Assessing the Impact of Pomegranate Peel Extract Active Packaging and High Hydrostatic Pressure Processing on Color and Oxidative Stability in Sliced Nitrate/Nitrite-Reduced Iberian Dry-Cured Loins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Pomegranate Peel Extract (PPE)
2.2. Preparation of the Active Packaging
2.3. Total Phenolic Content (TPC) and Antioxidant Activities Determinations
2.4. Preparation of Iberian Dry-Cured Loin Samples
2.5. Instrumental Colour and Reflectance Spectrum
2.6. Thiobarbituric Acid Reactive Substances (TBA-RSs) Determination
2.7. Quantification of 4-HNE and Saturated Aldehydes
2.8. Carbonyls from Protein Oxidation Determination
2.9. Protein Thiol Determination
2.10. Statistical Analysis
3. Results and Discussion
3.1. Active Packaging Antioxidant Characteristics
3.2. Instrumental Colour Parameters
3.3. Lipid Oxidation
3.4. Protein Oxidation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sindelar, J.J.; Milkowski, A.L. Human safety controversies surrounding nitrate and nitrite in the diet. Nitric Oxide 2012, 26, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Alahakoon, A.U.; Jayasena, D.D.; Ramachandra, S.; Jo, C. Alternatives to nitrite in processed meat: Up to date. Trends Food Sci. Technol. 2015, 45, 37–49. [Google Scholar] [CrossRef]
- Hospital, X.F.; Hierro, E.; Arnau, J.; Carballo, J.; Aguirre, J.S.; Gratacós-Cubarsí, M.; Fernández, M.; Gratacós-Cubarsí, M.; Fernández, M. Effect of nitrate and nitrite on Listeria and selected spoilage bacteria inoculated in dry-cured ham. Food Res. Int. 2017, 101, 82–87. [Google Scholar] [CrossRef] [PubMed]
- European Commission Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives. Off. J. Eur. Union 2008, L354/16, 16–33.
- European Commission Commission Regulation (EU) 2015/647 of 24 April 2015 amending and correcting Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council as regards the use of certain food additives. Off. J. Eur. Union 2015, L107, 1–14.
- European Commission COMMISSION REGULATION (EU) 2023/2108 of 6 October 2023 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council and the Annex to Commission Regulation (EU) No 231/2012 as regards food additives nitrites (E 249-250) a. Off. J. Eur. Union 2023, 2108, 1–22.
- Cava, R.; Ladero, L.; González, S.; Carrasco, A.; Ramírez, M.R. Effect of pressure and holding time on colour, protein and lipid oxidation of sliced dry-cured Iberian ham and loin during refrigerated storage. Innov. Food Sci. Emerg. Technol. 2009, 10, 76–81. [Google Scholar] [CrossRef]
- Hygreeva, D.; Pandey, M.C. Novel approaches in improving the quality and safety aspects of processed meat products through high pressure processing technology—A review. Trends Food Sci. Technol. 2016, 54, 175–185. [Google Scholar] [CrossRef]
- Cava, R.; García-Parra, J.; Ladero, L. Effect of high hydrostatic pressure processing and storage temperature on food safety, microbial counts, colour and oxidative changes of a traditional dry-cured sausage. LWT 2020, 128, 109462. [Google Scholar] [CrossRef]
- Cava, R.; Higuero, N.; Ladero, L. High-pressure processing and storage temperature on Listeria monocytogenes, microbial counts and oxidative changes of two traditional dry-cured meat products. Meat Sci. 2021, 171, 108273. [Google Scholar] [CrossRef]
- Bolumar, T.; LaPeña, D.; Skibsted, L.H.; Orlien, V. Rosemary and oxygen scavenger in active packaging for prevention of high-pressure induced lipid oxidation in pork patties. Food Packag. Shelf Life 2016, 7, 26–33. [Google Scholar] [CrossRef]
- Amaro-Blanco, G.; Delgado-Adámez, J.; Martín, M.J.; Ramírez, R. Active packaging using an olive leaf extract and high pressure processing for the preservation of sliced dry-cured shoulders from Iberian pigs. Innov. Food Sci. Emerg. Technol. 2018, 45, 1–9. [Google Scholar] [CrossRef]
- Martillanes, S.; Rocha-pimienta, J.; Ramírez, R.; García-parra, J.; Delgado-ad, J. Effect of an active packaging with rice bran extract and high-pressure processing on the preservation of sliced dry-cured ham from Iberian pigs. LWT 2021, 151, 112128. [Google Scholar] [CrossRef]
- Aleksic, V.; Knezevic, P. Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiol. Res. 2014, 169, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Naveena, B.M.; Sen, A.R.; Vaithiyanathan, S.; Babji, Y.; Kondaiah, N. Comparative efficacy of pomegranate juice, pomegranate rind powder extract and BHT as antioxidants in cooked chicken patties. Meat Sci. 2008, 80, 1304–1308. [Google Scholar] [CrossRef] [PubMed]
- Smaoui, S.; Hlima, H.B.; Mtibaa, A.C.; Fourati, M.; Sellem, I.; Elhadef, K.; Ennouri, K.; Mellouli, L. Pomegranate peel as phenolic compounds source: Advanced analytical strategies and practical use in meat products. Meat Sci. 2019, 158, 107914. [Google Scholar] [CrossRef] [PubMed]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Giménez, B.; Graiver, N.; Califano, A.; Zaritzky, N. Physicochemical characteristics and quality parameters of a beef product subjected to chemical preservatives and high hydrostatic pressure. Meat Sci. 2015, 100, 179–188. [Google Scholar] [CrossRef]
- Stratakos, A.C.; Delgado-Pando, G.; Linton, M.; Patterson, M.F.; Koidis, A. Synergism between high-pressure processing and active packaging against Listeria monocytogenes in ready-to-eat chicken breast. Innov. Food Sci. Emerg. Technol. 2015, 27, 41–47. [Google Scholar] [CrossRef]
- Lavado, G.; Cava, R. The incorporation of a pomegranate peel extract in the formulation of uncured dry sausages protects lipids and proteins from oxidation during in vitro gastrointestinal digestion. LWT 2023, 184, 115025. [Google Scholar] [CrossRef]
- Higuero, N.; Moreno, I.; Lavado, G.; Vidal-Aragón, M.C.; Cava, R. Reduction of nitrate and nitrite in Iberian dry cured loins and its effects during drying process. Meat Sci. 2020, 163, 108062. [Google Scholar] [CrossRef]
- AMSA. Meat Color Measurement Guidelines; AMSA: Champaign, IL, USA, 2012; ISBN 8005172672. [Google Scholar]
- Van Hecke, T.; Vossen, E.; Vanden Bussche, J.; Raes, K.; Vanhaecke, L.; De Smet, S. Fat content and nitrite-curing influence the formation of oxidation products and NOC-specific DNA adducts during in vitro digestion of meat. PLoS ONE 2014, 9, e101122. [Google Scholar] [CrossRef]
- Soglia, F.; Petracci, M.; Ertbjerg, P. Novel DNPH-based method for determination of protein carbonylation in muscle and meat. Food Chem. 2016, 197, 670–675. [Google Scholar] [CrossRef]
- Martínez, L.; Jongberg, S.; Ros, G.; Skibsted, L.H.; Nieto, G. Plant derived ingredients rich in nitrates or phenolics for protection of pork against protein oxidation. Food Res. Int. 2020, 129, 108789. [Google Scholar] [CrossRef]
- Belloch, C.; Neef, A.; Salafia, C.; López-Diez, J.J.; Flores, M. Microbiota and volatilome of dry-cured pork loins manufactured with paprika and reduced concentration of nitrite and nitrate. Food Res. Int. 2021, 149, 110691. [Google Scholar] [CrossRef]
- Stadnik, J.; Stasiak, D.M. Effect of acid whey on physicochemical characteristics of dry-cured organic pork loins without nitrite. Int. J. Food Sci. Technol. 2016, 51, 970–977. [Google Scholar] [CrossRef]
- Bázan-Lugo, E.; García-Martínez, I.; Alfaro-Rodríguez, R.H.; Totosaus, A. Color compensation in nitrite-reduced meat batters incorporating paprika or tomato paste. J. Sci. Food Agric. 2012, 92, 1627–1632. [Google Scholar] [CrossRef]
- Adamsen, C.E.; Møller, J.K.S.; Laursen, K.; Olsen, K.; Skibsted, L.H. Zn-porphyrin formation in cured meat products: Effect of added salt and nitrite. Meat Sci. 2006, 72, 672–679. [Google Scholar] [CrossRef]
- Wakamatsu, J.-I.; Hayashi, N.; Nishimura, T.; Hattori, A. Nitric oxide inhibits the formation of zinc protoporphyrin IX and protoporphyrin IX. Meat Sci. 2010, 84, 125–128. [Google Scholar] [CrossRef]
- Clariana, M.; Guerrero, L.; Sárraga, C.; Díaz, I.; Valero, Á.; García-Regueiro, J.A. Influence of high pressure application on the nutritional, sensory and microbiological characteristics of sliced skin vacuum packed dry-cured ham. Effects along the storage period. Innov. Food Sci. Emerg. Technol. 2011, 12, 456–465. [Google Scholar] [CrossRef]
- Coll-Brasas, E.; Arnau, J.; Gou, P.; Lorenzo, J.M.; García-Pérez, J.V.; Fulladosa, E. Effect of high pressure processing temperature on dry-cured hams with different textural characteristics. Meat Sci. 2019, 152, 127–133. [Google Scholar] [CrossRef] [PubMed]
- de Alba, M.; Montiel, R.; Bravo, D.; Gaya, P.; Medina, M. High pressure treatments on the inactivation of Salmonella Enteritidis and the physicochemical, rheological and color characteristics of sliced vacuum-packaged dry-cured ham. Meat Sci. 2012, 91, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Campus, M.; Flores, M.; Martinez, A.; Toldrá, F. Effect of high pressure treatment on colour, microbial and chemical characteristics of dry cured loin. Meat Sci. 2008, 80, 1174–1181. [Google Scholar] [CrossRef] [PubMed]
- Bak, K.H.; Bolumar, T.; Karlsson, A.H.; Lindahl, G.; Orlien, V. Effect of high pressure treatment on the color of fresh and processed meats: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 228–252. [Google Scholar] [CrossRef] [PubMed]
- Roobab, U.; Khan, A.W.; Lorenzo, J.M.; Arshad, R.N.; Chen, B.R.; Zeng, X.A.; Bekhit, A.E.D.; Suleman, R.; Aadil, R.M. A systematic review of clean-label alternatives to synthetic additives in raw and processed meat with a special emphasis on high-pressure processing (2018–2021). Food Res. Int. 2021, 150, 110792. [Google Scholar] [CrossRef] [PubMed]
- Jo, K.; Lee, S.; Yong, H.I.; Choi, Y.S.; Jung, S. Nitrite sources for cured meat products. LWT 2020, 129, 109583. [Google Scholar] [CrossRef]
- Bonifacie, A.; Gatellier, P.; Promeyrat, A.; Nassy, G.; Picgirard, L.; Scislowski, V.; Santé-Lhoutellier, V.; Théron, L. New Insights into the Chemical Reactivity of Dry-Cured Fermented Sausages: Focus on Nitrosation, Nitrosylation and Oxidation. Foods 2021, 10, 852. [Google Scholar] [CrossRef]
- Flores, M.; Perea-Sanz, L.; Belloch, C. Chapter Four—Nitrite Reduction in Fermented Meat Products and Its Impact on Aroma; Toldrá, F., Ed.; Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2021; Volume 95, pp. 131–181. ISBN 9780128215203. [Google Scholar] [CrossRef]
- Brannan, R.G.; Connolly, B.J.; Decker, E.A. Peroxynitrite: A potential initiator of lipid oxidation in food. Trends Food Sci. Technol. 2001, 12, 164–173. [Google Scholar] [CrossRef]
- Guyon, C.; Meynier, A.; de Lamballerie, M. Protein and lipid oxidation in meat: A review with emphasis on high-pressure treatments. Trends Food Sci. Technol. 2016, 50, 131–143. [Google Scholar] [CrossRef]
- Shahidi, F. Assessment of lipid oxidation and off-flavour development in meat and meat products. In Flavor of Meat and Meat Products; Springer: Boston, MA, USA, 1994; pp. 247–266. [Google Scholar]
- Rubio, B.; Martínez, B.; García-Cachán, M.D.; Rovira, J.; Jaime, I. Effect of the packaging method and the storage time on lipid oxidation and colour stability on dry fermented sausage salchichón manufactured with raw material with a high level of mono and polyunsaturated fatty acids. Meat Sci. 2008, 80, 1182–1187. [Google Scholar] [CrossRef]
- Macho-González, A.; Garcimartín, A.; López-Oliva, M.E.; Bastida, S.; Benedí, J.; Ros, G.; Nieto, G.; Sánchez-Muniz, F.J. Can meat and meat-products induce oxidative stress? Antioxidants 2020, 9, 638. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Feng, X.; Li, C.; Jia, X.; Guo, Y.; Lei, N.; Hackman, R.M.; Chen, L.; Zhou, G. Influence of sodium nitrite on protein oxidation and nitrosation of sausages subjected to processing and storage. Meat Sci. 2016, 116, 260–267. [Google Scholar] [CrossRef]
- Villaverde, A.; Morcuende, D.; Estévez, M. Effect of Curing Agents on the Oxidative and Nitrosative Damage to Meat Proteins during Processing of Fermented Sausages. J. Food Sci. 2014, 79, 1331–1342. [Google Scholar] [CrossRef]
- Higuero, N.; Ramírez, M.R.; Vidal-Aragón, M.C.; Cava, R. Influence of high-pressure processing and varying concentrations of curing salts on the color, heme pigments and oxidation of lipids and proteins of Iberian dry-cured loins during refrigerated storage. LWT 2022, 160, 113251. [Google Scholar] [CrossRef]
- Vossen, E.; De Smet, S. Protein oxidation and protein nitration influenced by sodium nitrite in two different meat model systems. J. Agric. Food Chem. 2015, 63, 2550–2556. [Google Scholar] [CrossRef]
- Bolumar, T.; Orlien, V.; Sikes, A.; Aganovic, K.; Bak, K.H.; Guyon, C.; Stübler, A.; Lamballerie, M.; Hertel, C.; Brüggemann, D.A. High-pressure processing of meat: Molecular impacts and industrial applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 332–368. [Google Scholar] [CrossRef]
- Guyon, C.; Le Vessel, V.; Meynier, A.; de Lamballerie, M. Modifications of protein-related compounds of beef minced meat treated by high pressure. Meat Sci. 2018, 142, 32–37. [Google Scholar] [CrossRef]
- Sullivan, G.A.; Sebranek, J.G. Nitrosylation of myoglobin and nitrosation of cysteine by nitrite in a model system simulating meat curing. J. Agric. Food Chem. 2012, 60, 1748–1754. [Google Scholar] [CrossRef]
- Rakotondramavo, A.; Ribourg, L.; Meynier, A.; Guyon, C.; de Lamballerie, M.; Pottier, L. Monitoring oxidation during the storage of pressure-treated cooked ham and impact on technological attributes. Heliyon 2019, 5, e02285. [Google Scholar] [CrossRef]
- Estévez, M.; Geraert, P.A.; Liu, R.; Delgado, J.; Mercier, Y.; Zhang, W. Sulphur amino acids, muscle redox status and meat quality: More than building blocks—Invited review. Meat Sci. 2020, 163, 108087. [Google Scholar] [CrossRef] [PubMed]
- Grossi, A.; Bolumar, T.; Søltoft-Jensen, J.; Orlien, V. High pressure treatment of brine enhanced pork semitendinosus: Effect on microbial stability, drip loss, lipid and protein oxidation, and sensory properties. Innov. Food Sci. Emerg. Technol. 2014, 22, 11–21. [Google Scholar] [CrossRef]
Antioxidant Compounds | Antioxidant Activity | ||||
---|---|---|---|---|---|
Total Phenolic Content 1 | ABTS 2 | DPPH 2 | FRAP 3 | ||
Before packaging ♣ | 0.056 a | 0.203 a | 0.066 a | 0.096 a | |
Time of storage (days) | 0 | 0.004 b | 0.028 c | 0.036 b | 0.017 b |
25 | 0.002 b | 0.030 bc | 0.020 b | 0.010 b | |
50 | 0.003 b | 0.052 bc | 0.023 b | 0.016 b | |
100 | 0.004 b | 0.055 b | 0.029 b | 0.011 b | |
SEM | 0.0008 | 0.0025 | 0.0015 | 0.0015 | |
Sig. | *** | *** | *** | *** |
Effects | CIE L* | CIE a* | CIE b* | Hue | CI | |
---|---|---|---|---|---|---|
NO3−/NO2− added | 0 mg/kg | 34.4 a | 14.6 | 16.7 a | 48.9 a | 2.8 b |
37.5 mg/kg | 36.1 a | 15.3 | 16.4 a | 47.0 ab | 3.2 a | |
150 mg/kg | 33.7 b | 15.1 | 14.8 b | 44.6 b | 3.2 a | |
HHP treatment | Control | 33.1 | 16.1 | 15.8 | 44.5 | 3.3 |
HHP-treated | 36.3 | 13.9 | 16.1 | 49.2 | 2.8 | |
Active packaging | Control | 35.3 | 15.5 | 15.6 | 45.2 | 3.1 |
ActPack | 34.1 | 14.5 | 16.3 | 48.4 | 3.0 | |
Time of storage (days) | 0 | 37.0 a | 16.2 a | 16.4 a | 45.2 | 3.4 a |
25 | 35.2 ab | 15.4 ab | 16.1 ab | 46.3 | 3.2 a | |
50 | 33.5 b | 15.1 b | 16.6 a | 47.7 | 3.1 a | |
100 | 33.1 b | 13.2 c | 14.8 b | 48.1 | 2.7 b | |
SEM | 0.20 | 0.13 | 0.12 | 0.01 | 0.03 | |
Sig. NOx | * | n.s. | *** | *** | *** | |
Sig. HHP | *** | *** | n.s. | *** | *** | |
Sig. ActPack | *** | *** | ** | *** | n.s. | |
Sig. Storage | *** | *** | *** | n.s. | *** |
Effects | TBA-RS 1 | 4-HNE 2 | C5-al 2 | C6-al 2 | C7-al 2 | C8-al 2 | C9-al 2 | |
---|---|---|---|---|---|---|---|---|
NO3−/NO2− added | 0 mg/kg | 3.99 a | 920 a | 53 | 65 | 306 a | 11 | 23 |
37.5 mg/kg | 3.01 b | 441 b | 37 | 77 | 286 ab | 12 | 20 | |
150 mg/kg | 3.95 a | 439 b | 40 | 78 | 266 b | 11 | 21 | |
HHP treatment | Control | 3.71 | 503 | 46 | 75 | 280 | 11 | 19 |
HHP-treated | 3.59 | 697 | 41 | 72 | 293 | 12 | 24 | |
Active packaging | Control | 3.70 | 648 | 45 | 76 | 286 | 12 | 23 |
ActPack | 3.60 | 551 | 42 | 71 | 286 | 11 | 21 | |
Time of storage (days) | 0 | 4.18 a | 627 | 52 | 94 | 289 | 13 | 21 |
25 | 3.74 ab | -- | -- | -- | -- | -- | -- | |
50 | 3.36 b | -- | -- | -- | -- | -- | -- | |
100 | 3.32 b | 573 | 35 | 53 | 283 | 10 | 22 | |
SEM | 0.20 | 39.3 | 3.5 | 4.1 | 5.2 | 0.5 | 1.3 | |
Sig. NOx | * | *** | n.s. | n.s. | ** | n.s. | n.s. | |
Sig. HHP | n.s. | ** | n.s. | n.s. | n.s. | n.s. | * | |
Sig. ActPack | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | |
Sig. Storage | *** | n.s. | * | *** | n.s. | ** | n.s. |
Effects | Carbonyls 1 | Thiols 2 | |
---|---|---|---|
NO3−/NO2− added | 0 mg/kg | 16.4 a | 30.7 b |
37.5 mg/kg | 14.4 b | 31.5 ab | |
150 mg/kg | 14.4 b | 32.6 a | |
HHP treatment | Control | 14.9 | 34.3 |
HHP-treated | 15.3 | 28.9 | |
Active packaging | Control | 15.4 | 31.6 |
ActPack | 14.7 | 31.6 | |
Time of storage (days) | 0 | 14.6 b | 36.4 a |
25 | 14.7 ab | 32.0 b | |
50 | 15.0 ab | 30.1 bc | |
100 | 16.0 a | 27.9 c | |
SEM | 0.05 | 0.16 | |
Sig. NOx | *** | * | |
Sig. HHP | n.s. | *** | |
Sig. ActPack | * | n.s. | |
Sig. Storage | *** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cava, R.; Ladero, L.; Riaguas, E.; Vidal-Aragón, M.C. Assessing the Impact of Pomegranate Peel Extract Active Packaging and High Hydrostatic Pressure Processing on Color and Oxidative Stability in Sliced Nitrate/Nitrite-Reduced Iberian Dry-Cured Loins. Foods 2024, 13, 360. https://doi.org/10.3390/foods13030360
Cava R, Ladero L, Riaguas E, Vidal-Aragón MC. Assessing the Impact of Pomegranate Peel Extract Active Packaging and High Hydrostatic Pressure Processing on Color and Oxidative Stability in Sliced Nitrate/Nitrite-Reduced Iberian Dry-Cured Loins. Foods. 2024; 13(3):360. https://doi.org/10.3390/foods13030360
Chicago/Turabian StyleCava, Ramón, Luis Ladero, Enrique Riaguas, and M. Carmen Vidal-Aragón. 2024. "Assessing the Impact of Pomegranate Peel Extract Active Packaging and High Hydrostatic Pressure Processing on Color and Oxidative Stability in Sliced Nitrate/Nitrite-Reduced Iberian Dry-Cured Loins" Foods 13, no. 3: 360. https://doi.org/10.3390/foods13030360
APA StyleCava, R., Ladero, L., Riaguas, E., & Vidal-Aragón, M. C. (2024). Assessing the Impact of Pomegranate Peel Extract Active Packaging and High Hydrostatic Pressure Processing on Color and Oxidative Stability in Sliced Nitrate/Nitrite-Reduced Iberian Dry-Cured Loins. Foods, 13(3), 360. https://doi.org/10.3390/foods13030360