Anti-Melanogenic Potential of Malabar Spinach (Basella alba) in Human Melanoma Cells with Oxidative Stress Suppression and Anti-Inflammatory Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Extraction of B. alba Leaves
2.2. Phenolic Profiles of Crude Extracts by Liquid Chromatography (LC) Coupled with Electrospray Ionization Mass Spectrometry (ESI/MS)
2.3. Preparation of Stock Solutions of Extracts for Bioassay
2.4. Cell Culture and Cytotoxic Assay
2.5. Melanogenesis Assays
2.5.1. Melanin Content in 3-Isobutyl-1-Methylxanthine (IBMX)-Induced Melanoma Cells
2.5.2. Assessment of Intracellular Tyrosinase Activity
2.6. Thiobarbituric Acid Reactive Substance (TBARS) Quantification in Hydrogen Peroxide (H2O2)-Induced Keratinocyte Cells
2.7. Nitric Oxide (NO) Quantification in Lipopolysaccharide (LPS)-Induced Keratinocyte Cells
2.8. Gene Expression Analysis by Semi-Quantitative Reverse Transcription–Polymerase Chain Reaction (PCR)
2.9. Statistical Analysis
3. Results
3.1. Crude Extract Preparation and Phytochemical Compositions
3.2. Effects of Basella alba Extracts on Cell Viability
3.3. Basella alba Extracts Suppress Melanin Content, Tyrosinase Activity, and Expression of Melanogenesis-Related Genes in IBMX-Treated Melanoma Cells
3.4. Basella alba Extracts Alleviate TBARS Formation by Stimulating Expression of Genes Related to Antioxidant Pathways in H2O2-Treated Keratinocytes
3.5. Basella alba Extracts Inhibit NO Production and Downregulate Expression of Genes Associated with Inflammatory Cytokines in LPS-Treated Keratinocytes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Phargarden. Basella alba L. Available online: https://apps.phar.ubu.ac.th/phargarden/main.php?action=viewpage&pid=238 (accessed on 15 May 2024).
- Kumar, S.S.; Manoj, P.; Giridhar, P. Nutrition facts and functional attributes of foliage of Basella spp. LWT Food Sci. Technol. 2015, 64, 468–474. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, W.; Di, H.; Yang, S.; Tian, Y.; Tong, Y.; Huang, H.; Escalona, V.H.; Tang, Y.; Li, H. Variation in Nutritional Components and Antioxidant Capacity of Different Cultivars and Organs of Basella alba. Plants 2024, 13, 892. [Google Scholar] [CrossRef]
- Baskaran, G.; Salvamani, S.; Ahmad, S.A.; Shaharuddin, N.A.; Pattiram, P.D.; Shukor, M.Y. HMG-CoA reductase inhibitory activity and phytocomponent investigation of Basella alba leaf extract as a treatment for hypercholesterolemia. Drug Des. Dev. Ther. 2015, 9, 509–517. [Google Scholar] [CrossRef]
- Sheik, A.; Kim, E.; Adepelly, U.; Alhammadi, M.; Huh, Y.S. Antioxidant and antiproliferative activity of Basella alba against colorectal cancer. Saudi J. Biol. Sci. 2023, 30, 103609. [Google Scholar] [CrossRef]
- D’souza, O.J.; Gasti, T.; Hiremani, V.D.; Pinto, J.P.; Contractor, S.S.; Shettar, A.K.; Olivia, D.; Arakera, S.B.; Masti, S.P.; Chougale, R.B. Basella alba stem extract integrated poly (vinyl alcohol)/chitosan composite films: A promising bio-material for wound healing. Int. J. Biol. Macromol. 2023, 225, 673–686. [Google Scholar] [CrossRef]
- D’mello, S.A.N.; Finlay, G.J.; Baguley, B.C.; Marjan, E.A.A. Signaling Pathways in Melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar] [CrossRef]
- Lee, Y.I.; Choi, S.; Roh, W.S.; Lee, J.H.; Kim, T.G. Cellular Senescence and Inflammaging in the Skin Microenvironment. Int. J. Mol. Sci. 2021, 22, 3849. [Google Scholar] [CrossRef]
- Xing, X.; Dan, Y.; Xu, Z.; Leihong, X. Implications of Oxidative Stress in the Pathogenesis and Treatment of Hyperpigmentation Disorders. Oxidative Med. Cell. Longev. 2022, 2022, 1–12. [Google Scholar] [CrossRef]
- Ruksiriwanich, W.; Linsaenkart, P.; Muangsanguan, A.; Sringarm, K.; Jantrawut, P.; Arjin, C.; Sommano, S.R.; Phimolsiripol, Y.; Barba, F.J. Wound Healing Effect of Supercritical Carbon Dioxide Datura metel L. Leaves Extracts: An In Vitro Study of Anti-Inflammation, Cell Migration, MMP-2 Inhibition, and the Modulation of the Sonic Hedgehog Pathway in Human Fibroblasts. Plants 2023, 12, 2546. [Google Scholar] [CrossRef]
- Oren, M.; Jiri, B. The Sunny Side of p53. Cell 2007, 128, 826–828. [Google Scholar] [CrossRef]
- Chan, T.K.; Bramono, D.; Bourokba, N.; Krishna, V.; Wang, S.T.; Neo, B.H.; Lim, R.Y.X.; Kim, H.; Misra, N.; Lim, S.; et al. Polycyclic aromatic hydrocarbons regulate the pigmentation pathway and induce DNA damage responses in keratinocytes, a process driven by systemic immunity. J. Dermatol. Sci. 2021, 104, 83–94. [Google Scholar] [CrossRef]
- Passeron, T.; Lim, H.W.; Goh, C.-L.; Kang, H.Y.; Ly, F.; Morita, A.; Candiani, J.O.; Puig, S.; Schalka, S.; Wei, L.; et al. Photoprotection according to skin phototype and dermatoses: Practical recommendations from an expert panel. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 1460–1469. [Google Scholar] [CrossRef]
- Kim, N.H.; Lee, A.Y. Oxidative Stress Induces Skin Pigmentation in Melasma by Inhibiting Hedgehog Signaling. Antioxidants 2023, 12, 1969. [Google Scholar] [CrossRef]
- Chaiprasongsuk, A.; Panich, U. Role of Phytochemicals in Skin Photoprotection via Regulation of Nrf2. Front. Pharmacol. 2022, 13, 823881. [Google Scholar] [CrossRef]
- Mighri, H.; Akrout, A.; Bennour, N.; Eljeni, H.; Zammouri, T.; Neffati, M. LC/MS method development for the determination of the phenolic compounds of Tunisian Ephedra alata hydro-methanolic extract and its fractions and evaluation of their antioxidant activities. S. Afr. J. Bot. 2019, 124, 102–110. [Google Scholar] [CrossRef]
- Ruksiriwanich, W.; Khantham, C.; Muangsanguan, A.; Phimolsiripol, Y.; Barba, F.J.; Sringarm, K.; Rachtanapun, P.; Jantanasakulwong, K.; Jantrawut, P.; Chittasupho, C.; et al. Guava (Psidium guajava L.) Leaf Extract as Bioactive Substances for Anti-Androgen and Antioxidant Activities. Plants 2022, 11, 3514. [Google Scholar] [CrossRef]
- Muangsanguan, A.; Linsaenkart, P.; Chaitep, T.; Sangta, J.; Sommano, S.R.; Sringarm, K.; Arjin, C.; Rachtanapun, P.; Jantanasakulwong, K.; Phimolsiripol, Y.; et al. Hair Growth Promotion and Anti-Hair Loss Effects of By-Products Arabica Coffee Pulp Extracts Using Supercritical Fluid Extraction. Foods 2023, 12, 4116. [Google Scholar] [CrossRef]
- Linsaenkart, P.; Ruksiriwanich, W.; Jantrawut, P.; Chittasupho, C.; Rachtanapun, P.; Jantanasakulwong, K.; Sommano, S.R.; Prom-U-Thai, C.; Jamjod, S.; Arjin, C.; et al. Natural Melanogenesis Inhibitor, Antioxidant, and Collagen Biosynthesis Stimulator of Phytochemicals in Rice Bran and Husk Extracts from Purple Glutinous Rice (Oryza sativa L. cv. Pieisu 1 CMU) for Cosmetic Application. Plants 2023, 12, 970. [Google Scholar] [CrossRef]
- Linsaenkart, P.; Ruksiriwanich, W.; Muangsanguan, A.; Sommano, S.R.; Sringarm, K.; Arjin, C.; Rachtanapun, P.; Jantanasakulwong, K.; Castagnini, J.M.; Chutoprapat, R.; et al. Antioxidant, Anti-Inflammation, and Melanogenesis Inhibition of Sang 5 CMU Rice (Oryza sativa) Byproduct for Cosmetic Applications. Plants 2024, 13, 1795. [Google Scholar] [CrossRef]
- Roberts, D.W.; Newton, R.A.; Beaumont, K.A.; Helen Leonard, J.; Sturm, R.A. Quantitative analysis of MC1R gene expression in human skin cell cultures. Pigment. Cell Res. 2005, 19, 76–89. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, P.; Fu, H.; Wang, D.; Zhao, D.; Zhang, J.; Wang, C.; Li, M. Effects of Lactobacillus kefiri fermentation supernatant on skin aging caused by oxidative stress. J. Funct. Foods 2005, 96, 105222. [Google Scholar] [CrossRef]
- Yeo, H.; Ahn, S.S.; Lee, Y.H.; Shin, S.Y. Regulation of pro-opiomelanocortin (POMC) gene transcription by interleukin-31 via early growth response 1 (EGR-1) in HaCaT keratinocytes. Mol. Biol. Rep. 2020, 4, 5953–5962. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.; Lee, J.; Park, S.H.; Kim, Y.A.; Park, B.J.; Oh, J.; Sung, G.H.; Aravinthan, A.; Kim, J.H.; Kang, H.; et al. Antiphotoaging and Antimelanogenic Effects of Penthorum chinense Pursh Ethanol Extract due to Antioxidant- and Autophagy-Inducing Properties. Oxidative Med. Cell. Longev. 2019, 2019, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Silpa-Archa, N.; Kohli, I.; Chaowattanapanit, S.; Lim, H.W.; Hamzavi, I. Postinflammatory Hyperpigmentation: A comprehensive overview: Epidemiology, pathogenesis, clinical presentation, and noninvasive assessment technique. J. Am. Acad. Dermatol. 2017, 77, 591–605. [Google Scholar] [CrossRef]
- Upadhyay, P.R.; Swope, V.B.; Starner, R.J.; Koikov, L.; Abdel-Malek, Z.A. Journey through the spectacular landscape of melanocortin 1 receptor. Pigment. Cell Melanoma Res. 2024, 1–14. [Google Scholar] [CrossRef]
- Chen, X.; Kang, R.; Tang, D. Ferroptosis by lipid peroxidation: The tip of the iceberg? Front. Cell Dev. Biol. 2021, 9, 646890. [Google Scholar] [CrossRef]
- Xian, D.; Xiong, X.; Xu, J.; Xian, L.; Lei, Q.; Song, J.; Jianqiao, Z. Nrf2 Overexpression for the Protective Effect of Skin-Derived Precursors against UV-Induced Damage: Evidence from a Three-Dimensional Skin Model. Oxidative Med. Cell. Longev. 2019, 2019, 7021428. [Google Scholar] [CrossRef]
- Rodríguez-Arámbula, A.; Torres-Álvarez, B.; Cortés-García, D.; Fuentes-Ahumada, C.; Castanedo-Cázares, J.P. CD4, IL-17, and COX-2 Are Associated With Subclinical Inflammation in Malar Melasma. Am. J. Dermatopathol. 2015, 37, 761–766. [Google Scholar] [CrossRef]
- Ruksiriwanich, W.; Khantham, C.; Linsaenkart, P.; Chaitep, T.; Rachtanapun, P.; Jantanasakulwong, K.; Phimolsiripol, Y.; Režek Jambrak, A.; Nazir, Y.; Yooin, W. Anti-inflammation of bioactive compounds from ethanolic extracts of edible bamboo mushroom (Dictyophora indusiata) as functional health promoting food ingredients. Int. J. Food. Sci. Tech. 2022, 57, 110–122. [Google Scholar] [CrossRef]
- Ruksiriwanich, W.; Linsaenkart, P.; Khantham, C.; Muangsanguan, A.; Sringarm, K.; Jantrawut, P.; Prom-U.-Thai, C.; Jamjod, S.; Yamuangmorn, S.; Arjin, C. Regulatory effects of thai rice by-product extracts from Oryza sativa L. cv. Bue Bang 3 CMU and Bue Bang 4 CMU on melanin production, nitric oxide secretion, and steroid 5α-reductase inhibition. Plants 2023, 12, 653. [Google Scholar] [CrossRef]
- Yang, C.Y.; Guo, Y.; Wu, W.J.; Man, M.Q.; Tu, Y.; He, L. UVB-Induced Secretion of IL-1β Promotes Melanogenesis by Upregulating TYR/TRP-1 Expression In Vitro. BioMed Res. Int. 2022, 2022, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kanner, J. Polyphenols by Generating H2O2, Affect Cell Redox Signaling, Inhibit PTPs and Activate Nrf2 Axis for Adaptation and Cell Surviving: In Vitro, In Vivo and Human Health. Antioxidants 2020, 9, 797. [Google Scholar] [CrossRef] [PubMed]
- Bernatoniene, J.; Kopustinskiene, D.M. The Role of Catechins in Cellular Responses to Oxidative Stress. Molecules 2018, 23, 965. [Google Scholar] [CrossRef] [PubMed]
- Chaiprasongsuk, A.; Onkoksoong, T.; Pluemsamran, T.; Limsaengurai, S.; Panich, U. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses. Redox Biol. 2015, 8, 79–90. [Google Scholar] [CrossRef]
- Kim, H.D.; Choi, H.; Abekura, F.; Park, J.Y.; Yang, W.S.; Yang, S.H.; Kim, C.H. Naturally-Occurring Tyrosinase Inhibitors Classified by Enzyme Kinetics and Copper Chelation. Int. J. Mol. Sci. 2023, 24, 8226. [Google Scholar] [CrossRef]
- Wang, W.; Di, T.; Wang, W.; Jiang, H. EGCG, GCG, TFDG, or TSA inhibiting melanin synthesis by downregulating MC1R expression. Int. J. Mol. Sci. 2023, 24, 11017. [Google Scholar] [CrossRef]
- Garcia-Jimenez, A.; Teruel-Puche, J.; Garcia-Ruiz, P.A.; Saura-Sanmartin, A.; Berna, J.; Rodríguez-López, J.N.; Garcia-Canovas, F. Action of tyrosinase on caffeic acid and its n-nonyl ester. Catalysis and suicide inactivation. Int. J. Biol. Macromol. 2018, 107, 2650–2659. [Google Scholar] [CrossRef]
- Varela, M.T.; Ferrarini, M.; Mercaldi, V.; da Silva Sufi, B.; Padovani, G.; Nazato, L.I.S.; Fernandes, J.P.S. Coumaric acid derivatives as tyrosinase inhibitors: Efficacy studies through in silico, in vitro and ex vivo approaches. Bioorganic Chem. 2020, 103, 104108. [Google Scholar] [CrossRef]
Primer | Forward Sequence (5′ to 3′) | Reverse Sequence (5′ to 3′) | Reference |
---|---|---|---|
MITF | ACCGTCTCTCACTGGATTGGT | ACCAATCCAGTGAGAGACGGT | [20] |
TYR | TTGGCATAGACTCTTCTTGTTGCGG | CCGCAACAAGAAGAGTCTATGCCAA | [20] |
TRP-1 | TGGCAAAGCGCACAACTCACCC | GGGTGAGTTGTGCGCTTTGCCA | [20] |
DCT | TGTGGAGACTGCAAGTTTGGC | GCCAAACTTGCAGTCTCCACA | [20] |
MC1R | GCAGCAGCTGGACAATGTCA | TGACATTGTCCAGCTGCTGC | [21] |
SOD-1 | TGGAGATAATACAGCAGGCT | AGCCTGCTGTATTATCTCCA | [22] |
GPX-1 | AGAAGTGCGAGGTGAACGGT | ACCGTTCACCTCGCACTTCT | [22] |
NRF2 | AAACCAGTGGATCTGCCAAC | GTTGGCAGATCCACTGGTTT | [20] |
POMC | CCTGCCTGGAAGATGCCGAGAT | ATCTCGGCATCTTCCAGGCAGG | [23] |
IL-1β | CTGAGCTCGCCAGTGAATG | CATTCACTGGCGAGCTCAG | [20] |
IL-6 | ACTCACCTCTTCAGAACGAATTG | CAATTCGTTCTGAAGAGGTGAGT | [20] |
COX-2 | GGGATTTTGGAACGTTGTGAA | TTCACAACGTTCCAAAATCCC | [24] |
GAPDH | GGAAGGTGAAGGTCGGAGTC | CTCAGCCTTGACGGTGCCATG | [20] |
Bioactive Compounds (mg/g Extract) | Water | 50 EtOH | 95 EtOH |
---|---|---|---|
Catechin | 2.00 ± 0.13 b | 1.83 ± 0.03 b | 0.92 ± 0.09 a |
Caffeic acid | 0.08 ± 0.00 a | 0.20 ± 0.00 b | 0.22 ± 0.00 c |
p-Coumaric acid | 0.51 ± 0.04 b | 0.27 ± 0.00 a | 0.83 ± 0.00 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linsaenkart, P.; Ruksiriwanich, W.; Sringarm, K.; Arjin, C.; Rachtanapun, P.; Chittasupho, C.; Castagnini, J.M.; Chutoprapat, R.; Mueller, A.; Boonpisuttinant, K. Anti-Melanogenic Potential of Malabar Spinach (Basella alba) in Human Melanoma Cells with Oxidative Stress Suppression and Anti-Inflammatory Activities. Foods 2024, 13, 2943. https://doi.org/10.3390/foods13182943
Linsaenkart P, Ruksiriwanich W, Sringarm K, Arjin C, Rachtanapun P, Chittasupho C, Castagnini JM, Chutoprapat R, Mueller A, Boonpisuttinant K. Anti-Melanogenic Potential of Malabar Spinach (Basella alba) in Human Melanoma Cells with Oxidative Stress Suppression and Anti-Inflammatory Activities. Foods. 2024; 13(18):2943. https://doi.org/10.3390/foods13182943
Chicago/Turabian StyleLinsaenkart, Pichchapa, Warintorn Ruksiriwanich, Korawan Sringarm, Chaiwat Arjin, Pornchai Rachtanapun, Chuda Chittasupho, Juan M. Castagnini, Romchat Chutoprapat, Anja Mueller, and Korawinwich Boonpisuttinant. 2024. "Anti-Melanogenic Potential of Malabar Spinach (Basella alba) in Human Melanoma Cells with Oxidative Stress Suppression and Anti-Inflammatory Activities" Foods 13, no. 18: 2943. https://doi.org/10.3390/foods13182943
APA StyleLinsaenkart, P., Ruksiriwanich, W., Sringarm, K., Arjin, C., Rachtanapun, P., Chittasupho, C., Castagnini, J. M., Chutoprapat, R., Mueller, A., & Boonpisuttinant, K. (2024). Anti-Melanogenic Potential of Malabar Spinach (Basella alba) in Human Melanoma Cells with Oxidative Stress Suppression and Anti-Inflammatory Activities. Foods, 13(18), 2943. https://doi.org/10.3390/foods13182943