Food Waste from Campus Dining Hall as a Potential Feedstock for 2,3-Butanediol Production via Non-Sterilized Fermentation
Abstract
:1. Introduction
Unsterilized Food Waste as a Feedstock for Bioproducts
2. Materials and Methods
2.1. Food Collection and Feedstock Preparation
2.2. Determination of Moisture, Ash, Protein, Fat, Fiber, and Starch
2.3. Culture Propagation and Fermentation
2.4. Quantification of 2,3-BDO and Free Sugars
2.5. Statistical Analysis
3. Results and Discussion
3.1. Food Waste Collection and Composition
3.2. Fermentation and Production of 2,3-BDO
3.3. Food Waste Composition and 2,3-BDO Correlation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skaf, L.; Franzese, P.P.; Capone, R.; Buonocore, E. Unfolding Hidden Environmental Impacts of Food Waste: An Assessment for Fifteen Countries of the World. J. Clean. Prod. 2021, 310, 127523. [Google Scholar] [CrossRef]
- Lins, M.; Puppin Zandonadi, R.; Raposo, A.; Ginani, V.C. Food Waste on Foodservice: An Overview through the Perspective of Sustainable Dimensions. Foods 2021, 10, 1175. [Google Scholar] [CrossRef]
- Narisetty, V.; Zhang, L.; Zhang, J.; Sze Ki Lin, C.; Wah Tong, Y.; Loke Show, P.; Kant Bhatia, S.; Misra, A.; Kumar, V. Fermentative Production of 2,3-Butanediol Using Bread Waste—A Green Approach for Sustainable Management of Food Waste. Bioresour. Technol. 2022, 358, 127381. [Google Scholar] [CrossRef]
- Selvam, A.; Ilamathi, P.M.K.; Udayakumar, M.; Murugesan, K.; Banu, J.R.; Khanna, Y.; Wong, J. Chapter Two—Food Waste Properties; Wong, J., Kaur, G., Taherzadeh, M., Pandey, A., Lasaridi, K.B.T.-C.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 11–41. [Google Scholar] [CrossRef]
- Kenny, S.; Stephenson, J.; Jaglo, K. Environmental Impacts of Food Waste (Part 1); U.S. EPA Office of Research and Development: Washington, DC, USA, 2021.
- Al-Rumaihi, A.; McKay, G.; Mackey, H.R.; Al-Ansari, T. Environmental Impact Assessment of Food Waste Management Using Two Composting Techniques. Sustainability 2020, 12, 1595. [Google Scholar] [CrossRef]
- Uisan, K.; Wong, J.; Kaur, G. Chapter Ten—Bioproducts From Food Waste; Wong, J., Kaur, G., Taherzadeh, M., Pandey, A., Lasaridi, K.B.T.-C.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 279–304. [Google Scholar] [CrossRef]
- Voidarou, C.; Antoniadou, Μ.; Rozos, G.; Tzora, A.; Skoufos, I.; Varzakas, T.; Lagiou, A.; Bezirtzoglou, E. Fermentative Foods: Microbiology, Biochemistry, Potential Human Health Benefits and Public Health Issues. Foods 2021, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Dame, Z.T.; Rahman, M.; Islam, T. Bacilli as sources of agrobiotechnology: Recent advances and future directions. Green Chem. Lett. Rev. 2021, 14, 246–271. [Google Scholar] [CrossRef]
- Su, Y.; Liu, C.; Fang, H.; Zhang, D. Bacillus Subtilis: A Universal Cell Factory for Industry, Agriculture, Biomaterials and Medicine. Microb. Cell Fact. 2020, 19, 173. [Google Scholar] [CrossRef] [PubMed]
- Białkowska, A.M.; Gromek, E.; Krysiak, J.; Sikora, B.; Kalinowska, H.; Jędrzejczak-Krzepkowska, M.; Kubik, C.; Lang, S.; Schütt, F.; Turkiewicz, M. Application of Enzymatic Apple Pomace Hydrolysate to Production of 2,3-Butanediol by Alkaliphilic Bacillus Licheniformis NCIMB 8059. J. Ind. Microbiol. Biotechnol. 2015, 42, 1609–1621. [Google Scholar] [CrossRef] [PubMed]
- Tinôco, D.; Borschiver, S.; Coutinho, P.L.; Freire, D.M.G. Technological Development of the Bio-Based 2,3-Butanediol Process. Biofuels Bioprod. Biorefin. 2021, 15, 357–376. [Google Scholar] [CrossRef]
- Guo, Z.-W.; Ou, X.-Y.; Xu, P.; Gao, H.-F.; Zhang, L.-Y.; Zong, M.-H.; Lou, W.-Y. Energy- and Cost-Effective Non-Sterilized Fermentation of 2,3-Butanediol by an Engineered Klebsiella Pneumoniae OU7 with an Anti-Microbial Contamination System. Green Chem. 2020, 22, 8584–8593. [Google Scholar] [CrossRef]
- Sindhu, R.; Manju, A.; Mohan, P.; Rajesh, R.O.; Madhavan, A.; Arun, K.; Hazeena, S.H.; Mohandas, A.; Rajamani, S.P.; Puthiyamadam, A.; et al. Valorization of food and kitchen waste: An integrated strategy adopted for the production of poly-3-hydroxybutyrate, bioethanol, pectinase and 2,3-butanediol. Bioresour. Technol. 2020, 310, 123515. [Google Scholar] [CrossRef] [PubMed]
- Song, C.W.; Rathnasingh, C.; Park, J.M.; Lee, J.; Song, H. Isolation and Evaluation of Bacillus Strains for Industrial Production of 2,3-Butanediol. J. Microbiol. Biotechnol. 2018, 28, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Gadkari, S.; Narisetty, V.; Maity, S.K.; Manyar, H.; Mohanty, K.; Jeyakumar, R.B.; Pant, K.K.; Kumar, V. Techno-Economic Analysis of 2,3-Butanediol Production from Sugarcane Bagasse. ACS Sustain. Chem. Eng. 2023, 11, 8337–8349. [Google Scholar] [CrossRef]
- Li, L.; Li, K.; Wang, Y.; Chen, C.; Xu, Y.; Zhang, L.; Han, B.; Gao, C.; Tao, F.; Ma, C.; et al. Metabolic Engineering of Enterobacter Cloacae for High-Yield Production of Enantiopure (2R,3R)-2,3-Butanediol from Lignocellulose-Derived Sugars. Metab. Eng. 2015, 28, 19–27. [Google Scholar] [CrossRef]
- Li, Y.-Q.; Wang, M.-J.; Gan, X.-F.; Luo, C.-B. Cleaner 2,3-Butanediol Production from Unpretreated Lignocellulosic Biomass by a Newly Isolated Klebsiella Pneumoniae PX14. Chem. Eng. J. 2023, 455, 140479. [Google Scholar] [CrossRef]
- Rebecchi, S.; Zanaroli, G.; Fava, F. 2,3-Butanediol Production from Biowastes with Bacillus Licheniformis: A Preliminary Study. Chem. Eng. Trans. 2016, 49, 379–384. [Google Scholar] [CrossRef]
- Yang, Y.; Deng, T.; Cao, W.; Shen, F.; Liu, S.; Zhang, J.; Liang, X.; Wan, Y. Effectively Converting Cane Molasses into 2,3-Butanediol Using Clostridiumljungdahlii by an Integrated Fermentation and Membrane Separation Process. Molecules 2022, 27, 954. [Google Scholar] [CrossRef]
- OHair, J.; Jin, Q.; Yu, D.; Wu, J.; Wang, H.; Zhou, S.; Huang, H. Non-Sterile Fermentation of Food Waste Using Thermophilic and Alkaliphilic Bacillus Licheniformis YNP5-TSU for 2,3-Butanediol Production. Waste Manag. 2021, 120, 248–256. [Google Scholar] [CrossRef]
- Yu, D.; O’Hair, J.; Poe, N.; Jin, Q.; Pinton, S.; He, Y.; Huang, H. Conversion of Food Waste into 2,3-Butanediol via Thermophilic Fermentation: Effects of Carbohydrate Content and Nutrient Supplementation. Foods 2022, 11, 169. [Google Scholar] [CrossRef]
- O’Hair, J.; Jin, Q.; Yu, D.; Poe, N.; Li, H.; Thapa, S.; Zhou, S.; Huang, H. Thermophilic and Alkaliphilic Bacillus Licheniformis YNP5-TSU as an Ideal Candidate for 2,3-Butanediol Production. ACS Sustain. Chem. Eng. 2020, 8, 11244–11252. [Google Scholar] [CrossRef]
- He, Y.; Kuhn, D.D.; Ogejo, J.A.; O’keefe, S.F.; Fraguas, C.F.; Wiersema, B.D.; Jin, Q.; Yu, D.; Huang, H. Wet Fractionation Process to Produce High Protein and High Fiber Products from Brewer’s Spent Grain. Food Bioprod. Process. 2019, 117, 266–274. [Google Scholar] [CrossRef]
- Bradstreet, R.B. Kjeldahl Method for Organic Nitrogen. Anal. Chem. 1954, 26, 185–187. [Google Scholar] [CrossRef]
- Hewavitharana, G.G.; Perera, D.N.; Navaratne, S.B.; Wickramasinghe, I. Extraction Methods of Fat from Food Samples and Preparation of Fatty Acid Methyl Esters for Gas Chromatography: A Review. Arab. J. Chem. 2020, 13, 6865–6875. [Google Scholar] [CrossRef]
- Vidal, B.C., Jr.; Rausch, K.D.; Tumbleson, M.E.; Singh, V. Determining Corn Germ and Pericarp Residual Starch by Acid Hydrolysis. Cereal Chem. 2009, 86, 133–135. [Google Scholar] [CrossRef]
- Abdullah, M.; Rosmadi, H.A.; Azman, N.Q.M.K.; Sebera, Q.U.; Puteh, M.H.; Muhamad, A.; Zaiton, S.N.A. Effective Drying Method in the Utilization of Food Waste into Compost Materials Using Effective Microbe (EM). AIP Conf. Proc. 2018, 2030, 20120. [Google Scholar] [CrossRef]
- Ezeah, C.; Fazakerley, J.A.; Roberts, C.L.; Cigari, M.I.; Ahmadu, M.D. Characterisation and compositional analyses of institutional waste in the United Kingdom: A case study of the university of wolverhampton. J. Multidiscip. Eng. Sci. Technol. JMEST 2015, 2, 1725–1735. [Google Scholar]
- Nogueira, T.; Ferreira, R.J.; Dias da Silva, V.; Liñan Pinto, M.; Damas, C.; Sousa, J. Analytical Assessment and Nutritional Adequacy of School Lunches in Sintra’s Public Primary Schools. Nutrients 2021, 13, 1946. [Google Scholar] [CrossRef]
- de Souza, P.M.; de Oliveira Magalhães, P. Application of Microbial α-Amylase in Industry—A Review. Braz. J. Microbiol. 2010, 41, 850–861. [Google Scholar] [CrossRef] [PubMed]
- Suci, M.; Arbianti, R.; Hermansyah, H. Lipase Production from Bacillus Subtilis with Submerged Fermentation Using Waste Cooking Oil. IOP Conf. Ser. Earth Environ. Sci. 2018, 105, 012126. [Google Scholar] [CrossRef]
- Palaiogeorgou, A.M.; Papanikolaou, S.; de Castro, A.M.; Freire, D.M.G.; Kookos, I.K.; Koutinas, A.A. A Newly Isolated Enterobacter Sp. Strain Produces 2,3-Butanediol during Its Cultivation on Low-Cost Carbohydrate-Based Substrates. FEMS Microbiol. Lett. 2019, 366, fny280. [Google Scholar] [CrossRef]
- Ge, Y.; Li, K.; Li, L.; Gao, C.; Zhang, L.; Ma, C.; Xu, P. Contracted but Effective: Production of Enantiopure 2,3-Butanediol by Thermophilic and GRAS Bacillus Licheniformis. Green Chem. 2016, 18, 4693–4703. [Google Scholar] [CrossRef]
- Yang, T.; Rao, Z.; Zhang, X.; Xu, M.; Xu, Z.; Yang, S.-T. Enhanced 2,3-Butanediol Production from Biodiesel-Derived Glycerol by Engineering of Cofactor Regeneration and Manipulating Carbon Flux in Bacillus Amyloliquefaciens. Microb. Cell Fact. 2015, 14, 122. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, L.; Li, K.; Wang, Y.; Gao, C.; Han, B.; Ma, C.; Xu, P. A Newly Isolated Bacillus Licheniformisstrain Thermophilically Produces 2,3-Butanediol, a Platform and Fuel Bio-Chemical. Biotechnol. Biofuels 2013, 6, 123. [Google Scholar] [CrossRef]
- Tsigoriyna, L.; Ganchev, D.; Petrova, P.; Petrov, K. Highly Efficient 2,3-Butanediol Production by Bacillus Licheniformis via Complex Optimization of Nutritional and Technological Parameters. Fermentation 2021, 7, 118. [Google Scholar] [CrossRef]
- Gao, J.; Xu, H.; Li, Q.; Feng, X.; Li, S. Optimization of Medium for One-Step Fermentation of Inulin Extract from Jerusalem Artichoke Tubers Using Paenibacillus Polymyxa ZJ-9 to Produce R,R-2,3-Butanediol. Bioresour. Technol. 2010, 101, 7087–7093. [Google Scholar] [CrossRef] [PubMed]
- Stoklosa, R.J.; Latona, R.J.; Johnston, D.B. Assessing Oxygen Limiting Fermentation Conditions for 2,3-Butanediol Production from Paenibacillus Polymyxa. Front. Chem. Eng. 2022, 4, 1038311. [Google Scholar] [CrossRef]
- Liu, H.; Liu, S.; Osire, T.; Zhang, X.; Xu, M.; Yang, S.-T.; Yang, T.; Rao, Z. Engineering the 2,3-BD Pathway in Bacillus Subtilis by Shifting the Carbon Flux in Favor of 2,3-BD Synthesis. Biochem. Eng. J. 2021, 169, 107969. [Google Scholar] [CrossRef]
- Pau, S.; Tan, L.C.; Arriaga, S.; Lens, P.N.L. Lactic Acid Fermentation of Food Waste at Acidic Conditions in a Semicontinuous System: Effect of HRT and OLR Changes. Biomass Convers. Biorefin. 2022, 1–16. [Google Scholar] [CrossRef]
- Liu, H.; Ma, J.; Wang, M.; Wang, W.; Deng, L.; Nie, K.; Yue, X.; Wang, F.; Tan, T. Food Waste Fermentation to Fumaric Acid by Rhizopus Arrhizus RH7-13. Appl. Biochem. Biotechnol. 2016, 180, 1524–1533. [Google Scholar] [CrossRef]
- Jin, Q.; An, Z.; Damle, A.; Poe, N.; Wu, J.; Wang, H.; Wang, Z.; Huang, H. High Acetone-Butanol-Ethanol Production from Food Waste by Recombinant Clostridium Saccharoperbutylacetonicum in Batch and Continuous Immobilized-Cell Fermentation. ACS Sustain. Chem. Eng. 2020, 8, 9822–9832. [Google Scholar] [CrossRef]
- Donzella, S.; Serra, I.; Fumagalli, A.; Pellegrino, L.; Mosconi, G.; Lo Scalzo, R.; Compagno, C. Recycling Industrial Food Wastes for Lipid Production by Oleaginous Yeasts Rhodosporidiobolus Azoricus and Cutaneotrichosporon Oleaginosum. Biotechnol. Biofuels Bioprod. 2022, 15, 51. [Google Scholar] [CrossRef] [PubMed]
- Kwan, T.H.; Ong, K.L.; Haque, M.A.; Kwan, W.H.; Kulkarni, S.; Lin CS, K. Valorisation of Food and Beverage Waste via Saccharification for Sugars Recovery. Bioresour. Technol. 2018, 255, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Hafid, H.S.; Nor ’Aini, A.R.; Mokhtar, M.N.; Talib, A.T.; Baharuddin, A.S.; Umi Kalsom, M.S. Over Production of Fermentable Sugar for Bioethanol Production from Carbohydrate-Rich Malaysian Food Waste via Sequential Acid-Enzymatic Hydrolysis Pretreatment. Waste Manag. 2017, 67, 95–105. [Google Scholar] [CrossRef] [PubMed]
Sample Name | Sample Date | Known Food Waste Content |
---|---|---|
F23 | 23 February 2022 | Fried and rotisserie-style chicken, rice, mac and cheese, collard greens, black bean burger, grilled cheese, French fries |
M1 | 1 March 2022 | Shrimp, crawfish, potatoes, corn, beans, rice, bread, cake |
M2 | 2 March 2022 | Fried chicken, mac and cheese, fresh salad, bread |
M23 | 23 March 2022 | Pizza, nachos, chicken, cake |
M24 | 24 March 2022 | Fried chicken, mac and cheese, rice, pizza |
M31 | 31 March 2022 | Fried Chicken, mac and cheese, toast, peas, rice, corn muffin, mixed vegetables |
A1 | 14 April 2022 | Rice, mixed vegetables, fried chicken, pizza, burgers, bread, corn, cookies |
A27 | 27 April 2022 | Pizza, burgers, corn muffin, grilled cheese, sub sandwiches, fresh salad |
Ju15 | 15 June 2022 | Chocolate cake, pizza, cantaloupe, peppers, bananas, hot dogs, rolls |
Ju24 | 24 June 2022 | Fruit, cabbage, pineapple, rice, cake |
Ju28 | 28 June 2022 | Rice, green beans, chips, chicken |
Jul20 | 20 July 2022 | Spaghetti, Brussel sprouts, rice, roast beef |
Jul22 | 22 July 2022 | Biscuit, eggs, sausage patties |
Dry Weight Composition | Soluble Sugars | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Moisture Content Raw (%) | Fat (%) | Protein (%) | Ash (%) | Fiber (%) | Starch (%) | Fructose (%) | Glucose (%) | Sucrose (%) | Raffinose (%) | Mass Balance Total (%) | |
F23 | 29.12 | 26.60 ± 0.34 | 29.10 ± 0.10 | 4.75 ± 0.04 | 2.66 ± 0.08 | 27.98 ± 1.76 | 0.83 ± 0.05 | 0.45 ± 0.05 | 4.99 ± 0.27 | 0.85 ± 0.04 | 100.71 ± 2. 85 |
M1 | 29.33 | 11.24 ± 0.007 | 27. 14 ± 0.23 | 4.85 ± 1.01 | 7.03 ± 0.07 | 41.64 ± 0.07 | 1.31 ± 0.03 | 0.57 ± 0.18 | 2.18 ± 0.10 | 0.31 ± 0.06 | 100.35 ± 1.82 |
M2 | 33.62 | 18.57 ± 0.01 | 22.59 ± 0.19 | 4.82 ± 0.11 | 2.46 ± 0.43 | 36.61 ± 0.79 | 0.81 ± 0.10 | 0.58 ± 0.04 | 0.80 ± 0.01 | 0.95 ± 0.09 | 102.45 ± 1.12 |
M23 | 34.37 | 21.00 ± 0.09 | 21.47 ± 0.73 | 4.85 ± 1.01 | 3.94 ± 0.26 | 32.51 ± 1.62 | 1.32 ± 0.06 | 1.13 ± 0.06 | 7.71 ± 0.45 | 2.70 ± 0.15 | 94.13 ± 3.75 |
M24 | 33.34 | 22.19 ± 0.18 | 15.72 ± 0.39 | 4.82 ± 0.11 | 3.23 ± 0.67 | 30.18 ± 8.54 | 1.35 ± 0.03 | 1.14 ± 0.01 | 7.76 ± 0.20 | 2.78 ± 0.014 | 86.97 ± 10.14 |
M31 | 25.34 | 17.74 ± 0.02 | 12.44 ± 1.18 | 4.75 ± 0.04 | 4.09 ± 0.09 | 32.75 ± 0.651 | 0.61 ± 0.04 | 0.60 ± 0.05 | 3.55 ± 0.26 | 0.65± 0.11 | 75.00 ± 2.67 |
A1 | 35.00 | 20.67 ± 0.13 | 14.33 ± 0.86 | 2.43 ± 0.16 | 3.64 ± 0.18 | 35.67 ± 0.55 | 3.79 ± 0.06 | 3.38 ± 0.13 | 11.94 ± 0.21 | 1.50 ± 0.23 | 98.54 ± 2.56 |
A27 | 33.59 | 18.52 ± 0.19 | 14.19 ± 0.09 | 4.63 ± 0.02 | 1.75 ± 0.19 | 26.71 ± 0.68 | 5.28 ± 0.01 | 15.53 ± 0.30 | 2.45 ± 0.19 | 4.34 ± 0.20 | 99.6 ± 2.02 |
Ju15 | 38.53 | 16.63 ± 0.94 | 20.03 ± 0.40 | 4.74 ± 0.03 | 2.50 ± 0.06 | 19.61 ± 0.61 | 0.28 ± 0.08 | 17.76 ± 0.91 | 2.57 ± 1.512 | 0.75 ± 0.30 | 88.61 ± 4.96 |
Ju24 | 45.67 | 4.11 ± 0.36 | 9.13 ± 0.09 | 4.93 ± 0.09 | 6.53 ± 0.23 | 22.84 ± 1.40 | 12.56 ± 0.21 | 27.12 ± 0.60 | 3.19 ± 0.22 | 0.07 ± 0.02 | 99.08 ± 3.63 |
Ju28 | 38.76 | 25.58 ± 0.75 | 14.77 ± 0.23 | 6.83 ± 0.04 | 2.65 ± 0.11 | 12.50 ± 1.63 | 0.17 ± 0 | 19.99 ± 0.29 | 3.70 ± 0.58 | 0.19 ± 0.22 | 88.59 ± 3.99 |
Jul20 | 37.62 | 21.62 ± 0.87 | 26.11 ± 0.63 | 5.57 ± 0 | 2.73 ± 1.44 | 20.47 ± 0.81 | 0.12 ± 0.01 | 16.18 ± 0.18 | 2.75 ± 0.02 | 0.06 ± 0.01 | 98.07 ± 4.06 |
Jul22 | 37.11 | 31.18 ± 0.09 | 24.65 ± 0.35 | 4.93 ± 0.17 | 1.28 ± 0.05 | 13.99 ± 5.73 | 0.09 ± 0.02 | 7.12 ± 0.61 | 2.84 ± 0.26 | 0.79 ± 0.01 | 88.94 ± 7.34 |
2,3-BDO | Ash % | Fat % | Protein % | Starch % | Glucose % |
---|---|---|---|---|---|
p-Value at Significant Level p < 0.05 | 0.61 | 0.50 | 0.75 | 0.24 | 0.04 * |
Pearson Coefficient (r) | −0.157 | 0.2024 | −0.0981 | 0.1581 | 0.5654 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caldwell, A.; Su, X.; Jin, Q.; Hemphill, P.; Jaha, D.; Nard, S.; Tiriveedhi, V.; Huang, H.; OHair, J. Food Waste from Campus Dining Hall as a Potential Feedstock for 2,3-Butanediol Production via Non-Sterilized Fermentation. Foods 2024, 13, 452. https://doi.org/10.3390/foods13030452
Caldwell A, Su X, Jin Q, Hemphill P, Jaha D, Nard S, Tiriveedhi V, Huang H, OHair J. Food Waste from Campus Dining Hall as a Potential Feedstock for 2,3-Butanediol Production via Non-Sterilized Fermentation. Foods. 2024; 13(3):452. https://doi.org/10.3390/foods13030452
Chicago/Turabian StyleCaldwell, Alicia, Xueqian Su, Qing Jin, Phyllicia Hemphill, Doaa Jaha, Sonecia Nard, Venkataswarup Tiriveedhi, Haibo Huang, and Joshua OHair. 2024. "Food Waste from Campus Dining Hall as a Potential Feedstock for 2,3-Butanediol Production via Non-Sterilized Fermentation" Foods 13, no. 3: 452. https://doi.org/10.3390/foods13030452
APA StyleCaldwell, A., Su, X., Jin, Q., Hemphill, P., Jaha, D., Nard, S., Tiriveedhi, V., Huang, H., & OHair, J. (2024). Food Waste from Campus Dining Hall as a Potential Feedstock for 2,3-Butanediol Production via Non-Sterilized Fermentation. Foods, 13(3), 452. https://doi.org/10.3390/foods13030452