Effects of Ugali Maize Flour Fortification with Chia Seeds (Salvia hispanica L.) on Its Physico-Chemical Properties and Consumer Acceptability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Functional Properties
2.3. Pasting Properties
2.4. Sensory Evaluation
2.5. Statistical Evaluation
3. Results and Discussion
3.1. Functional Properties of Maize Flour Fortified with Chia Seeds and Defatted Chia Cake Flour
3.2. Color
3.3. Pasting Properties
3.4. Proximate Composition
3.5. Consumer Acceptability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamotho, S.N. Fortification of Maize Flour with Grain Amaranth for Improved Nutrition. Master’s Thesis, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya, 2019. [Google Scholar]
- Tzioumis, E.; Adair, L.S. Childhood dual burden of under- and overnutrition in low- and middle-income countries: A critical review. Food Nutr. Bull. 2014, 35, 230–243. [Google Scholar] [CrossRef]
- Bagchi, D. Sustained Energy for Enhanced Human Functions and Activity; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Temba, M.C.; Njobeh, P.B.; Adebo, O.A.; Olugbile, A.O.; Kayitesi, E. The role of compositing cereals with legumes to alleviate protein energy malnutrition in Africa. Int. J. Food Sci. Technol. 2016, 51, 543–554. [Google Scholar] [CrossRef]
- Bamidele, O.P.; Fasogbon, B.M. Nutritional and functional properties of maize-oyster mushroom (Zea mays-Pleurotus ostreatus) based composite flour and its storage stability. Open Agric. 2020, 5, 40–49. [Google Scholar] [CrossRef]
- Kalumbi, M.; Matumba, L.; Mtimuni, B.; Mwangwela, A.; Gama, A.P. Hydrothermally Treated Soybeans Can Enrich Maize Sensory Acceptability. Foods 2019, 8, 650. [Google Scholar] [CrossRef]
- Siyame, P. Development of maize-based composite flour enriched with mushroom for complementary feeding. Nelson Mand. Afr. Inst. Sci. Technol. 2021, 1–77. [Google Scholar] [CrossRef]
- Ekpa, O.; Palacios-Rojas, N.; Kruseman, G.; Fogliano, V.; Linnemann, A.R. Sub-Saharan African Maize-Based Foods—Processing Practices, Challenges and Opportunities. Food Rev. Int. 2019, 35, 609–639. [Google Scholar] [CrossRef]
- Cai, Z.; Meng, X.; Nyirenda, D.; Mandala, W.; Li, X.; Yang, D. Acceptability of Vegetable Fortified Ugali in Sub-Saharan Africa. Nutrients 2021, 13, 3405. [Google Scholar] [CrossRef]
- MOH. Kenya National Food Fortification Strategic Plan: 2018–2022. 2018. Available online: http://www.nutritionhealth.or.ke/wp-content/uploads/Downloads/Food%20Fortification%20Strategic%20Plan%20Final%20Press%20Signed%20-%20Aug%202018.pdf (accessed on 24 March 2022).
- Onneken, P. Salvia hispanica L (Chia Seeds) as Brain Superfood—How Seeds Increase Intelligence. Glob. J. Health Sci. 2018, 10, 69. [Google Scholar] [CrossRef]
- Coelho, M.S.; de las Mercedes Salas-Mellado, M. Effects of substituting chia (Salvia hispanica L.) flour or seeds for wheat flour on the quality of the bread. LWT Food Sci. Technol. 2015, 60, 729–736. [Google Scholar] [CrossRef]
- Din, Z.-U.; Alam, M.; Ullah, H.; Shi, D.; Xu, B.; Li, H.; Xiao, C. Nutritional, phytochemical and therapeutic potential of chia seed (Salvia hispanica L.). A mini-review. Food Hydrocoll. Health 2021, 1, 100010. [Google Scholar] [CrossRef]
- Zettel, V.; Hitzmann, B. Applications of chia (Salvia hispanica L.) in food products. Trends Food Sci. Technol. 2018, 80, 43–50. [Google Scholar] [CrossRef]
- Agarwal, A.; Rizwana; Tripathi, A.D.; Kumar, T.; Sharma, K.P.; Patel, S.K.S. Nutritional and Functional New Perspectives and Potential Health Benefits of Quinoa and Chia Seeds. Antioxidants 2023, 12, 1413. [Google Scholar] [CrossRef] [PubMed]
- Sosa, A. Chia Crop (Salvia hispanica L.): Its History and Importance as a Source of Polyunsaturated Fatty Acids Omega-3 Around the World: A Review. J. Crop Res. Fertil. 2016, 1, 1–9. [Google Scholar] [CrossRef]
- Koh, A.S.; Pan, A.; Wang, R.; Odegaard, A.O.; Pereira, M.A.; Yuan, J.-M.; Koh, W.-P. The association between dietary omega-3 fatty acids and cardiovascular death: The Singapore Chinese Health Study. Eur. J. Prev. Cardiol. 2013, 22, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Katunzi-Kilewela, A.; Kaale, L.D.; Kibazohi, O.; Rweyemamu, L.M.P. Nutritional, health benefits and usage of chia seeds (Salvia hispanica): A review. Afr. J. Food Sci. 2021, 15, 48–59. [Google Scholar] [CrossRef]
- Otondi, E.A.; Nduko, J.M.; Omwamba, M. Physico-chemical properties of extruded cassava-chia seed instant flour. J. Agric. Food Res. 2020, 2, 100058. [Google Scholar] [CrossRef]
- Katunzi-Kilewela, A.; Mongi, R.J.; Kaale, L.D.; Kibazohi, O.; Fortunatus, R.M.; Rweyemamu, L.M. Sensory profile, consumer acceptability and preference mapping of cassava-chia seeds composite porridges. Appl. Food Res. 2022, 2, 100038. [Google Scholar] [CrossRef]
- Akinfenwa, A.O.; Cheikhyoussef, A.; Cheikhyoussef, N.; Hussein, A.A. Cold Pressed Chia (Salvia hispanica L.) Seed Oil; Elsevier Inc.: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Chikpah, S.K.; Korese, J.K.; Hensel, O.; Sturm, B. Effect of Sieve Particle Size and Blend Proportion on the Quality Properties of Peeled and Unpeeled Orange Fleshed Sweet Potato Composite Flours. Foods 2020, 9, 740. [Google Scholar] [CrossRef]
- Tortoe, C.; Akonor, P.T.; Buckman, E.S. Potential uses of sweet potato-wheat composite flour in the pastry industry based on proximate composition, physicochemical, functional, and sensory properties of four pastry products. J. Food Process. Preserv. 2017, 41, e13206. [Google Scholar] [CrossRef]
- Awolu, O.O. Optimization of the functional characteristics, pasting and rheological properties of pearl millet-based composite flour. Heliyon 2017, 3, e00240. [Google Scholar] [CrossRef]
- Suriano, S.; Balconi, C.; Valoti, P.; Redaelli, R. Comparison of total polyphenols, profile anthocyanins, color analysis, carotenoids and tocols in pigmented maize. LWT 2021, 144, 111257. [Google Scholar] [CrossRef]
- Gómez-Polo, C.; Montero, J.; Gómez-Polo, M.; Casado, A.M. Comparison of the CIELab and CIEDE 2000 Color Difference Formulas on Gingival Color Space. J. Prosthodont. 2017, 29, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Alemneh, S.T.; Emire, S.A.; Hitzmann, B.; Zettel, V. Comparative Study of Chemical Composition, Pasting, Thermal and Functional properties of Teff (Eragrostis tef) Flours Grown in Ethiopia and South Africa. Int. J. Food Prop. 2022, 25, 144–158. [Google Scholar] [CrossRef]
- Siyame, P.; Kassim, N.; Makule, E. Effectiveness and Suitability of Oyster Mushroom in Improving the Nutritional Value of Maize Flour Used in Complementary Foods. Int. J. Food Sci. 2021, 2021, 8863776. [Google Scholar] [CrossRef] [PubMed]
- Culetu, A.; Susman, I.E.; Duta, D.E.; Belc, N. Nutritional and functional properties of gluten-free flours. Appl. Sci. 2021, 11, 6283. [Google Scholar] [CrossRef]
- Jan, T.; Hussain, S.Z.; Rafiq, A.; Naseer, B.; Naqash, S.; Shafi, F. Exploring Chia Seed for Development of Functional Cookies-Nutritional, Phytochemical, Textural, Amino Acid and Fatty Acid Profiling; Research Square: Durham, NC, USA, 2022; pp. 1–16. [Google Scholar]
- Bolade, M.K.; Adeyemi, I.A.; Ogunsua, A.O. Influence of particle size fractions on the physicochemical properties of maize flour and textural characteristics of a maize-based nonfermented food gel. Int. J. Food Sci. Technol. 2009, 44, 646–655. [Google Scholar] [CrossRef]
- Ramani, A.; Kushwaha, R.; Malaviya, R.; Kumar, R.; Yadav, N. Molecular, functional and nutritional properties of chickpea (Cicer arietinum L.) protein isolates prepared by modified solubilization methods. J. Food Meas. Charact. 2021, 15, 2352–2368. [Google Scholar] [CrossRef]
- Awuchi, G.C.; Somtochukwu, V.; Kate, C. The Functional Properties of Foods and Flours. Int. J. Adv. Acad. Res. 2019, 5, 139–160. Available online: https://www.researchgate.net/publication/337403804 (accessed on 4 June 2023).
- Carbas, B.; Vaz-Patto, M.C.; Bronze, M.R.; Bento-Da-Silva, A.; Trigo, M.J.; Brites, C. Maize flour parameters that are related to the consumer perceived quality of ‘broa’ specialty bread. Food Sci. Technol. 2016, 36, 259–267. [Google Scholar] [CrossRef]
- Bordim, J.; Lise, C.C.; Marques, C.; Oldoni, T.C.; Verela, P.; Mitterer-Daltoe, M.L. Potential use of naturally colored antioxidants in the food industry—A study of consumers’ perception and acceptance. J. Sens. Stud. 2021, 36, e12657. [Google Scholar] [CrossRef]
- Kasajima, I. Measuring plant colors. Plant Biotechnol. 2019, 36, 63–75. [Google Scholar] [CrossRef]
- Bartkiene, E.; Rimsa, A.; Zokaityte, E.; Starkute, V.; Mockus, E.; Cernauskas, D.; Rocha, J.M.; Klupsaite, D. Changes in the Physicochemical Properties of Chia Sensory Profile. 2023. Available online: https://www.mdpi.com/2304-8158/12/11/2093 (accessed on 20 June 2023).
- Shafie, B.; Cheng, S.C.; Lee, H.H.; Yiu, P.H. Characterization and classification of whole-grain rice based on rapid visco analyzer (RVA) pasting profile. Int. Food Res. J. 2016, 23, 2138–2143. [Google Scholar]
- Inglett, G.E.; Chen, D.; Xu, J.; Lee, S. Pasting and rheological properties of chia composites containing barley flour. Int. J. Food Sci. Technol. 2013, 48, 2564–2570. [Google Scholar] [CrossRef]
- Aranibar, C.; Aguirre, A.; Borneo, R. Utilization of a by-product of chia oil extraction as a potential source for value addition in wheat muffins. J. Food Sci. Technol. 2019, 56, 4189–4197. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Q.; Gao, L.; Gong, X.; Qu, Y.; Feng, B. Functional and physicochemical properties of flours and starches from different tuber crops. Int. J. Biol. Macromol. 2020, 148, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Balet, S.; Guelpa, A.; Fox, G.; Manley, M. Rapid Visco Analyser (RVA) as a Tool for Measuring Starch-Related Physiochemical Properties in Cereals: A Review. Food Anal. Methods 2019, 12, 2344–2360. [Google Scholar] [CrossRef]
- Steffolani, E.; de la Hera, E.; Pérez, G.; Gómez, M. Effect of Chia (Salvia hispanica L.) Addition on the Quality of Gluten-Free Bread. J. Food Qual. 2014, 37, 309–317. [Google Scholar] [CrossRef]
- Gayin, J.; Abdel-Aal, E.-S.M.; Manful, J.; Bertoft, E.; Marcone, M.; Ragaee, S. Physical, cooking and thermal properties of African rice (Oryza glaberrima) and its starch digestibility in vitro. LWT 2017, 75, 481–487. [Google Scholar] [CrossRef]
- Dereje, B.; Girma, A.; Mamo, D.; Chalchisa, T. Functional properties of sweet potato flour and its role in product development: A review. Int. J. Food Prop. 2020, 23, 1639–1662. [Google Scholar] [CrossRef]
- Aranibar, C.; Pigni, N.B.; Martinez, M.; Aguirre, A.; Ribotta, P.; Wunderlin, D.; Borneo, R. Utilization of a partially-deoiled chia flour to improve the nutritional and antioxidant properties of wheat pasta. LWT Food Sci. Technol. 2018, 89, 381–387. [Google Scholar] [CrossRef]
- Kibui, A.N.; Owaga, E.; Mburu, M. Proximate composition and nutritional characterization of chia enriched yoghurt. Afr. J. Food Agric. Nutr. Dev. 2018, 18, 13239–13253. [Google Scholar] [CrossRef]
- Romankiewicz, D.; Hassoon, W.H.; Cacak-Pietrzak, G.; Sobczyk, M.; Wirkowska-Wojdyła, M.; Ceglińska, A.; Dziki, D. The effect of chia seeds (Salvia hispanica L.) addition on quality and nutritional value of wheat bread. J. Food Qual. 2017, 2017, 7352631. [Google Scholar] [CrossRef]
- Mburu, M.; Paquet-Durand, O.; Hitzmann, B.; Zettel, V. Spectroscopic analysis of chia seeds. Sci. Rep. 2021, 11, 9253. [Google Scholar] [CrossRef] [PubMed]
- da Costa Borges, V.; Fernandes, S.S.; da Rosa Zavareze, E.; Haros, C.M.; Hernandez, C.P.; Dias, A.R.G.; de las Mercedes Salas-Mellado, M. Production of gluten free bread with flour and chia seeds (Salvia hispânica L.). Food Biosci. 2021, 43, 101294. [Google Scholar] [CrossRef]
Flours | BD (g/mL) | WAC (mL/g) | OAC (mL/g) | SI (mL/g) | SC (g/g) |
---|---|---|---|---|---|
Control | 0.79 ± 0.0 b | 0.78 ± 0.0 c | 0.49 ± 0.0 bcd | 0.15 ± 0.0 f | 2.46 ± 0.1 d |
3% DCF | 0.81 ± 0.0 ab | 0.85 ± 0.1 b | 0.55 ± 0.0 bc | 0.99 ± 0.2 d | 3.05 ± 0.2 c |
6% DCF | 0.82 ± 0.0 a | 0.98 ± 0.0 a | 0.58 ± 0.0 ab | 2.42 ± 0.2 b | 4.85 ± 0.1 b |
9% DCF | 0.83 ± 0.0 a | 0.98 ± 0.0 a | 0.67 ± 0.0 a | 3.25 ± 0.3 a | 5.74 ± 0.5 a |
3% WCS | 0.79 ± 0.0 b | 0.79 ± 0.0 c | 0.45 ± 0.1 cd | 0.68 ± 0.1 e | 2.49 ± 0.3 d |
6% WCS | 0.75 ± 0.0 c | 0.89 ± 0.0 b | 0.41 ± 0.0 d | 0.91 ± 0.1 de | 2.88 ± 0.1 cd |
9% WCS | 0.72 ± 0.0 d | 0.95 ± 0.0 a | 0.22 ± 0.0 e | 1.31 ± 0.0 c | 3.10 ± 0.1 c |
Sample | L* | a* | b* | Hue Angle | Chroma | ∆E* |
---|---|---|---|---|---|---|
Control | 93.23 ± 0.2 a | −0.45 ± 0.1 a | 9.00 ± 0.2 a | 92.86 ± 0.8 e | 9.01 ± 0.2 a | 9.11 ± 0.2 d |
3% DCF | 89.04 ± 0.5 c | −0.80 ± 0.1 bcd | 8.02 ± 0.1 c | 95.69 ± 0.7 abc | 8.06 ± 0.1 c | 11.60 ± 04 c |
6% DCF | 87.03 ± 1.1 d | −0.83 ± 0.2 cd | 7.78 ± 0.3 cd | 96.12 ± 1.1 ab | 7.83 ± 0.3 cd | 13.22 ± 1.1 b |
9% DCF | 85.34 ± 0.5 e | −0.90 ± 0.2 d | 7.56 ± 0.3 d | 96.82 ± 1.7 a | 7.62 ± 0.3 d | 14.66 ± 0.5 a |
3% WCS | 92.98 ± 0.2 a | −0.63 ± 0.2 ab | 8.75 ± 0.2 ab | 94.10 ± 1.2 de | 8.77 ± 0.2 ab | 9.08 ± 0.3 d |
6% WCS | 92.44 ± 1.0 ab | −0.70 ± 0.1 bc | 8.54 ± 0.2 b | 94.68 ± 0.8 cd | 8.57 ± 0.2 b | 9.31 ± 0.7 d |
9% WCS | 91.54 ± 1.8 b | −0.76 ± 0.1 bcd | 8.06 ± 0.2 c | 95.38 ± 0.6 bcd | 8.10 ± 0.2 c | 9.66 ± 1.4 d |
Flour Formulations | ||||
---|---|---|---|---|
Pasting Properties | Control | 3% DCF | 6% DCF | 9% DCF |
PV (mPas) | 1477 ± 54.0 c | 1535 ± 53.8 bc | 1722 ± 36.8 a | 1763 ± 88 a |
TV (mPas) | 1318 ± 75.6 c | 1338 ± 37.4 c | 1549 ± 63.6 ab | 1714 ± 86.0 a |
BV (mPas) | 159 ± 8.2 ab | 197 ± 16.5 a | 173 ± 10.4 ab | 49 ± 4.4 c |
FV (mPas) | 3032 ± 52.7 ab | 2877 ± 77.2 b | 2830 ± 89.8 b | 2832 ± 30.1 b |
SV (mPas) | 1714 ± 96.3 a | 1538 ± 42.9 b | 1281 ± 26.2 c | 1117 ± 98.5 c |
TTPV (min) | 5.35 ± 0.1 bc | 4.94 ± 0.3 c | 5.72 ± 0.6 b | 6.47 ± 0.0 a |
PT (°C) | 81.03 ± 1.1 a | 68.93 ± 3.9 b | 68.08 ± 0.6 b | 52.33 ± 2.2 c |
Raw Material | Moisture Content (%) | Crude Ash (%) | Crude Fat (%) | Crude Protein (%) | CHO (%) | Crude Fiber (%) | Energy Value (kcal) |
---|---|---|---|---|---|---|---|
DCF | 5.06 ± 0.1 b | 6.43 ± 0.4 a | 9.19 ± 0.8 b | 29.41 ± 0.0 a | 49.90 ± 0.9 b | 38.26 ± 0.0 a | 400.01 ± 5.8 b |
WCS | 5.04 ± 0.0 b | 4.78 ± 0.1 b | 34.69 ± 1.0 a | 21.21 ± 0.0 b | 34.286 ± 0.9 c | 27.87 ± 0.0 b | 534.15 ± 3.9 a |
WMM | 8.94 ± 0.0 a | 1.15 ± 0.2 c | 4.78 ± 0.2 c | 7.22 ± 0.4 c | 77.91 ± 0.4 a | 1.74 ± 0.0 c | 383.52 ± 1.9 c |
Sample Name | Moisture Content (%) | Crude Ash (%) | Crude Fat (%) | Crude Protein (%) | CHO (%) | Crude Fiber (%) | Energy Value (kcal) |
---|---|---|---|---|---|---|---|
Control | 8.94 ± 0.0 a | 1.15 ± 0.2 c | 4.78 ± 0.2 d | 7.22 ± 0.4 d | 77.91 ± 0.4 a | 1.74 ± 0.0 f | 383.52 ± 1.9 d |
3% WCS | 8.63 ± 0.4 ab | 1.28 ± 0.1 bc | 5.58 ± 0.0 c | 7.57 ± 1.2 cd | 76.94 ± 1.0 ab | 2.34 ± 0.4 e | 388.25 ± 1.1 c |
6% WCS | 8.62 ± 0.1 b | 1.40 ± 0.1 ab | 6.51 ± 0.5 b | 8.04 ± 0.0 bcd | 75.43 ± 0.5 cd | 2.94 ± 0.3 cd | 392.48 ± 2.9 b |
9% WCS | 8.17 ± 0.2 c | 1.48 ± 0.1 ab | 7.46 ± 0.8 a | 8.20 ± 0.0 bc | 74.69 ± 0.7 d | 3.82 ± 0.1 ab | 398.69 ± 4.6 a |
Sample | Color | Aroma | Taste | Mouthfeel | General Acceptability |
---|---|---|---|---|---|
Control | 8.16 ± 1.0 a | 7.83 ± 1.3 a | 7.16 ± 1.5 a | 7.50 ± 1.2 a | 7.80 ± 0.7 a |
3% DCF | 7.33 ± 1.2 ab | 7.50 ± 1.0 a | 7.7 ± 0.8 a | 7.50 ± 1.0 a | 7.00 ± 1.2 a |
6% DCF | 6.83 ± 1.2 ab | 7.33 ± 0.8 a | 6.83 ± 1.3 a | 7.00 ± 0.9 a | 7.18 ± 0.9 a |
9% DCF | 6.33 ± 1.5 b | 7.00 ± 1.4 a | 6.83 ± 1.9 a | 7.00 ± 1.2 a | 6.67 ± 1.5 a |
3% WCS | 7.00 ± 1.0 ab | 6.68 ± 1.9 a | 6.00 ± 1.9 a | 6.16 ± 1.8 a | 6.83 ± 1.2 a |
6% WCS | 6.83 ± 1.2 ab | 7.00 ± 1.8 a | 6.83 ± 1.8 a | 6.33 ± 1.6 a | 7.00 ± 1.3 a |
9% WCS | 7.00 ± 1.8 ab | 7.18 ± 1.2 a | 6.00 ± 1.4 a | 6.00 ± 1.0 a | 6.67 ± 1.3 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chemutai, S.; Mburu, M.; Njoroge, D.; Zettel, V. Effects of Ugali Maize Flour Fortification with Chia Seeds (Salvia hispanica L.) on Its Physico-Chemical Properties and Consumer Acceptability. Foods 2024, 13, 543. https://doi.org/10.3390/foods13040543
Chemutai S, Mburu M, Njoroge D, Zettel V. Effects of Ugali Maize Flour Fortification with Chia Seeds (Salvia hispanica L.) on Its Physico-Chemical Properties and Consumer Acceptability. Foods. 2024; 13(4):543. https://doi.org/10.3390/foods13040543
Chicago/Turabian StyleChemutai, Susan, Monica Mburu, Daniel Njoroge, and Viktoria Zettel. 2024. "Effects of Ugali Maize Flour Fortification with Chia Seeds (Salvia hispanica L.) on Its Physico-Chemical Properties and Consumer Acceptability" Foods 13, no. 4: 543. https://doi.org/10.3390/foods13040543
APA StyleChemutai, S., Mburu, M., Njoroge, D., & Zettel, V. (2024). Effects of Ugali Maize Flour Fortification with Chia Seeds (Salvia hispanica L.) on Its Physico-Chemical Properties and Consumer Acceptability. Foods, 13(4), 543. https://doi.org/10.3390/foods13040543