Antiviral Potential of Spiraea Extracts (Prepared by Repercolation) Against Influenza A (H1N1) Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extract Preparation
2.3. Cells and Viruses
2.4. A Cytotoxicity Assay
2.5. A Cell Protection Assay
2.6. Quantification of Biologically Active Compounds in Spiraea Extracts
2.7. HPLC Assays of the Profile and Levels of Phenolic Compounds in Spiraea Extracts
3. Results and Discussion
3.1. Antiviral Activities in Extracts of Plants from the Genus Spiraea
3.2. Levels of Biologically Active Compounds Within Extract S15, Which Showed the Highest Antiviral Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lakshmanan, M. Plant Extraction Methods. In Introduction to Basics of Pharmacology and Toxicology: Volume 3: Experimental Pharmacology: Research Methodology and Biostatistics; Springer Nature: Singapore, 2022; pp. 773–783. [Google Scholar]
- Lu, L.T.; Crinan, A. Spiraea Linnaeus. In Flora of China; Wu, Z.Y., Raven, P.H., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2003; Volume 9, pp. 47–73. [Google Scholar]
- Cho, D.G. A Study on the current status of ecological restoration plant species use-focusing on the ecosystem conservation cooperation fund return projects. Korean J. Environ. Ecol. 2021, 35, 525–547. [Google Scholar] [CrossRef]
- Koropachinsky, I.Y.; Vstovskaya, T.N. Tree Species of Asian Russia; Nauka Publishing House: Novosibirsk, Russia, 2002. (In Russian) [Google Scholar]
- Wu, T.S.; Hwang, C.C.; Kuo, P.C.; Kuo, T.H.; Damu, A.G.; Su, C.R. New neolignans from Spiraea formosana. Chem. Pharm. Bull. 2004, 52, 1227–1230. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.W.; Khatoon, S. Ethnobotanical studies on useful trees and shrubs of Haramosh and Bugrote valleys, in Gilgit northern areas of Pakistan. Pak. J. Bot. 2007, 39, 699–710. [Google Scholar]
- Park, J.H.; Ahn, E.K.; Ko, H.J.; Hwang, M.H.; Cho, Y.R.; Lee, D.R.; Choi, B.K.; Seo, D.W.; Oh, J.S. Spiraea prunifolia leaves extract inhibits adipogenesis and lipogenesis by promoting β-oxidation in high fat diet-induced obese mice. Biomed. Pharmacother. 2022, 149, 112889. [Google Scholar] [CrossRef]
- Yin, T.; Zhang, H.; Zhang, W.; Jiang, Z. Chemistry and biological activities of hetisine-type diterpenoid alkaloids. RSC Adv. 2021, 11, 36023–36033. [Google Scholar] [CrossRef]
- Zheng, J.; Jiang, H.; Yan, Y.; Yin, T. Overview of the chemistry and biological activities of natural atisine-type diterpenoid alkaloids. RSC Adv. 2024, 14, 22882–22893. [Google Scholar] [CrossRef]
- Batorova, S.M. Guide to Traditional Tibetan Medicinal Plants; Nauka: Novosibirsk, Russia, 2013. (In Russian) [Google Scholar]
- Lee, B.-W.; Ha, J.-H.; Shin, H.-G.; Jeong, S.-H.; Jeon, D.-B.; Kim, J.-H.; Park, J.-Y.; Kwon, H.-J.; Jung, K.; Lee, W.-S.; et al. Spiraea prunifolia var. simpliciflora Attenuates Oxidative Stress and Inflammatory Responses in a Murine Model of Lipopolysaccharide-Induced Acute Lung Injury and TNF-α-Stimulated NCI-H292 Cells. Antioxidants 2020, 9, 198. [Google Scholar] [CrossRef]
- Kaidash, O.A.; Kostikova, V.A.; Udut, E.V.; Shaykin, V.V.; Kashapov, D.R. Extracts of Spiraea hypericifolia L. and Spiraea crenata L.: The phenolic profile and biological activities. Plants 2022, 11, 2728. [Google Scholar]
- Sun, S.; Liu, Y.; Liu, X.; Zhang, S.; Wang, W.; Wang, R.; Hou, Y.; Wang, W. Neolignan glycosides from Spiraea salicifolia and their inhibitory activity on pro-inflammatory cytokine interleukin-6 production in lipopolysaccharide-stimulated RAW 264.7 cell. Nat. Prod. Res. 2019, 33, 3215–3222. [Google Scholar] [CrossRef]
- Suhr, J.; Lee, H.; Kim, S.; Lee, S.J.; Bae, E.Y.; Ly, S.Y. Anti-inflammatory effects of the ethanol fraction of Spiraea prunifolia var. simpliciflora in RAW 264.7 cells. J. Nutr. Health 2022, 55, 59–69. [Google Scholar]
- Budantsev, A.L. Plant Resources of Russia: Wild Flowering Plants, Their Component Composition and Biological Activity. In Families Caprifoliaceae—Lobeliaceae; KMK: Saint Petersburg, Russia; Moscow, Russia, 2011; Volume 4, p. 630. (In Russian) [Google Scholar]
- Mughal, U.R.; Mehmood, R.; Malik, A.; Ali, B.; Tareen, R.B. Flavonoid constituents from Spiraea brahuica. Helv. Chim. Acta 2012, 95, 100–105. [Google Scholar] [CrossRef]
- Cheng, H.; Zeng, F.H.; Yang, X.; Meng, Y.J.; Xu, L.; Wang, F.P. Collective total syntheses of atisane-type diterpenes and atisine-type diterpenoid alkaloids: (±)-spiramilactone B, (±)-spiraminol, (±)-dihydroajaconine and (±)-spiramines C and D. Angew. Chem. 2016, 128, 400–404. [Google Scholar] [CrossRef]
- Keskin, S.Y.; Avcı, A.; Kurnia, H.F.F. Analyses of phytochemical compounds in the flowers and leaves of var. fortunei using UV-VIS, FTIR, and LC-MS techniques. Heliyon 2024, 10, e25496. [Google Scholar] [CrossRef]
- Shabbir, S.; Khan, S.; Kazmi, M.H.; Fatima, I.; Malik, I.; Inamullah, F.; Tareen, R.B. Brahucins A and B, new triterpene lactones from Spiraea brahuica. J. Asian Nat. Prod. Res. 2020, 14, 1037–1042. [Google Scholar] [CrossRef]
- Luo, D.; Song, M.S.; Xu, B.; Zhang, Y.; Zhang, J.W.; Ma, X.G.; Hao, X.-J.; Sun, H. A clue to the evolutionary history of modern East Asian flora: Insights from phylogeography and diterpenoid alkaloid distribution pattern of the Spiraea japonica complex. Mol. Phylogenet. Evol. 2023, 184, 107772. [Google Scholar] [CrossRef]
- Kostikova, V.A.; Petrova, N.V. Phytoconstituents and bioactivity of plants of the genus Spiraea L. (Rosaceae): A review. Int. J. Mol. Sci. 2021, 22, 11163. [Google Scholar] [CrossRef]
- Andreyeva, V.Y.; Sheykin, V.V.; Kalinkina, G.I.; Razina, T.G.; Zuyeva, Y.P.; Rybalkina, O.Y.; Ul’rikh, A.V. Development of a drug based on the fruits of chokeberry (Arónia melanocárpa (Michx.) Elliot) improving the efficiency of cancer chemotherapy. Khimiya Rastit. Syr’ya 2020, 4, 219–226. (In Russian) [Google Scholar]
- Ardestani, A.; Yazdanparast, R. Antioxidant and free radical scavenging potential of Achillea santolina extracts. Food Chem. 2007, 104, 21–29. [Google Scholar] [CrossRef]
- Brighente, I.M.C.; Dias, M.; Verdi, L.G.; Pizzolatti, M.G. Antioxidant activity and total phenolic content of some Brazilian species. Pharm. Biol. 2007, 45, 156–161. [Google Scholar] [CrossRef]
- Kukushkina, T.A.; Kostikova, V.A.; Khramova, E.P. Content of catechins in leaves and roots of Comarum salesovianum and Comarum palustre (Rosaceae). Khimiya Rastit. Syr’ya 2024, 2, 196–206. (In Russian) [Google Scholar]
- Fedoseeva, L.M. The study of tannins of underground and aboveground vegetative organs of the Bergenia crassifolia (L.) Fitsch., growing in Altai. Khimiya Rastit. Syr’ya 2005, 2, 45–50. (In Russian) [Google Scholar]
- Polish Pharmacopeia VI; Polskie Towarzystwo Farmaceutyczne: Warszawa, Poland, 2002.
- Gawron-Gzella, A.; Dudek-Makuch, M.; Matlawska, I. DPPH radical scavenging activity and phenolic compound content in different leaf extracts from selected blackberry species. Acta Biol. Cracoviensia Ser. Bot. 2012, 54, 32–38. [Google Scholar] [CrossRef]
- Lee, J.H.; Oh, M.; Seok, J.H. Antiviral effects of black raspberry (Rubus coreanus) seed and its gallic acid against influenza virus infection. Viruses 2016, 8, 157. [Google Scholar] [CrossRef]
- Sawai-Kuroda, R.; Kikuchi, S.; Shimizu, Y.K.; Sasaki, Y.; Kuroda, K.; Tanaka, T.; Yamamoto, T.; Sakurai, K.; Shimizu, K. A polyphenol-rich extract from Chaenomeles sinensis (Chinese quince) inhibits influenza A virus infection by preventing primary transcription in vitro. J. Ethnopharmacol. 2013, 146, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Filippova, E.I.; Makarevich, E.V.; Kostikova, V.A. Antiviral effect of the plant extracts against influenza virus in experiments in vitro and in vivo. Probl. Biol. Med. Pharm. Chem. 2014, 12, 69–70. (In Russian) [Google Scholar]
- Lobanova, I.E.; Filippova, E.I.; Vysochina, G.I.; Mazurkova, N.A. Antiviral properties of the wild-growing and cultivated plants of southwest Siberia. Flora Veg. Asian Russ. 2016, 2, 64–72. (In Russian) [Google Scholar]
- Kostikova, V.A.; Filippova, E.I.; Vysochina, G.I.; Mazurkova, N.A. Antiviral activity of plants of the genus Spiraea (Rosaceae) growing in the Asian part of Russia. In Proceedings of the International Conference Dedicated to the 70th Anniversary of Central Siberian Botanical Garden “Preserving the Diversity of Flora in the Botanical Gardens: Tradition, Modernity and Perspectives”, CSBG SB RAS, Novosibirsk, Russia, 1–8 August 2016; pp. 156–157. (In Russian). [Google Scholar]
- Kostikova, V.A.; Zarubaev, V.V.; Esaulkova, I.L.; Sinegubova, E.O.; Kadyrova, R.A.; Shaldaeva, T.M.; Veklich, T.N.; Kuznetsov, A.A. The antiviral, antiradical, and phytochemical potential of dry extracts from Spiraea hypericifolia, S. media, and S. salicifolia (Rosaceae). S. Afr. J. Bot. 2022, 147, 215–222. [Google Scholar] [CrossRef]
- Kashchenko, N.I.; Chirikova, N.K.; Olennikov, D.N. Acylated flavonoids from Spiraea genus as inhibitors of α-amylase. Rus. J. Bioorg. Chem. 2018, 44, 876–886. [Google Scholar] [CrossRef]
- Langeder, J.; Grienke, U.; Chen, Y.; Kirchmair, J.; Schmidtke, M.; Rollinger, J.M. Natural products against acute respiratory infections: Strategies and lessons learned. J. Ethnopharmacol. 2020, 248, 112298. [Google Scholar] [CrossRef]
- Chojnacka, K.; Skrzypczak, D.; Izydorczyk, G.; Mikula, K.; Szopa, D.; Witek-Krowiak, A. Antiviral properties of polyphenols from plants. Foods 2021, 10, 2277. [Google Scholar] [CrossRef]
- Lipson, S.M.; Karalis, G.; Karthikeyan, L.; Ozen, F.S.; Gordon, R.E.; Ponnala, S.; Bao, J.; Samarrai, W.; Wolfe, E. Mechanism of Anti-rotavirus Synergistic Activity by Epigallocatechin Gallate and a Proanthocyanidin-Containing Nutraceutical. Food Environ. Virol. 2017, 9, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Nagai, E.; Iwai, M.; Koketsu, R.; Sogabe, R.; Morimoto, R.; Suzuki, Y.; Ohta, Y.; Okuno, Y.; Ohshima, A.; Enomoto, T.; et al. Inhibition of influenza virus replication by adlay tea. J. Sci. Food Agric. 2018, 98, 1899–1905. [Google Scholar] [CrossRef] [PubMed]
- Kostikova, V.A.; Petrova, N.V.; Shaldaeva, T.M.; Koval, V.V.; Chernonosov, A.A. Non-Targeted Screening of Metabolites in Aqueous-Ethanol Extract from Spiraea hypericifolia (Rosaceae) Using LC-HRMS. Int. J. Mol. Sci. 2023, 24, 13872. [Google Scholar] [CrossRef] [PubMed]
- Fredsgaard, M.; Kaniki, S.E.K.; Antonopoulou, I.; Chaturvedi, T.; Thomsen, M.H. Phenolic Compounds in Salicornia spp. and Their Potential Therapeutic Effects on H1N1, HBV, HCV, and HIV: A Review. Molecules 2023, 28, 5312. [Google Scholar] [CrossRef]
- Tsang, N.Y.; Li, W.F.; Varhegyi, E.; Rong, L.; Zhang, H.J. Ebola entry inhibitors discovered from Maesa perlarius. Int. J. Mol. Sci. 2022, 23, 2620. [Google Scholar] [CrossRef]
- Sopjani, M.; Falco, F.; Impellitteri, F.; Guarrasi, V.; Nguyen Thi, X.; Dërmaku-Sopjani, M.; Faggio, C. Flavonoids derived from medicinal plants as a COVID-19 treatment. Phytother. Res. 2024, 38, 1589–1609. [Google Scholar] [CrossRef]
- Morimoto, R.; Isegawa, Y. Anti-Influenza Virus Activity of Citrullus lanatus var. citroides as a Functional Food: A Review. Foods 2023, 12, 3866. [Google Scholar] [CrossRef]
ID | Species | Sampling Site | Plant Part (Ratio *) | Antiviral Activity | ||
---|---|---|---|---|---|---|
CC50, µg/mL | IC50, µg/mL | SI | ||||
M1 | S. media | Experimental field of CSBG SB RAS | Aerial part (1:1:1) | >300 | 110 | 3 |
M2 | S. media | Experimental field of CSBG SB RAS | Leaves | >300 | 87.2 | 3 |
H3 | S. hypericifolia | Novosibirsk Oblast, Gorny settl. env. | Aerial part (whole branches with leaves and flowers) | >300 | 116 | 3 |
H4 | S. hypericifolia | Experimental field of CSBG SB RAS | Aerial part (whole branches with leaves and flowers) | >300 | 73.8 | 4 |
T5 | S. trilobata | Altai Territory, Medvedevka settl. env. | Aerial part (1:1.5: 1.5) | 112 | 21 | 5 |
T6 | S. trilobata | Experimental field of CSBG SB RAS | Aerial part (1:1:1) | >300 | 170 | 2 |
Ch7 | S. chamaedryfolia | Rep. of Altai, Rep. of Altai, Amur settl. env. | Aerial part 1:1.3: 1.3 | >300 | >300 | 1 |
Ch8 | S. chamaedryfolia | Experimental field of CSBG SB RAS | Aerial part (1:1:1) | >300 | 126 | 2 |
C9 | S. crenata | Rep. of Altai, Ust-Koksa settl. env. | Aerial part (1:1.5:1.5) | 98 | 17 | 6 |
C10 | S. crenata | Novosibirsk Oblast, Shibkovo settl. env. | Aerial part (1:1:1) | 86.2 | >33 | 3 |
B11 | S. betulifolia | Experimental field of CSBG SB RAS | Aerial part (1:1:1) | >300 | 110 | 3 |
F12 | S. flexuosa | Experimental field of CSBG SB RAS | Aerial part (1:1.8: 1.8) | >300 | >300 | 1 |
U13 | S. ussuriensis | Amur Oblast, Zeya c. env. | Aerial part (1:1:1) | >300 | >301 | 1 |
S14 | S. salicifolia | Amur Oblast, Sergeevka settl. env. | Aerial part (1:1:1) | 158 | 20.5 | 8 |
S15 | S. salicifolia | Amur Oblast, Sergeevka settl. env. | Leaves | 57.6 | 5.9 | 10 |
Oseltamivir carboxylate ** | >100 | 0.3 ± 0.0 | >333 | |||
Rimantadine ** | 286 ± 19 | 52 ± 6 | 6 |
Peak No. | Compound | Retention Time (tR), min | Spectral Data λmax, nm | Level of Phenolic Compounds, mg/g |
---|---|---|---|---|
1 | chlorogenic acid | 8.5 | 244, 300 sh., 330 | 3.22 |
2 | gentisic acid | 9.6 | 240, 330 | 1.19 |
3 | caffeic acid | 10.6 | 240, 298 sh., 325 | 0.92 |
4 | orientin | 14.8 | 255, 270, 295 sh., 350 | 2.29 |
5 | ferulic acid | 15.4 | 235,295 sh., 320 | 0.80 |
6 | vitexin | 16.4 | 270, 340 | 4.63 |
7 | coumarin | 17.0 | 280, 315 | 1.36 |
8 | luteolin-7-glucoside | 17.7 | 250, 265 sh., 290 sh., 350 | 2.77 |
9 | quercetin-3-glucuronoside | 18.0 | 255, 260 sh., 290 sh., 355 | 5.39 |
10 | hyperoside | 18.3 | 255, 268 sh., 355 | 1.14 |
11 | isoquercitrin | 18.7 | 259, 266 sh., 358 | 16.60 |
12 | rutin | 19.0 | 255, 355 | 19.30 |
13 | spiraeoside | 20.3 | 255, 366 | 1.67 |
14 | avicularin | 20.8 | 260, 270 sh, 360 | 5.23 |
15 | quercitrin | 21.1 | 260, 330 | 6.25 |
16 | astragalin | 21.8 | 265, 300 sh., 350 | 9.46 |
17 | nicotiflorin | 22.4 | 260, 290 sh., 350 | 6.79 |
18 | isorhamnetin-3-rutinoside | 22.8 | 250, 265 sh., 280, 350 | 10.63 |
19 | cinnamic acid | 23.7 | 275 | 4.50 |
20 | quercetin | 24.7 | 255, 370 | 6.49 |
21 | kaempferol | 28.0 | 265, 365 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostikova, V.A.; Esaulkova, Y.L.; Ilyina, P.A.; Zarubaev, V.V.; Sheikin, V.V.; Petruk, A.A.; Rubtsova, E.D.; Veklich, T.N. Antiviral Potential of Spiraea Extracts (Prepared by Repercolation) Against Influenza A (H1N1) Virus. Foods 2024, 13, 4008. https://doi.org/10.3390/foods13244008
Kostikova VA, Esaulkova YL, Ilyina PA, Zarubaev VV, Sheikin VV, Petruk AA, Rubtsova ED, Veklich TN. Antiviral Potential of Spiraea Extracts (Prepared by Repercolation) Against Influenza A (H1N1) Virus. Foods. 2024; 13(24):4008. https://doi.org/10.3390/foods13244008
Chicago/Turabian StyleKostikova, Vera A., Yana L. Esaulkova, Polina A. Ilyina, Vladimir V. Zarubaev, Vladimir V. Sheikin, Anastasia A. Petruk, Ekaterina D. Rubtsova, and Tatiana N. Veklich. 2024. "Antiviral Potential of Spiraea Extracts (Prepared by Repercolation) Against Influenza A (H1N1) Virus" Foods 13, no. 24: 4008. https://doi.org/10.3390/foods13244008
APA StyleKostikova, V. A., Esaulkova, Y. L., Ilyina, P. A., Zarubaev, V. V., Sheikin, V. V., Petruk, A. A., Rubtsova, E. D., & Veklich, T. N. (2024). Antiviral Potential of Spiraea Extracts (Prepared by Repercolation) Against Influenza A (H1N1) Virus. Foods, 13(24), 4008. https://doi.org/10.3390/foods13244008