Development of a Dual-Readout Multicolor Immunoassay for the Rapid Analysis of Isocarbophos in Vegetable and Fruit Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments
2.3. Buffers
2.4. Development of Multicolor Immunoassay
2.4.1. Absorbance-Based Mode
2.4.2. RGB-Based Mode
2.5. Recovery Test
2.5.1. Sample Pretreatment
2.5.2. Parameters of HPLC
2.5.3. Parameters of Mass Spectrometry
3. Results and Discussion
3.1. Feasibility of Multicolor Immunoassay
3.2. Characterization of Prussian Blue
3.2.1. Morphology Characterization
3.2.2. Component Characterization
3.3. Optimization and Development of Multicolor Immunoassay
3.4. RGB Value Analysis for Multicolor Immunoassay
3.5. Results of Recovery Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hassani, S.; Momtaz, S.; Vakhshiteh, F.; Maghsoudi, A.S.; Ganjali, M.R.; Norouzi, P.; Abdollahi, M. Biosensors and their applications in detection of organophosphorus pesticides in the environment. Arch. Toxicol. 2016, 91, 109–130. [Google Scholar] [CrossRef] [PubMed]
- Aragay, G.; Pino, F.; Merkoçi, A. Nanomaterials for sensing and destroying pesticides. Chem. Rev. 2012, 112, 5317–5338. [Google Scholar] [CrossRef] [PubMed]
- Balali-Mood, M.; Balali-Mood, K.; Moodi, M.; Balali-Mood, B. Health aspects of organophosphorous pesticides in asian countries. Iran. J. Public Health 2012, 41, 1–14. [Google Scholar]
- Canli, A.G.; Surucu, B.; Ulusoy, H.I.; Yilmaz, E.; Kabir, A.; Locatelli, M. Analytical methodology for trace determination of propoxur and fenitrothion pesticide residues by decanoic acid modified magnetic nanoparticles. Molecules 2019, 24, 4621. [Google Scholar] [CrossRef]
- Zhao, F.N.; Wang, L.; Li, M.Y.; Wang, M.; Liu, G.Y.; Ping, J.F. Nanozyme-based biosensor for organophosphorus pesticide monitoring: Functional design, biosensing strategy, and detection application. TrAC Trends Anal. Chem. 2023, 165, 117152. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Xu, J.W.; Zhang, X.C.; Zhang, X.Q.; Li, L.L.; Yuan, X.H.; Mang, D.Z.; Zhu, X.Y.; Zhang, F.; Dewer, Y.; et al. Organophosphorus insecticide interacts with the pheromone-binding proteins of Athetis lepigone: Implication for olfactory dysfunction. J. Hazard. Mater. 2020, 397, 122777. [Google Scholar] [CrossRef]
- Fang, L.C.; Xu, L.Y.; Zhang, N.; Shi, Q.Y.; Shi, T.Z.; Ma, X.; Wu, X.W.; Li, Q.X.; Hua, R.M. Enantioselective degradation of the organophosphorus insecticide isocarbophos in Cupriavidus nantongensis X1T: Characteristics, enantioselective regulation, degradation pathways, and toxicity assessment. J. Hazard. Mater. 2021, 417, 126024. [Google Scholar] [CrossRef]
- Liu, Y.H.; Yang, K.L.; Wang, L.; Yang, J.F.; Wang, Y.; Luo, H.; Li, P.; Yin, Y.L. Vitamin B6 prevents Isocarbophos-induced posterior cerebral artery injury in offspring rats through up-regulating S1P receptor expression. Acta Bioch. Bioph. Sin. 2021, 53, 1691–1701. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, X.; Li, N. Chronic toxicity and carcinogenicity of 95% isocarbophos in rats. Toxicol. Lett. 2010, 196, S174. [Google Scholar] [CrossRef]
- Xu, L.Y.; Zhang, X.Y.; Abd El-Aty, A.M.; Wang, Y.S.; Cao, Z.; Jia, H.; Salvador, J.P.; Hacimuftuoglu, A.; Cui, X.Y.; Zhang, Y.D.; et al. A highly sensitive bio-barcode immunoassay for multi-residue detection of organophosphate pesticides based on fluorescence anti-quenching. J. Pharm. Anal. 2022, 12, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.X.; Huang, A.; He, L.L.; Cai, C.Y.; You, T.Y. Recent advances in foodborne pathogen detection using photoelectrochemical biosensors: From photoactive material to sensing strategy. Front. Sustain. Food S. 2024, 8, 1432555. [Google Scholar] [CrossRef]
- Xu, R.; Xiang, Y.D.; Shen, Z.; Li, G.Z.; Sun, J.S.; Lin, P.Y.; Chen, X.F.; Huang, J.C.; Dong, H.W.; He, Z.Y.; et al. Portable multichannel detection instrument based on time-resolved fluorescence immunochromatographic test strip for on-site detecting pesticide residues in vegetables. Anal. Chim. Acta 2023, 1280, 341842. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.Y.; Fu, R.J.; Zhou, J.; Cui, Y.L.; Zhang, Y.H.; Jiao, B.N.; He, Y. Manganese dioxide nanosheet-mediated etching of gold nanorods for a multicolor colorimetric assay of total antioxidant capacity. Sens. Actuators B 2020, 321, 128604. [Google Scholar] [CrossRef]
- Tian, F.Y.; Zhou, J.; Fu, R.J.; Cui, Y.L.; Zhao, Q.Y.; Jiao, B.N.; He, Y. Multicolor colorimetric detection of ochratoxin A via structure-switching aptamer and enzyme-induced metallization of gold nanorods. Food Chem. 2020, 320, 126607. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Li, Z.; Zhang, J.; Shi, J.; Zou, X.; Huang, X.; Zhang, D.; Sun, Y.; Yang, Z.; Holmes, M.; et al. Natural Biomaterial-Based Edible and pH-Sensitive Films Combined with Electrochemical Writing for Intelligent Food Packaging. J. Agr. Food Chem. 2018, 66, 12836–12846. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.S.; Cai, Y.; Qileng, A.R.; Quan, Z.; Zeng, W.; He, K.Y.; Liu, Y.J. Template-assisted Cu2O@Fe(OH)3 yolk-shell nanocages as biomimetic peroxidase: A multi-colorimetry and ratiometric fluorescence separated-type immunosensor for the detection of ochratoxin A. J. Hazard. Mater. 2021, 411, 125090. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.M.; Lin, Y.; Guo, L.H.; Qiu, B.; Chen, G.N.; Yang, H.H.; Lin, Z.Y. A universal multicolor immunosensor for semiquantitative visual detection of biomarkers with the naked eyes. Biosens. Bioelectron. 2017, 87, 122–128. [Google Scholar] [CrossRef]
- Liu, Y.S.; Wang, J.; Zhao, C.; Guo, X.X.; Song, X.L.; Zhao, W.; Liu, S.J.; Xu, K.; Li, J. A multicolorimetric assay for rapid detection of Listeria monocytogenes based on the etching of gold nanorods. Anal. Chim. Acta 2019, 1048, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.W.; Chen, Q.; Zhong, Y.Y.; Yu, X.H.; Wu, Y.N.; Fu, F.F. A multicolor immunosensor for sensitive visual detection of breast cancer biomarker based on sensitive NADH-ascorbic-acid-mediated growth of gold nanobipyramids. Anal. Chem. 2019, 92, 1534–1540. [Google Scholar] [CrossRef]
- Yu, X.H.; Lin, Y.H.; Wang, X.S.; Xu, L.J.; Wang, Z.W.; Fu, F. Exonuclease-assisted multicolor aptasensor for visual detection of ochratoxin A based on G-quadruplex-hemin DNAzyme-mediated etching of gold nanorod. Microchim. Acta 2018, 185, 259. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Yang, L.; Wen, Z.G.; Chu, S.Y.; Wang, M.; Wang, Z.Y.; Jiang, C.L. A dual-response ratiometric fluorescent sensor by europium-doped CdTe quantum dots for visual and colorimetric detection of tetracycline. J. Hazard. Mater. 2020, 398, 122894. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.C.; Jiang, W.; Zhao, Y.; Liu, H.L.; Sun, B.G. Single, dual and multi-emission carbon dots based optosensing for food safety. Trends Food Sci. Technol. 2021, 111, 388–404. [Google Scholar] [CrossRef]
- Wei, Y.Y.; Zhang, Y.Z.; Song, D.; Li, J.; Xu, Z.R. Alkaline phosphatase-regulated in situ formation of chromogenic probes for multicolor visual sensing of biomarkers. Talanta 2021, 228, 122222. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Shi, Z.Y.; Li, D.Q.; Jiang, C.X.; Wang, X.X.; Huang, M.; Wang, J.; Su, B. Hue-Recognition Strategy-Based Immunoassay Using Functionalized Dendritic Silica Colloids and Gold Nanoclusters for Point-of-Care Testing of C-Reactive Proteins. ACS Appl. Nano Mater. 2023, 6, 86–95. [Google Scholar] [CrossRef]
- Chen, H.; Ding, Y.; Li, J.; Huang, L.; Gonzalez-Sapienza, G.; Hammock, B.D.; Wang, M.; Hua, X. New Approach to Generate Ratiometric Signals on Immunochromatographic Strips for Small Molecules. Anal. Chem. 2022, 94, 7358–7367. [Google Scholar] [CrossRef] [PubMed]
- Mazur, F.; Han, Z.; Tjandra, A.D.; Chandrawati, R. Digitalization of Colorimetric Sensor Technologies for Food Safety. Adv. Mater. 2024, 36, 2404274. [Google Scholar] [CrossRef]
- Chen, Z.J.; Huang, Z.C.; Sun, Y.M.; Xu, Z.L.; Liu, J. The Most Active Oxidase-Mimicking Mn2O3 Nanozyme for Biosensor Signal Generation. Chem. Eur. J. 2021, 27, 9597–9604. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zhou, K.; Qiu, Y.; Xia, L.; Xia, Z.N.; Zhang, K.L.; Fu, Q.F. Strongly emissive formamide-derived N-doped carbon dots embedded Eu(III)-based metal-organic frameworks as a ratiometric fluorescent probe for ultrasensitive and visual quantitative detection of Ag+. Sens. Actuators B 2021, 339, 129922. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Yang, Y.; Ma, S.C.; Wu, J.; Yao, T.J. Preparation of Fe3O4@Prussian blue core/shell composites for enhanced photo-Fenton degradation of rhodamine B. Colloids Surf. A 2020, 606, 125416. [Google Scholar] [CrossRef]
- Cho, C.; Oh, H.; Lee, J.S.; Kang, L.; Oh, E.; Hwang, Y.; Kim, S.J.; Bae, Y.; Kim, E.; Kang, H.C.; et al. Prussian blue nanozymes coated with Pluronic attenuate inflammatory osteoarthritis by blocking c-Jun N-terminal kinase phosphorylation. Biomaterials 2023, 297, 122131. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.; Jeon, J.; Lee, M.S.; Yang, H.S.; Tae, G. Antioxidant and anti-inflammatory activities of Prussian blue nanozyme promotes full-thickness skin wound healing. Mater. Sci. Eng. C-Mater 2021, 119, 111596. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.X.; Huang, Q.; Dou, L.N.; Bu, T.; Chen, K.; Yang, Q.F.; Yan, L.Z.; Wang, J.L.; Zhang, D.H. Prussian blue nanoparticles based lateral flow assay for high sensitive determination of clenbuterol. Sens. Actuators B 2018, 275, 223–229. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.Y.; Zhou, H.Y.; Ma, R.; Fang, Z.; Zhu, J.W.; Chen, Z.J.; Dai, X.F.; Wei, D.L.; Li, J.B.; et al. Universal antibacterial and anti-inflammatory treatment using chitosan-prussian blue nanozyme. EngMedicine 2024, 1, 100006. [Google Scholar] [CrossRef]
- Akbari, S.S.; Unal, U.; Karadas, F. Photocatalytic Water Oxidation with a CoFe Prussian Blue Analogue–Layered Niobate Hybrid Material. ACS Appl. Energy Mater. 2021, 4, 12383–12390. [Google Scholar] [CrossRef]
- Chen, Z.J.; Huang, A.J.; Dong, X.X.; Zhang, Y.F.; Zhu, L.; Luo, L.; Xu, Z.L.; Wang, H. A simple and sensitive fluoroimmunoassay based on the nanobody-alkaline phosphatase fusion protein for the rapid detection of fenitrothion. Front. Sustain. Food Syst. 2023, 7, 1320931. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Chen, C.Y.; Peng, D.P.; Zhou, Y.Z.; Zhuang, J.L.; Zhang, X.J.; Lei, B.F.; Liu, Y.L.; Hu, C.F. pH-Responsive carbon dots with red emission for real-time and visual detection of amines. J. Mater. Chem. C. 2020, 8, 11563–11571. [Google Scholar] [CrossRef]
- Gögen, Y.; Koçak, Ç.C.; Karabiberoğlu, Ş.; Polatdemir, E.; Aslaner, H.; Zorlu, R.; Çağlar, B.; Çirak, Ç.; Özdokur, K.V. Prussian blue modified magnetite decorated MW-CNT nanocomposite: Synthesis, characterization and potential use as Photo-Fenton catalysts for phenol degradation. Chem. Pap. 2024, 78, 1863–1874. [Google Scholar] [CrossRef]
- Yu, Z.C.; Gong, H.X.; Li, M.J.; Tang, D.P. Hollow prussian blue nanozyme-richened liposome for artificial neural network-assisted multimodal colorimetric-photothermal immunoassay on smartphone. Biosens. Bioelectron. 2022, 218, 114751. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.Z.; Wang, Z.Z.; Wang, S.; Wang, G.C.; Dong, H.J.; He, H.L.; Wu, H.A.; Ma, M.; Gao, X.F.; Zhang, Y. Elucidating the catalytic mechanism of Prussian blue nanozymes with self-increasing catalytic activity. Nat. Commun. 2024, 15, 5908. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.S.; Li, C.H.; Hou, X.D. Smartphone-based dual inverse signal MOFs fluorescence sensing for intelligent on-site visual detection of malachite green. Talanta 2024, 274, 126039. [Google Scholar] [CrossRef]
- Cai, S.; Li, J.Q.; Sun, P.J.; Tao, J.; Fu, Y.F.; Yang, R.; Li, Z.H.; Qu, L.B. Red emissive carbon dots-based polymer beads for recyclable and ultra-sensitive detection of malachite green in fish tissue. Sens. Actuators B 2023, 380, 133311. [Google Scholar] [CrossRef]
- Ye, S.J.; Chen, S.; Cai, T.M.; Sheng, R.; Peng, H.L. Iron-driven self-assembly of dopamine into dumbbell-shaped nanozyme for visual and rapid detection of norfloxacin on a smartphone-assisted platform. Talanta 2024, 274, 126003. [Google Scholar] [CrossRef]
- Wang, L.M.; Cai, J.; Wang, Y.L.; Fang, Q.K.; Wang, S.Y.; Cheng, Q.; Du, D.; Lin, Y.H.; Liu, F.Q. A bare-eye-based lateral flow immunoassay based on the use of gold nanoparticles for simultaneous detection of three pesticides. Microchim. Acta 2014, 181, 1565–1572. [Google Scholar] [CrossRef]
- Liu, B.Y.; Tang, Y.; Yang, Y.X.; Wu, Y.G. Design an aptamer-based sensitive lateral flow biosensor for rapid determination of isocarbophos pesticide in foods. Food Control 2021, 129, 108208. [Google Scholar] [CrossRef]
- Wang, C.M.; Li, X.B.; Liu, Y.H.; Guo, Y.R.; Xie, R.; Gui, W.J.; Zhu, G.N. Development of a Mab-Based Heterologous Immunoassay for the Broad-Selective Determination of Organophosphorus Pesticides. J. Agric. Food Chem. 2010, 58, 5658–5663. [Google Scholar] [CrossRef]
- Liu, J.; Deng, H.; Jia, B.Z.; Lin, Z.S.; Wang, Y.; Wang, H.; Xu, Z.L.; Luo, L. Ratiometric fluorescence and photothermal dual-mode immunosensor based on MnO2 nanosheets for the detection of isocarbophos. Chem. Eng. J. 2024, 502, 157951. [Google Scholar] [CrossRef]
Samples | Spiked (μg/kg) | Multicolor Immunoassay (Microplate Reader Mode) | Multicolor Immunoassay (RGB Analysis Mode) | HPLC-MS/MS | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean (μg/g) (Mean ± SD b) | Recovery (%) | CV c (%) | Mean (μg/g) (Mean ± SD) | Recovery (%) | CV (%) | Mean (μg/g) (Mean ± SD) | Recovery (%) | CV (%) | ||
Cucumber | 0 d | ND e | - | - | ND | - | - | ND | - | - |
2000 | 1796.3 ± 96.9 | 89.8 | 5.4 | 1780 ± 45.5 | 89 | 2.6 | 1955.2 ± 47.4 | 97.8 | 2.4 | |
1000 | 818 ± 135 | 81.8 | 16.5 | 894.6 ± 67 | 89.5 | 7.5 | 994.6 ± 25.4 | 99.5 | 2.6 | |
500 | 422.6 ± 26.2 | 84.5 | 6.2 | 460.4 ± 45.9 | 92.1 | 10 | 466 ± 9 | 93.2 | 1.9 | |
Lettuce | 0 | ND | - | - | ND | - | - | ND | - | - |
2000 | 2247.8 ± 98.3 | 112.4 | 4.4 | 1665.1 ± 147.1 | 83.3 | 8.8 | 2055.6 ± 110.4 | 102.8 | 5.4 | |
1000 | 1048.3 ± 58.8 | 104.8 | 5.6 | 864.7 ± 68 | 86.5 | 7.9 | 998.1 ± 70.4 | 99.8 | 7.1 | |
500 | 470.5 ± 15.2 | 94.1 | 3.2 | 461.4 ± 75.7 | 92.3 | 16.4 | 489.5 ± 32 | 97.9 | 6.5 | |
Orange | 0 | ND | - | - | ND | - | - | ND | - | - |
2000 | 1831.9 ± 140.1 | 91.6 | 7.6 | 1890.7 ± 274.4 | 94.5 | 14.5 | 1975 ± 112.2 | 98.8 | 5.7 | |
1000 | 986.6 ± 134.4 | 98.7 | 13.6 | 959.3 ± 67.4 | 95.9 | 7 | 1031.2 ± 59.8 | 103.1 | 5.8 | |
500 | 462.6 ± 39.4 | 92.5 | 8.5 | 467.5 ± 16.9 | 93.5 | 3.6 | 474.1 ± 23.3 | 94.8 | 4.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Huang, W.-X.; Wang, H.; Zhang, M.; Chen, K.; Deng, H. Development of a Dual-Readout Multicolor Immunoassay for the Rapid Analysis of Isocarbophos in Vegetable and Fruit Samples. Foods 2024, 13, 4057. https://doi.org/10.3390/foods13244057
Chen Z, Huang W-X, Wang H, Zhang M, Chen K, Deng H. Development of a Dual-Readout Multicolor Immunoassay for the Rapid Analysis of Isocarbophos in Vegetable and Fruit Samples. Foods. 2024; 13(24):4057. https://doi.org/10.3390/foods13244057
Chicago/Turabian StyleChen, Zijian, Wei-Xuan Huang, Hongwu Wang, Meiling Zhang, Kai Chen, and Hao Deng. 2024. "Development of a Dual-Readout Multicolor Immunoassay for the Rapid Analysis of Isocarbophos in Vegetable and Fruit Samples" Foods 13, no. 24: 4057. https://doi.org/10.3390/foods13244057
APA StyleChen, Z., Huang, W.-X., Wang, H., Zhang, M., Chen, K., & Deng, H. (2024). Development of a Dual-Readout Multicolor Immunoassay for the Rapid Analysis of Isocarbophos in Vegetable and Fruit Samples. Foods, 13(24), 4057. https://doi.org/10.3390/foods13244057