Exploring the Potential of Bioactive Compounds and Extracts Obtained from Plants

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Plant Foods".

Deadline for manuscript submissions: 15 June 2025 | Viewed by 6602

Special Issue Editors


E-Mail Website
Guest Editor
Phytochemicals and Food Quality Group, Department of Food Phytochemistry, CSIC—Instituto de la Grasa (IG), 41013 Sevilla, Spain
Interests: phytochemicals; by-products; food ingredients; biological activities; circular economy; saponins; antioxidants; dietary fiber; asparagus; walnut; date fruit; olive
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Phytochemicals and Food Quality Group, Department of Food Phytochemistry, CSIC—Instituto de la Grasa (IG), 41013 Sevilla, Spain
Interests: asparagus; flavonoids; hydroxycinnamates; antioxidants; phytochemical profiling; agricultural by-product valorization; circular economy
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Phytochemicals and Food Quality Group, Department of Food Phytochemistry, CSIC—Instituto de la Grasa (IG), 41013 Sevilla, Spain
Interests: phenolic extracts; antimicrobial and antioxidant properties; bioactivity
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Plant bioactive compounds are chemical substances that are present in different parts of plants and are produced as part of their secondary metabolism, and they can have various biological functions. The main groups that can be found are polyphenols, alkaloids, terpenes, carbohydrates, and saponins. These natural substances have been shown to have various health-promoting, antioxidant, antimicrobial, antifungal, antiviral, and antiparasitic properties, among others. In addition, there is a substantial amount of research on bioactive compounds and plant extract applications across the food field such as food ingredients, in developing functional foods, and nutraceuticals.

The amount and type of bioactives present in plants depend on genetic factors (species and varieties) as well as on environmental ones such as cultivation conditions, time of collection, processing, and storage. A topic of great interest is the valorisation of agricultural and food industry by-products to obtain compounds with high added value. The development of green, more sustainable methods for the extraction of bioactive compounds is also of great interest.

In this Special Issue, we intend to explore the potential of bioactive compounds and extracts obtained from plants. Original articles or reviews including, but not limited to, the following topics are welcome:

  • Active search for new bioactive compounds especially in local and underused plant species;
  • Development of extraction and purification methodologies and elucidation of their structure–activity relationship;
  • Sustainable green technologies for extraction of bioactives;
  • Pre- and postharvest factors affecting the type and content of plant bioactives;
  • Extraction of bioactive compounds and preparation of extracts from by-products of the agricultural and food sectors within the concept of the circular economy;
  • New approaches to evaluate biological activities;
  • Potential applications in various fields of food science and food technology.

Dr. Rafael Guillén Bejarano
Dr. María Rocío Rodríguez Arcos
Dr. Ana J Jiménez-Araujo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant bioactives
  • phytochemicals
  • by-products
  • food ingredients
  • biological activities
  • circular economy
  • sustainability
  • valorisation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 10440 KiB  
Article
Gintonin-Enriched Panax ginseng Extract Induces Apoptosis in Human Melanoma Cells by Causing Cell Cycle Arrest and Activating Caspases
by Su-Hyun Lee, Gyun-Seok Park, Rami Lee, Seongwoo Hong, Sumin Han, Yoon-Mi Lee, Seung-Yeol Nah, Sung-Gu Han and Jae-Wook Oh
Foods 2025, 14(3), 381; https://doi.org/10.3390/foods14030381 - 24 Jan 2025
Viewed by 434
Abstract
Gintonin, a non-saponin glycolipoprotein from Panax ginseng, acts as a lysophosphatidic acid ligand. However, its anticancer effects, especially in melanoma, remain unclear. This study investigated the anti-proliferative effects and intracellular signaling mechanisms of a gintonin-enriched fraction (GEF) from Panax ginseng in human [...] Read more.
Gintonin, a non-saponin glycolipoprotein from Panax ginseng, acts as a lysophosphatidic acid ligand. However, its anticancer effects, especially in melanoma, remain unclear. This study investigated the anti-proliferative effects and intracellular signaling mechanisms of a gintonin-enriched fraction (GEF) from Panax ginseng in human melanoma cell lines. In vitro, GEF treatment significantly inhibited cell proliferation, reduced clonogenic potential, and delayed wound healing in melanoma cells. Flow cytometry and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining showed that GEF induced apoptosis, as evidenced by increased apoptotic cell populations and nuclear changes. GEF also caused cell cycle arrest in the G1 phase for A375 cells and the G2/M phase for A2058 cells. It triggered apoptotic signaling via activation of caspase-3, -9, poly (ADP-ribose) polymerase cleavage, and downregulation of B cell lymphoma-2 (Bcl-2). GEF treatment also raised intracellular reactive oxygen species (ROS) levels and mitochondrial stress, which were mitigated by N-acetyl cysteine (NAC), an ROS inhibitor. In vivo, GEF suppressed tumor growth in A375- and A2058-xenografted mice without toxicity. These findings suggest that GEF from Panax ginseng has potential antitumor effects in melanoma by inducing apoptosis and cell cycle arrest, presenting a promising therapeutic avenue. Full article
Show Figures

Figure 1

11 pages, 424 KiB  
Article
Antiviral Potential of Spiraea Extracts (Prepared by Repercolation) Against Influenza A (H1N1) Virus
by Vera A. Kostikova, Yana L. Esaulkova, Polina A. Ilyina, Vladimir V. Zarubaev, Vladimir V. Sheikin, Anastasia A. Petruk, Ekaterina D. Rubtsova and Tatiana N. Veklich
Foods 2024, 13(24), 4008; https://doi.org/10.3390/foods13244008 - 11 Dec 2024
Viewed by 673
Abstract
An antiviral effect of extracts prepared from aerial parts of nine species and from leaves of two species of the genus Spiraea L. was investigated for potential antiviral activity toward influenza A (H1N1) virus. The toxicity of dry extracts was analyzed, and the [...] Read more.
An antiviral effect of extracts prepared from aerial parts of nine species and from leaves of two species of the genus Spiraea L. was investigated for potential antiviral activity toward influenza A (H1N1) virus. The toxicity of dry extracts was analyzed, and the most selective extract was identified in vitro. The study’s material was collected in the Asian part of Russia. The plant extracts were prepared via three-stage countercurrent repercolation involving a complete cycle. All 40%-ethanolic extracts from Spiraea manifested antiviral activity against influenza A (H1N1) virus, with a selectivity index (SI) ranging from 1 to 10. IC50 values indicated that the S. salicifolia L. S15 leaf extract (5.9 µg/mL) has the most pronounced antiviral effect and the lowest toxicity (CC50 = 57.6 µg/mL) among the studied samples. The SI of this extract was 10, which exceeded that of the antiviral agent rimantadine (SI = 6). Biologically active compounds in the extract with the highest antiviral activity were identified using UV spectrometry and high-performance liquid chromatography. The S. salicifolia leaf extract was found to contain phenolic acids (chlorogenic, gentisic, caffeic, ferulic, and cinnamic acids), flavonols (quercetin, quercetin-3-glucuronoside, hyperoside, isoquercitrin, rutin, spiraeoside, avicularin, quercitrin, kaempferol, nicotiflorin, astragalin, and isorhamnetin-3-rutinoside), flavones (orientin, luteolin-7-glucoside, and vitexin), and coumarin. Predominant biologically active compounds in the S. salicifolia S15 leaf extract were such flavonols as rutin (19.3 mg/g), isoquercitrin (16.6 mg/g), isorhamnetin-3-rutinoside (10.6 mg/g), and astragalin (9.5 mg/g). Extraction of S. salicifolia leaves by repercolation is a more suitable method for extracting active ingredients with an antiviral effect. Full article
Show Figures

Figure 1

14 pages, 2150 KiB  
Article
Comparison of Protective Effects of Polyphenol-Enriched Extracts from Thinned Immature Kiwifruits and Mature Kiwifruits against Alcoholic Liver Disease in Mice
by Wen Deng, Qian-Ni Yang, Ding-Tao Wu, Jie Li, Hong-Yan Liu, Yi-Chen Hu, Liang Zou, Ren-You Gan, Hui-Ling Yan and Jing-Wei Huang
Foods 2024, 13(19), 3072; https://doi.org/10.3390/foods13193072 - 26 Sep 2024
Viewed by 970
Abstract
Alcoholic liver disease (ALD) is regarded as one of the main global health problems. Accumulated evidence indicates that fruit-derived polyphenols can lower the risk of ALD, this attributed to their strong antioxidant capacities. Thinned immature kiwifruits (TIK) are the major agro-byproducts in the [...] Read more.
Alcoholic liver disease (ALD) is regarded as one of the main global health problems. Accumulated evidence indicates that fruit-derived polyphenols can lower the risk of ALD, this attributed to their strong antioxidant capacities. Thinned immature kiwifruits (TIK) are the major agro-byproducts in the production of kiwifruits, which have abundantly valuable polyphenols. However, knowledge about the protective effects of polyphenol-enriched extract from TIK against ALD is still lacking, which ultimately restricts their application as value-added functional products. To promote their potential applications, phenolic compounds from TIK and their corresponding mature fruits were compared, and their protective effects against ALD were studied in the present study. The findings revealed that TIK possessed extremely high levels of total phenolics (116.39 ± 1.51 mg GAE/g DW) and total flavonoids (33.88 ± 0.59 mg RE/g DW), which were about 7.4 times and 4.8 times greater than those of their corresponding mature fruits, respectively. Furthermore, the level of major phenolic components in TIK was measured to be 29,558.19 ± 1170.58 μg/g DW, which was about 5.4 times greater than that of mature fruits. In particular, neochlorogenic acid, epicatechin, procyanidin B1, and procyanidin B2 were found as the predominant polyphenols in TIK. In addition, TIK exerted stronger in vitro antioxidant and anti-inflammatory effects than those of mature fruits, which was probably because of their higher levels of polyphenols. Most importantly, compared with mature fruits, TIK exhibited superior hepatoprotective effects on alcohol-induced liver damage in mice. The administration of polyphenol-enriched extract from TIK (YK) could increase the body weight of mice, reduce the serum levels of ALP, AST, and ALT, lower the levels of hepatic TG and TC, and diminish lipid droplet accumulation and hepatic tissue damage. In addition, the treatment of YK could also significantly restore the levels of antioxidant enzymes (e.g., SOD and CAT) in the liver and lower the levels of hepatic proinflammatory cytokines (e.g., IL-6, IL-1β, and TNF-α), indicating that YK could effectively ameliorate ALD in mice by reducing hepatic oxidative stress and hepatic inflammation. Collectively, our findings can provide sufficient evidence for the development of TIK and their extracts as high value-added functional products for the intervention of ALD. Full article
Show Figures

Figure 1

15 pages, 1543 KiB  
Article
Anti-Melanogenic Potential of Malabar Spinach (Basella alba) in Human Melanoma Cells with Oxidative Stress Suppression and Anti-Inflammatory Activities
by Pichchapa Linsaenkart, Warintorn Ruksiriwanich, Korawan Sringarm, Chaiwat Arjin, Pornchai Rachtanapun, Chuda Chittasupho, Juan M. Castagnini, Romchat Chutoprapat, Anja Mueller and Korawinwich Boonpisuttinant
Foods 2024, 13(18), 2943; https://doi.org/10.3390/foods13182943 - 18 Sep 2024
Cited by 2 | Viewed by 1920
Abstract
Basella alba has been used in Thai remedies to treat skin disorders, but scientific evidence supporting its efficacy is currently limited. In this study, we investigated the inhibitory effects of B. alba extracts on melanin production using melanoma cells, as well as their [...] Read more.
Basella alba has been used in Thai remedies to treat skin disorders, but scientific evidence supporting its efficacy is currently limited. In this study, we investigated the inhibitory effects of B. alba extracts on melanin production using melanoma cells, as well as their impact on oxidative stress and inflammation in keratinocytes. The results demonstrate that B. alba extracts inhibited melanin content and cellular tyrosinase activity in 3-isobutyl-1-methylxanthine (IBMX)-induced melanoma cells by downregulating MITF and the pigmentary genes TYR, TRP-1, and DCT. Interestingly, the MITF regulator gene was inhibited by both the 50% and 95% ethanolic extracts of B. alba with levels of 0.97 ± 0.19 and 0.92 ± 0.09 of the control, respectively, which are comparable to those observed in the arbutin treatment group at 0.84 ± 0.05 of the control. Moreover, after hydrogen peroxide (H2O2) exposure, pretreatment with B. alba reduced lipid peroxidation byproducts and increased the levels of antioxidant-related genes, including SOD-1, GPX-1, and NRF2. Notably, the suppression of the POMC promoter gene in keratinocytes was observed, which may disrupt melanogenesis in melanocytes involving the MC1R signaling pathway. MC1R mRNA expression decreased in the treatments with 50% and 95% ethanolic extracts of B. alba, with relative levels of 0.97 ± 0.18 and 0.90 ± 0.10 of the control, respectively, similar to the arbutin-treated group (0.88 ± 0.25 of control). A significant reduction in nitric oxide was also observed in the B. alba-treated groups, along with a decrease in genes associated with pro-inflammatory cytokines, including IL-1β, IL-6, and COX-2. These findings suggest that B. alba has potential in the prevention of skin-related problems. Full article
Show Figures

Graphical abstract

19 pages, 3518 KiB  
Article
Applications of Saponin Extract from Asparagus Roots as Functional Ingredient
by Amel Hamdi, Isabel Viera-Alcaide, Ana Jiménez-Araujo, Rocío Rodríguez-Arcos and Rafael Guillén-Bejarano
Foods 2024, 13(2), 274; https://doi.org/10.3390/foods13020274 - 15 Jan 2024
Viewed by 1911
Abstract
When replanting an asparagus field, the roots of the previous crop are crushed and incorporated into the soil, creating problems of autotoxicity and fungal infections. Asparagus roots can be considered as a valuable byproduct, since they are very rich in saponins (3–6%), compounds [...] Read more.
When replanting an asparagus field, the roots of the previous crop are crushed and incorporated into the soil, creating problems of autotoxicity and fungal infections. Asparagus roots can be considered as a valuable byproduct, since they are very rich in saponins (3–6%), compounds currently considered as bio-emulsifiers. The objective is to evaluate the emulsifying and foaming capacity of a saponin extract from asparagus roots (ARS) and compare it with other commercial extracts. ARS was obtained using a process patented by our research group. The results have shown that ARS has activity similar to Quillaja extract. Its critical micellar concentration falls between that of Quillaja and Tribulus extracts (0.064, 0.043, and 0.094 g/100 mL, respectively). Both emulsifying and foaming activities are affected by pH, salt, and sucrose to a similar extent as the other extracts. Additionally, it has demonstrated an inhibitory effect on pancreatic lipase, which is even better than the other two studied extracts, as indicated by its IC50 value (0.7887, 1.6366, and 2.0107 mg/mL for asparagus, Quillaja, and Tribulus, respectively). These results suggest that ARS could serve as a natural emulsifying/foaming agent for healthier and safer food products and as a potential aid in treatments for obesity and hyperlipidemia. Full article
Show Figures

Graphical abstract

Back to TopTop