus. Parasites Vectors 2017, 10, 31. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, J.; Sun, Z.; Liu, B.; Zhao, C.; Chang, Y. Identification of Sex-Specific Markers Through 2b-RAD Sequencing in the Sea Urchin (Mesocentrotus nudus). Front. Genet. 2021, 12, 717538. [Google Scholar] [CrossRef]
- Ward, R.D.; Holmes, B.H.; White, W.T.; Last, P.R. DNA barcoding Australasian chondrichthyans: Results and potential uses in conservation. Mar. Freshw. Res. 2008, 59, 57–71. [Google Scholar] [CrossRef]
- Armani, A.; Castigliego, L.; Tinacci, L.; Gianfaldoni, D.; Guidi, A. Molecular characterization of icefish; (Salangidae family); using direct sequencing of mitochondrial cytochrome b gene. Food Control 2011, 22, 888–895. [Google Scholar] [CrossRef]
- Wang, S.; Liu, P.; Lv, J.; Li, Y.; Cheng, T.; Zhang, L.; Xia, Y.; Sun, H.; Hu, X.; Bao, Z. Serial sequencing of isolength RAD tags for cost-efficient genome-wide profiling of genetic and epigenetic variations. Nat. Protoc. 2016, 11, 2189–2200. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, Y.; Kristiansen, K.; Wang, J. SOAP: Short oligonucleotide alignment program. Bioinformatics 2008, 24, 713–714. [Google Scholar] [CrossRef]
- Fu, X.; Dou, J.; Mao, J.; Su, H.; Jiao, W.; Zhang, L.; Hu, X.; Huang, X.; Wang, S.; Bao, Z. RAD typing: An integrated package for accurate de novo codominant and dominant RAD genotyping in mapping populations. PLoS ONE 2013, 8, e79960. [Google Scholar] [CrossRef]
- Dai, P.; Luan, S.; Lu, X.; Luo, K.; Cao, B.; Meng, X.; Kong, J. Genetic evaluation of feed efficiency in the breeding population of Fenneropenaeus chinensis “Huanghai No. 2” using phenotypic; pedigree and genomic information. Aquac. Int. 2017, 25, 2189–2200. [Google Scholar] [CrossRef]
- Xu, T.; Sun, J.; Lv, J.; Kayama Watanabe, H.; Li, T.; Zou, W.; Greg, W.R.; Wang, S.; Qian, P.; Bao, Z.; et al. Genome-wide discovery of single nucleotide polymorphisms (SNPs) and single nucleotide variants (SNVs) in deep-sea mussels: Potential use in population genomics and cross-species application. Deep Sea Res. Part II Top. Stud. Oceanogr. 2017, 137, 318–326. [Google Scholar] [CrossRef]
- Mu, X.; Sun, M.; Yang, P.; Lin, Q. Unveiling the Identity of Wenwan Walnuts and Phylogenetic Relationships of Asian Juglans Species Using Restriction Site-Associated DNA-Sequencing. Front. Plant Sci. 2017, 8, 1708. [Google Scholar] [CrossRef]
- Raymaekers, M.; Smets, R.; Maes, B.; Cartuyvels, R. Checklist for optimization and validation of real-time PCR assays. J. Clin. Lab. Anal. 2009, 23, 145–151. [Google Scholar] [CrossRef]
- Yoo, E.; Haile, M.; Ko, H.; Choi, Y.; Cho, G.; Woo, H.; Wang, X.; Sung, P.; Lee, J.; Lee, J.; et al. Development of SNP markers for Cucurbita species discrimination. Sci. Hortic. 2023, 318, 112089. [Google Scholar] [CrossRef]
- Yao, L.; Qu, M.; Jiang, Y.; Guo, Y.; Li, N.; Li, F.; Tan, Z.; Wang, L. The development of genus-specific and species-specific real-time PCR assays for the authentication of Patagonian toothfish and Antarctic toothfish in commercial seafood products. J. Sci. Food Agric. 2022, 102, 1674–1683. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Xin, H.; Qu, M.; Jiang, Y.; Guo, Y.; Li, F.; Li, N.; Tan, Z.; Wang, L. Development of duplex real-time polymerase chain reaction for simultaneous detection of oilfish- and escolar-derived components. J. Sci. Food Agric. 2021, 101, 1792–1799. [Google Scholar] [CrossRef] [PubMed]
- Qu, M.; Jiang, Y.; Guo, Y.; Zhu, W.; Liu, S.; Li, N.; Li, F.; Tan, Z.; Wang, L. Development and Evaluation of Real-Time Polymerase Chain Reaction (PCR) to Authenticate Sablefish (Anoplopoma fimbria) in Commercial Seafood Products. J. Aquat. Food Prod. Technol. 2023, 32, 667–676. [Google Scholar] [CrossRef]
- Chuang, P.; Chen, M.; Shiao, J. Identification of tuna species by a real-time polymerase chain reaction technique. Food Chem. 2012, 133, 1055–1061. [Google Scholar] [CrossRef]
- Terio, V.; Di Pinto, P.; Decaro, N.; Parisi, A.; Desario, C.; Martella, V.; Buonavoglia, C.; Tantillo, M. Identification of tuna species in commercial cans by minor groove binder probe real-time polymerase chain reaction analysis of mitochondrial DNA sequences. Mol. Cell. Probes 2010, 24, 352–356. [Google Scholar] [CrossRef]
- Lopez, I.; Pardo, M.A. Application of Relative Quantification TaqMan Real-Time Polymerase Chain Reaction Technology for the Identification and Quantification of Thunnus alalunga and Thunnus albacares. J. Agric. Food Chem. 2005, 53, 4554–4560. [Google Scholar] [CrossRef]
- Liu, S.; Xu, K.; Wu, Z.; Xie, X.; Feng, J. Identification of five highly priced tuna species by quantitative real-time polymerase chain reaction. Mitochondrial DNA Part A 2016, 27, 3270–3279. [Google Scholar] [CrossRef]
- Mohamad, N.A.; El Sheikha, A.F.; Mustafa, S.; Mokhtar, N.F.K. Comparison of gene nature used in real-time PCR for porcine identification and quantification: A review. Food Res. Int. 2013, 50, 330–338. [Google Scholar] [CrossRef]
- Chen, W.; Fu, Y.; Zeng, Z.; Guo, S.; Yan, Y.; Tu, Y.; Tu, Y.; Gou, T.; Zhang, Q. Establishment and application of a TaqMan probe–based qPCR for the detection of Enterocytozoon hepatopenaei in shrimp Litopenaeus vannamei. Parasitol. Res. 2022, 121, 2263–2274. [Google Scholar] [CrossRef]
- O’Neill, D.; Turner, P.D.; O’Meara, D.B.; Chadwick, E.A.; Coffey, L.; O’Reilly, C. Development of novel real-time TaqMan®PCR assays for the species and sex identification of otter (Lutra lutra) and their application to noninvasive genetic monitoring. Mol. Ecol. Resour. 2013, 13, 877–883. [Google Scholar] [CrossRef]
- Wen, J.; Gou, H.; Liu, J.; Zhou, H.; Lin, Q.; Qu, X.; Chen, K.; Wang, S.; Shen, H.; Liao, M.; et al. A one-step closed-tube enzyme-activated blocked probe assay based on SNP for rapid detection of Salmonella pullorum. Poult. Sci. 2021, 100, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Ishige, T.; Itoga, S.; Matsushita, K. Locked Nucleic Acid Technology for Highly Sensitive Detection of Somatic Mutations in Cancer. Adv. Clin. Chem. 2018, 83, 53–72. [Google Scholar] [PubMed]
- Hou, Y.; Luo, Q.; Chen, C.; Zhou, M. Application of cycleave PCR to the detection of a point mutation (F167Y) in the β 2 -tubulin gene of Fusarium graminearum. Pest Manag. Sci. 2011, 67, 1124–1128. [Google Scholar] [CrossRef] [PubMed]
- Nan, W.; Zhang, Y.; Tan, P.; Xu, Z.; Chen, Y.; Mao, K.; Chen, Y. A rapid cycleave PCR method for distinguishing the vaccine strainBrucella abortus A19 in China. J. Vet. Diagn. Investig. 2016, 28, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Saito, R.; Zaraket, H.; Dapat, C.; Caperig-Dapat, I.; Suzuki, H. Rapid and specific detection of amantadine-resistant influenza A viruses with a Ser31Asn mutation by the cycling probe method. J. Clin. Microbiol. 2010, 48, 57–63. [Google Scholar] [CrossRef]
- Pardo, M.Á.; Jiménez, E.; Viðarsson, J.R.; Ólafsson, K.; Ólafsdóttir, G.; Daníelsdóttir, A.K.; Begoña, P.V. DNA barcoding revealing mislabeling of seafood in European mass caterings. Food Control 2018, 92, 7–16. [Google Scholar] [CrossRef]
Latin Name | English Name | Abbreviation in This Study | Sampling Location | Sample Quantity |
---|---|---|---|---|
T. alalunga | Albacore tuna | ALB | The South Pacific Ocean | 9 |
The North Pacific Ocean | 10 | |||
T. obesus | Bigeye tuna | BET | The Atlantic Ocean | 10 |
The Pacific Ocean | 10 | |||
The Indian Ocean | 4 | |||
T. albacares | Yellowfin tuna | YFT | The Atlantic Ocean | 10 |
The Pacific Ocean | 10 | |||
The Indian Ocean | 10 | |||
T. thynnus | Atlantic bluefin tuna | BFT | The Atlantic Ocean | 10 |
T. maccoyii | Southern bluefin tuna | SBT | The Pacific Ocean | 10 |
The Indian Ocean | 10 |
Name | Sequence (5′–3′) | Product Length | Purpose |
---|---|---|---|
SBT 07F | CCACAACCTCTGAGTCTGAACCT | 114 bp | SBT identification |
SBT 07R | GCAAAGGCTGATAGTAAACAACAAAT | ||
SBT 07P | FAM-TTTCATTCTGCCACTGTG-MGB | ||
ALB 66F | TCTCCATATTCATACTCCCATTGTCT | 80 bp | ALB identification |
ALB 66R | CTCTGCACATCCCTATTACCTACACA | ||
ALB 66P | FAM-AAACCATTCCTCCTTTGA-MGB | ||
BET 81F | GAGGGCAAAAAAAAGCCATTG | 144 bp | BET identification |
BET 81R | AGGTACCTGAGAGAGTAGCACATGTAGTA | ||
BET 81P | FAM-CCTGTCTCAATTAC-MGB |
Name | Sequence (5′–3′) | Product Length | Purpose |
---|---|---|---|
BFT 24F | GGAGGCACATACACTCATGAAACA | 158 bp | BFT identification |
BFT 24R | CTCAGTATCATCCCATGATGAACAA | ||
BFT 24P | FAM-CCTGGA(A)ACA-Eclipse | ||
YFT 43F | GAGTTGTGATGCTTACATT | 109 bp | YFT identification |
YFT 43R | TATCAGTGGTACAAGAGC | ||
YFT 43P | FAM-CACACATA(G)TA-BHQ1 |
Name | Sequence (5′–3′) | Product Length | Purpose |
---|---|---|---|
F1 | TCAACCAACCACAAAGACATTGGCAC | ∼655 bp | DNA barcoding test [21] |
F2 | TCGACTAATCATAAAGATATCGGCAC | ||
R1 | TAGACTTCTGGGTGGCCAAAGAATCA | ||
R2 | ACTTCAGGGTGACCGAAGAATCAGAA |
Tuna | Ref ID | Sequence | SNP Site Base |
---|---|---|---|
SBT | ref-345123 | CATTCTGTCACTGTGTCTCCAAAAGGG | T |
BFT | ref-152929 | GCCTCATCTACATCCTCTCCAGTTAGT | T |
YFT | ref-554392 | ACACATAATACAACTCCTCCTTGAAAT | A |
ALB | ref-159729 | ATTTCAAAAACCATTCCTCCTCTGATT | C |
BET | ref-170863 | CAGTTACCTACATATACTCCTACTGTA | G |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, M.; Jiang, Y.; Li, N.; Guo, Y.; Zhu, W.; Li, N.; Zhao, X.; Yao, L.; Wang, L. Development of Single-Nucleotide Polymorphism (SNP)-Based Species-Specific Real-Time PCR Assays for Authenticating Five Highly Priced Tuna. Foods 2024, 13, 3692. https://doi.org/10.3390/foods13223692
Qu M, Jiang Y, Li N, Guo Y, Zhu W, Li N, Zhao X, Yao L, Wang L. Development of Single-Nucleotide Polymorphism (SNP)-Based Species-Specific Real-Time PCR Assays for Authenticating Five Highly Priced Tuna. Foods. 2024; 13(22):3692. https://doi.org/10.3390/foods13223692
Chicago/Turabian StyleQu, Meng, Yanhua Jiang, Na Li, Yingying Guo, Wenjia Zhu, Na Li, Xinnan Zhao, Lin Yao, and Lianzhu Wang. 2024. "Development of Single-Nucleotide Polymorphism (SNP)-Based Species-Specific Real-Time PCR Assays for Authenticating Five Highly Priced Tuna" Foods 13, no. 22: 3692. https://doi.org/10.3390/foods13223692
APA StyleQu, M., Jiang, Y., Li, N., Guo, Y., Zhu, W., Li, N., Zhao, X., Yao, L., & Wang, L. (2024). Development of Single-Nucleotide Polymorphism (SNP)-Based Species-Specific Real-Time PCR Assays for Authenticating Five Highly Priced Tuna. Foods, 13(22), 3692. https://doi.org/10.3390/foods13223692