Research Progress in Modifications, Bioactivities, and Applications of Medicine and Food Homologous Plant Starch
Abstract
:1. Introduction
2. Common Starch-Rich Medicinal and Edible Homologous Plants and Their Starch Characteristics
2.1. Pueraria Starch (kudzu starch)
2.2. Lotus Seed Starch
2.3. Yam Tuber Starch
2.4. Coix Seed Starch
3. Modification Methods and Physicochemical Properties of Modified Starch in Edible Medicinal Plants
3.1. Physical Modification
3.1.1. Pre-Gelatinization
3.1.2. Heat Treatment
3.1.3. Microwave Treatment
3.1.4. Ultrasound Treatment
3.1.5. Ultra-High Pressure Treatment
3.2. Chemical Modification
3.2.1. Acid-Modified Starch
3.2.2. Crosslinked Starch
3.2.3. Esterified Starch
3.2.4. Carboxymethylated Starch
3.2.5. Methylated Starch
3.3. Enzymatic Modification
3.4. Complex Modification
4. Bioactivities
4.1. Regulation of Intestinal Flora
4.2. Antidiabetic and Anti-Obesity Activity
4.3. Maintaining Healthy Levels of Blood Lipids
4.4. Other Activities
Plant Source | Physiological Functions | Models | Dosage | Reference |
---|---|---|---|---|
Pueraria root | Regulation of intestinal flora; anti-inflammatory; anti-diabetic; lowers blood lipids. | T2DM mice (male C57BL/6J mice, high-fat diet (HFD) feeding, and streptozotocin (STZ) injection). T2DM mice (male C57BL/6J mice, HFD feeding). | 0.5, 2.5, and 5.0 g/kg BW/d, orally. 400 mg/kg BW/d, orally. | [115,121] |
Lotus seed | Regulation of intestinal flora; regulation of intestinal flora; promotes the absorption of minerals; protects against food allergy. | B. longum and L. delbrueckii subsp., MRS plus 0.5 g/L L-cysteine. T2DM mice (male Kunming mice, HFD feeding, and STZ injection). BALB/c male mice, fed the basal diet. BALB/c female mice, sensitized twice by intraperitoneal injection of 100 µg OVO | 20% and 30% LRS3, orally. 5%, 10%, and 15% RS, orally. 5%, 10%, and 15% LRS3, orally. 0.3 g/100 g BW/d LRS, orally. | [111,116,123,124] |
Yam tuber | Regulation of intestinal flora; anti-obesity activity; lowers blood lipids. | Bifidobacteria in simulated upper digestive tract conditions. Hyperlipidemic rats (Kunming male Wistar rats, fed a high-fat diet). | 20 g/L. 6.5 g/kg BW/d. | [113,122] |
Coix seed | Regulation of intestinal flora; controls weight gain; develops immunity. | BALB/c male mice fed the basal diet. | 0.2 mL/10 g BW/d. | [113] |
Rice bean | Controls estimated glycemic index (eGI). | In vitro starch digestion. | - | [117] |
Gordon Euryale seed | Lowers predicted glycemic index (pGI). | In vitro starch digestion. | - | [118] |
Ginkgo seed | Improves obesity; improves hepatic fat accumulation; lowers blood lipids. | Male SD rats; HFD feeding. | The Ginkgo starch–lauric acid complex. | [119] |
5. Application in Food Industry
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J. Essential role of medicine and food homology in health and wellness. Chin. Herb. Med. 2023, 15, 347–348. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.Y.; Xie, G.Z.; Zhou, R.R.; Zhang, S.H. Development and application of “one root of medicine and food”. Mod. Chin. Med. 2020, 22, 1428–1433. [Google Scholar]
- Svihus, B.; Uhlen, A.K.; Harstad, O.M. Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: A review. Anim. Feed Sci. Technol. 2005, 122, 303–320. [Google Scholar] [CrossRef]
- Ekumah, J.; Han, X.; Liang, Q.F.; Kang, L.X.; Wei, B.X.; Rashid, A.; Virk, M.S.; Qayum, A.; Adade, S.Y.S.; Johnson, N.A.N.; et al. Production of Kudzu starch gels with superior mechanical and rheological properties through submerged ethanol exposure and implications for in vitro digestion. Foods 2023, 12, 3992. [Google Scholar] [CrossRef] [PubMed]
- Sudheesh, C.; Sunooj, K.V.; Navaf, M.; Akhila, P.P.; Aaliya, B.; Mounir, S.; Sinha, S.K.; Kumar, S.; Sajeevkumar, V.A.; George, J. An efficient approach for improving granular cold water soluble starch properties using energetic neutral atoms treatment and NaOH/urea solution. Food Hydrocoll. 2023, 141, 108723. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, J.; Wang, Z.; Cheng, H.; Zhang, Y.; Lin, B.; Qin, L.; Bai, Y. Effects of reaction condition on glycosidic linkage structure, physical-chemical properties and in vitro digestibility of pyrodextrins prepared from native waxy maize starch. Food Chem. 2020, 320, 126491. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, R.; Chen, Z.; Zhang, S. Insight into structure-activity relationships of hydroxycinnamic acids modified porous starch: The effect of phenolic hydroxy groups. Food Chem. 2023, 426, 136683. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, X.; Ma, M.; He, J.; Sui, Z.; Corke, H. Reduction of starch granule surface lipids alters the physicochemical properties of crosslinked maize starch. Int. J. Biol. Macromol. 2024, 259, 129139. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Xu, L.; Qiu, C.; Jiao, A.; Jin, Z. Rheology and stability mechanism of pH-responsive high internal phase emulsion constructed gel by pea protein and hydroxypropyl starch. Food Chem. 2024, 440, 138233. [Google Scholar] [CrossRef]
- Zidan, N.; Albalawi, M.A.; Alalawy, A.I.; Al-Duais, M.A.; Alzahrani, S.; Kasem, M.; Tayel, A.A.; Nagib, R.M. Active and smart antimicrobial food packaging film composed of date palm kernels extract loaded carboxymethyl chitosan and carboxymethyl starch composite for prohibiting foodborne pathogens during fruits preservation. Eur. Polym. J. 2023, 197, 112353. [Google Scholar] [CrossRef]
- Ding, L.; Liang, W.; Qu, J.; Persson, S.; Liu, X.; Herburger, K.; Kirkensgaard, J.J.K.; Khakimov, B.; Enemark-Rasmussen, K.; Blennow, A.; et al. Effects of natural starch-phosphate monoester content on the multi-scale structures of potato starches. Carbohyd. Polym. 2023, 310, 120740. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.H.; Li, Y.N.; Li, J.G.; Xu, S.; Gu, Z.B.; Cheng, L.; Hong, Y. Preparation and structural properties of starch phosphate modified by alkaline phosphatase. Carbohyd. Polym. 2022, 276, 118803. [Google Scholar] [CrossRef] [PubMed]
- Blennow, A.; Engelsen, S.B.; Nielsen, T.H.; Baunsgaard, L.; Mikkelsen, R. Starch phosphorylation: A new front line in starch research. Trends Plant Sci. 2002, 7, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.J.; Duan, Y.L.; Luan, Q.M.; Wang, X.T.; Yuan, S.Y.; Li, X.H.; Liu, K.C.; Li, K.W. Research progress of edible modified starch. Fine Spec. Chem. 2023, 31, 24–29. [Google Scholar]
- Chen, K.; Wei, P.H.; Shi, L. Research progress on pharmacological effects of isoflavones from Pueraria lobata. Drug Eval. Res. 2022, 45, 2602–2610. [Google Scholar]
- Song, W.; Li, Y.J.; Qiao, X.; Qian, Y.; Ye, M. Chemistry of the Chinese herbal medicine Puerariae Radix (Ge-Gen): A review. J. Chin. Pharm. Sci. 2014, 23, 347–360. [Google Scholar] [CrossRef]
- Tan, J.; Wang, Y. Different specifications and applications of medicinal and edible lotus seeds. J. Pra. Trad. Chin. Med. 2022, 38, 150–153. [Google Scholar]
- Fan, X.Y.; Hou, Y.J.; Jia, S.Y.; Si, R.H.; Zheng, B.W.; Liu, G.Z. Research progress on chemical constituents of Dioscoreae rhizoma and pharmacological effects of saponins. Inf. Tradit. Chin. Med. 2021, 38, 79–84. [Google Scholar]
- Ou-Yang, S.H.; Jiang, T.; Zhu, L.; Yi, T. Dioscorea nipponica Makino: A systematic review on its ethnobotany, phytochemical and pharmacological profiles. Chem. Cent. J. 2018, 12, 57. [Google Scholar] [CrossRef]
- Zeng, Y.E.; Yang, J.Z.; Chen, J.; Pu, X.Y.; Li, X.; Yang, X.M.; Yang, L.E.; Ding, Y.M.; Nong, M.Y.; Zhang, S.B.; et al. Actional mechanisms of active ingredients in functional food Adlay for human health. Molecules 2022, 27, 4808. [Google Scholar] [CrossRef]
- Han, Y.H.; Pan, Y.K.; Huang, R.Q. Bioactive polysaccharides from Vigna umbellata and its characterization. Food Biosci. 2021, 41, 101092. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.Y.; Zhan, Y.; Fan, B.D.; Wei, Q.; Xu, T.H.; Liu, T.H. Research progress in chemical components, pharmacological action and clinical application of Semen euryales. Chin. J. Tradit. Chin. Med. Pharm. 2015, 30, 477–479. [Google Scholar]
- Liu, Y.X.; Xin, H.W.; Zhang, Y.C.; Che, F.Y.; Shen, N.; Cui, Y.L. Leaves, seeds and exocarp of Ginkgo biloba L. (Ginkgoaceae): A comprehensive review of traditional uses, phytochemistry, pharmacology, resource utilization and toxicity. J. Ethnopharmacol. 2022, 298, 115645. [Google Scholar] [CrossRef] [PubMed]
- Van Hung, P.; Morita, N. Chemical compositions, fine structure and physicochemical properties of kudzu (Pueraria lobata) starches from different regions. Food Chem. 2007, 105, 749–755. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, X.; Fang, Y. Structure, properties and applications of kudzu starch. Food Hydrocoll. 2021, 119, 106817. [Google Scholar] [CrossRef]
- Guo, L.; Hu, J.; Zhou, X.; Li, X.L.; Du, X.F. In Vitro digestibility of kudzu starch by using α-amylase and glucoamylase. Starch 2016, 68, 140–150. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, B.; Zhang, X.; Li, Y.; Fang, W.; Yu, X.; Dang, L. Fractionation of kudzu amylose and amylopectin and their microstructure and physicochemical properties. Starch 2017, 69, 1500305. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, S.; Ibrahim, S.A.; Li, E.; Yang, H.; Huang, W. Identification and antioxidant properties of polyphenols in lotus seed epicarp at different ripening stages. Food Chem. 2015, 185, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F. Structures, properties, and applications of lotus starches. Food Hydrocoll. 2017, 63, 332–348. [Google Scholar] [CrossRef]
- Jagannath, J.H.; Nanjappa, C.; Gupta, D.K.D.; Arya, S.S. Crystallization kinetics of precooked potato starch under different drying conditions (methods). Food Chem. 2001, 75, 281–286. [Google Scholar] [CrossRef]
- Zeng, S.X.; Xu, L.B.; Guo, Z.B.; Chen, B.Y.; Zheng, B.D. Physicochemical properties of lotus-seed starch obtained from different maturity stages. Curr. Top. Nutraceut. R. 2015, 13, 231–240. [Google Scholar]
- Chen, C.; Li, G.; Zhu, F. A novel starch from lotus (Nelumbo nucifera) seeds: Composition, structure, properties and modifications. Food Hydrocoll. 2021, 120, 106899. [Google Scholar] [CrossRef]
- Guo, Z.B.; Jia, X.Z.; Zhao, B.B.; Zeng, S.X.; Xiao, J.B.; Zheng, B.D. C-type starches and their derivatives: Structure and function. Ann. N. Y. Acad. Sci. 2017, 1398, 47–61. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, Y.; Guo, Z.B.; Chen, J.; Zheng, B.D. The characteristics of lotus seed starch modified by dry heating. Chin. J. Top. Crops 2012, 33, 364–369. [Google Scholar]
- Nawaz, H.; Shad, M.A.; Saleem, S.; Khan, M.U.A.; Nishan, U.; Rasheed, T.; Bilal, M.; Iqbal, H.M.N. Characteristics of starch isolated from microwave heat treated lotus (Nelumbo nucifera) seed flour. Int. J. Biol. Macromol. 2018, 113, 219–226. [Google Scholar] [CrossRef]
- Chen, C.J.; Fu, W.Q.; Chang, Q.; Zheng, B.D.; Zhang, Y.; Zeng, H.L. Moisture distribution model describes the effect of water content on the structural properties of lotus seed resistant starch. Food Chem. 2019, 286, 449–458. [Google Scholar] [CrossRef]
- Ali, N.A.; Dash, K.K.; Routray, W. Physicochemical characterization of modified lotus seed starch obtained through acid and heat moisture treatment. Food Chem. 2020, 319, 126513. [Google Scholar] [CrossRef]
- Zeng, S.X.; Wu, X.T.; Lin, S.; Zeng, H.L.; Lu, X.; Zhang, Y.; Zheng, B.D. Structural characteristics and physicochemical properties of lotus seed resistant starch prepared by different methods. Food Chem. 2015, 186, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, B.; Zhu, J.; Cui, B.; Qiu, L.Z.; Sun, C.R. Effects of drying methods on properties of Yam flours. Sci. Technol. Food Ind. 2020, 41, 62–66, 113. [Google Scholar]
- Chen, X.; Lu, J.; Li, X.; Wang, Y.; Miao, J.; Mao, X.; Zhao, C. Effect of blanching and drying temperatures on starch-related physicochemical properties, bioactive components and antioxidant activities of yam flours. LWT—Food Sci. Technol. 2017, 82, 303–310. [Google Scholar] [CrossRef]
- Ju, Y.; Xue, Y.; Huang, J.L.; Zhai, Q.Z.; Wang, X.H. Antioxidant Chinese yam polysaccharides and its pro-proliferative effect on en-dometrial epithelial cells. Int. J. Biol. Macromol. 2014, 66, 81–85. [Google Scholar] [CrossRef]
- Li, Y.; Ji, S.; Xu, T.; Zhong, Y.; Xu, M.; Liu, Y.; Li, M.; Fan, B.; Wang, F.; Xiao, J.; et al. Chinese yam (Dioscorea): Nutritional value, beneficial effects, and food and pharmaceutical applications. Trends Food Sci. Technol. 2023, 134, 29–40. [Google Scholar] [CrossRef]
- Shan, N.; Wang, P.T.; Zhu, Q.L.; Sun, J.Y.; Zhang, H.Y.; Liu, X.Y.; Cao, T.X.; Chen, X.; Huang, Y.J.; Zhou, Q.H. Comprehensive characterization of yam tuber nutrition and medicinal quality of Dioscorea opposita and D. alata from different geographic groups in China. J. Integr. Agric. 2020, 19, 2839–2848. [Google Scholar] [CrossRef]
- Mali, S.; Karam, L.B.; Ramos, L.P.; Grossmann, M.V.E. Relationships among the composition and physicochemical properties of starches with the characteristics of their films. J. Agric. Food Chem. 2004, 52, 7720–7725. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F. Coix: Chemical composition and health effects. Trends Food Sci. Technol. 2017, 61, 160–175. [Google Scholar] [CrossRef]
- Yu, F.; Gao, J.; Zeng, Y.; Liu, C.X. Inhibition of Coix seed extract on fatty acid synthase, a novel target for anticancer activity. J. Ethnopharmacol. 2008, 119, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Li, J.S.; Corke, H. Physicochemical properties of normal and waxy Job’s Tears (Coix lachryma-jobi L.) starch. Cereal Chem. 1999, 76, 413–416. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.H.; Xu, J.H.; Mao, D.Z.; Yang, Y.J.; Wang, Z.W. The impact of heat-moisture treatment on the molecular structure and physicochemical properties of Coix seed starches. Starch 2016, 68, 662–674. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, L.P.; Gu, Y.; Cheng, G.G.; Fan, X.J.; Ding, Y.Y.; Zhuang, Y.L. Improving the emulsification performance of adlay seed starch by esterification combined with ultrasonication and enzymatic treatment. Int. J. Biol. Macromol. 2023, 242, 124839. [Google Scholar] [CrossRef] [PubMed]
- Ashogbon, A.O.; Akintayo, E.T. Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch 2014, 66, 41–57. [Google Scholar] [CrossRef]
- Maniglia, B.C.; Castanha, N.; Le-Bail, P.; Le-Bail, A.; Augusto, P.E.D. Starch modification through environmentally friendly alternatives: A review. Crit. Rev. Food Sci. 2021, 61, 2482–2505. [Google Scholar] [CrossRef]
- Kaur, B.; Ariffin, F.; Bhat, R.; Karim, A.A. Progress in starch modification in the last decade. Food Hydrocoll. 2012, 26, 398–404. [Google Scholar] [CrossRef]
- Shi, Z.L. Development of instant natural Pueraria powder. Food Sci. Technol. 2001, 1, 25. [Google Scholar]
- Akinwande, B.O.; Abiodun, O.A.; Adeyemi, I.A. Effect of steaming on properties of yam flour. Nutr. Food Sci. 2013, 43, 31–39. [Google Scholar] [CrossRef]
- Li, Z.X.; Feng, S.S.; Sun, J.Y.; Bao, H.H.; Wang, L.X.; Huang, N.H.; Weng, S.R.; Yin, W.; Zhou, R. Effects of high-temperature baking on the physicochemical, structural and digestive properties of Pueraria lobata starch. J. Chin. Cere. Oils Assoc. 2023, 38, 1–10. [Google Scholar]
- Feng, T.T.; Liu, N.; Wang, S.Y.; Wen, M.C.; Zhao, K. Effect of heat-moisture modification of lentil starch on its structure and physicochemical properties. China Condim. 2023, 48, 85–92. [Google Scholar]
- Yu, B.; Li, J.; Tao, H.T.; Zhao, H.B.; Liu, P.F.; Cui, B. Physicochemical properties and in vitro digestibility of hydrothermal treated Chinese yam (Dioscorea opposita Thunb.) starch and flour. Int. J. Biol. Macromol. 2021, 176, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Regier, M.; Knoerzer, K.; Schubert, H. Introducing Microwave-Assisted Processing of Food: Fundamentals of the Technology. In The Microwave Processing of Foods, 2nd ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 1–22. [Google Scholar]
- Tao, Y.; Yan, B.W.; Fan, D.M.; Zhang, N.N.; Ma, S.Y.; Wang, L.Y.; Wu, Y.J.; Wang, M.F.; Zhao, J.X.; Zhang, H. Structural changes of starch subjected to microwave heating: A review from the perspective of dielectric properties. Trends Food Sci. Technol. 2020, 99, 593–607. [Google Scholar] [CrossRef]
- Yin, J.; Kang, L.J.; Kou, F.; Li, W.J.; Zhang, L.L.; Cao, L.K. Effects of heat-moisture combined with microwave treatment on properties of Coix seed starches. J. Chin. Cere. Oils Assoc. 2017, 32, 60–66, 73. [Google Scholar]
- Chen, B.Y.; Guo, Z.B.; Xu, L.B.; Zhang, S.; Zheng, B.D.; Zeng, S.X. Effect of physical and chemical properties of lotus seed starch by microwave treatment. Mod. Food Sci. Technol. 2015, 31, 213–219. [Google Scholar]
- Patist, A.; Bates, D. Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innov. Food Sci. Emerg. 2007, 9, 147–154. [Google Scholar] [CrossRef]
- Soria, A.C.; Villamiel, M. Effect of ultrasound on the technological properties and bioactivity of food: A review. Trends Food Sci. Technol. 2010, 21, 323–331. [Google Scholar] [CrossRef]
- Zhang, C.; Deng, Y.Q.; Li, S.Y.; Chen, L.; Shao, J.M.; Shao, X.Q. Mechanism of action of high field ultrasonic influence on solubility and freeze-thaw stability of kudzu starch. Food Sci. Technol. 2022, 47, 205–212. [Google Scholar]
- Wang, H.; Xu, K.; Ma, Y.; Liang, Y.; Zhang, H.; Chen, L. Impact of ultrasonication on the aggregation structure and physicochemical characteristics of sweet potato starch. Ultrason. Sonochem. 2020, 63, 104868. [Google Scholar] [CrossRef] [PubMed]
- Falsafi, S.R.; Maghsoudlou, Y.; Aalam, M.; Jafari, S.M.; Raeisi, M. Physicochemical and morphological properties of resistant starch type 4 prepared under ultrasound and conventional conditions and their in-vitro and in-vivo digestibilities. Ultrason. Sonochem. 2019, 53, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Simonin, H.; Marzouki, S.; Guyon, C.; Orlowska, M.; Le-Bail, A.; Lamballerie, M.D. Pasting properties of high-pressure-treated starch suspensions. High Pressure Res. 2009, 29, 726–731. [Google Scholar] [CrossRef]
- Zhang, D.L. Study on Structure, Physicochemical Properties and Stable Emulsion of Modified Lily Starch. Master’s Thesis, Hunan University, Changsha, China, 2022. [Google Scholar]
- Ye, Y.D. Application of Ultra High Pressure Modifying Coix Lachryma-Jobi Flour. Master’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2015. [Google Scholar]
- Zhang, J.X.; Du, S.K.; Duan, X.C.; Zhang, S.H. Effects of ultrahigh pressure processing on the physicochemical characteristics of Taibai kudzu starch. Transact. Chin. Soc. Agric. Eng. 2007, 23, 269–271. [Google Scholar]
- Guo, Z.B.; Zeng, S.X.; Zheng, B.D. Effect of ultra high pressure processing on the physicochemical properties of lotus seed starch. J. Chin. Inst. Food Sci. Technol. 2014, 14, 118–123. [Google Scholar]
- Guo, Z.B.; Zeng, S.X.; Zhang, Y.; Lu, X.; Tian, Y.T.; Zheng, B.D. The effects of ultra-high pressure on the structural, rheological and retrogradation properties of lotus seed starch. Food Hydrocoll. 2015, 44, 285–291. [Google Scholar] [CrossRef]
- Guo, Z.B.; Liu, W.T.; Zeng, S.X.; Zheng, B.D. Effect of Ultra High Pressure processing on the particle characteristics of Lotus-seed starch. Chin. J. Struct. Chem. 2013, 32, 525–532. [Google Scholar]
- Sui, Z.; BeMiller, J.N. Relationship of the channels of normal maize starch to the properties of its modified products. Carbohyd. Polym. 2013, 92, 894–904. [Google Scholar] [CrossRef]
- Thirathumthavorn, D.; Charoenrein, S. Thermal and pasting properties of acid-treated rice starches. Starch 2005, 57, 217–222. [Google Scholar] [CrossRef]
- Zhai, J.H. Research on the Properties and Modification of Taibai Kuzu Starch. Master’s Thesis, Northwest Agriculture and Forestry University, Xianyang, China, 2008. [Google Scholar]
- Zhang, W.; Yuan, H.P.; Zhang, H.X. Preparation and thermodynamic analysis of ginkgo resistant starch by ultrasonic-acid hydrolysis. Food Sci. Technol. 2018, 43, 293–299. [Google Scholar]
- Li, H. Effect of Modification on Structure and Properties of Lily Bulb Starch. Master’s Thesis, Hunan University, Changsha, China, 2019. [Google Scholar]
- Ratnayake, W.S.; Jackson, D.S. Phase transition of cross-linked and hydroxy-propylated corn (Zea mays L.) starches. LWT—Food Sci. Technol. 2008, 41, 346–358. [Google Scholar] [CrossRef]
- Omojola, M.O.; Manu, N.; Thomas, S.A. Effect of cross linking on the physicochemical properties of cola starch. Afr. J. Food Sci. 2012, 6, 91–95. [Google Scholar] [CrossRef]
- Li, Y. Study on the Effect of Sodium Trimetaphosphate on the Micro-Structure and Application Properties of Kudzu Starch. Master’s Thesis, Tianjin University, Tianjin, China, 2015. [Google Scholar]
- Liu, X.H. Characterization of Chemically Modified Chinese Yam Starch and Film-Forming Properties of Derivatives. Master’s Thesis, Tianjin University of Science and Technology, Tianjin, China, 2016. [Google Scholar]
- Wattanachant, S.; Muhammad, K.; Hashim, D.M.; Rahman, R.A. Effect of crosslinking reagents and hydroxypropylation levels on dual-modified sago starch properties. Food Chem. 2003, 80, 463–471. [Google Scholar] [CrossRef]
- Bai, R. Preparation, Properties and Application of Ginkgo Octenyl Succinate Starch Ester. Master’s Thesis, Nanjing Normal University, Nanjing, China, 2018. [Google Scholar]
- Tang, H.B.; Dong, S.Q.; Li, Y.P.; Sun, M. Optimization of preparation conditions for cross-linked acetylated kudzu starch by orthogonal array design and its properties. Food Sci. 2013, 34, 103–108. [Google Scholar]
- Wang, L.X.; Zhang, J.L.; Wang, J.Z. Physic-chemical properties of octenyl succinic anhydride modified yam starch. China Food Addit. 2017, 28, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.W.; Lin, X.; Zhao, B.B.; Wang, B.L.; Guo, Z.B. Structural properties of lotus seed starch prepared by octenyl succinic anhydride esterification assisted by high hydrostatic pressure treatment. LWT—Food Sci. Technol. 2020, 117, 108698. [Google Scholar] [CrossRef]
- Wang, L.F.; Pan, S.Y.; Hu, H.; Miao, W.H.; Xu, X.Y. Synthesis and properties of carboxymethyl kudzu root starch. Carbohyd. Polym. 2010, 28, 103–106. [Google Scholar] [CrossRef]
- Zhao, G.H.; Zhang, S.G.; Zhou, Y.L.; Chen, Z.D.; Kan, J.Q. Carboxymethylated Pueraria starch: Preparation and rheological properties. J. Chin. Cere. Oils Assoc. 2004, 19, 43–45, 50. [Google Scholar]
- Zhou, Y.L. Studies on Fat-Mimetic Made out of Pueraria lobate Starch. Master’s Thesis, Southwest Agricultural University, Chongqing, China, 2003. [Google Scholar]
- Zhou, Y.L. Preparation of methylation of pueraria starch and its properties. Food Ind. 2015, 36, 123–126. [Google Scholar]
- Park, K.H.; Park, J.H.; Lee, S.; Yoo, S.H.; Kim, J.M. Enzymatic Modification of Starch for Food Industry. In Carbohydrate-Active Enzymes; Woodhead Publishing: Sawston, UK, 2008; pp. 157–183. [Google Scholar]
- Bangar, S.P.; Ashogbon, A.O.; Singh, A.; Chaudhary, V.; Whiteside, W.S. Enzymatic modification of starch: A green approach for starch applications. Carbohyd. Polym. 2022, 287, 119265. [Google Scholar] [CrossRef]
- Mo, Y.; Yang, S.W.; Zhao, C.; Liu, C.J.; Huo, Y.Q.; Zhang, Q.; Tang, S.W. Effect of enzymatic hydrolysis by pullulanase on the physicochemical properties of kudzu starch. Sci. Technol. Food Ind. 2022, 43, 79–85. [Google Scholar]
- Huang, Q.; Xiao, W.J.; Sun, S.G.; Ma, C.J.; Li, Y.J.; Zhang, S. Hydrolysis kinetics of kudzu starch with α-amylase and glucoamylase. Food Sci. 2012, 33, 187–191. [Google Scholar]
- Zheng, B.; Lu, Z.; Lin, Z.N.; Li, C.Y.; Deng, S.F.; Chen, M.J.; Zhang, L.J. Study on degradation and modification of adlay starch by enzymatic. Food Res. Dev. 2016, 37, 14–18. [Google Scholar]
- Liu, C.W.; Liu, S.J.; Fan, Y.W.; Deng, C.C.; Li, M.M.; Cao, M.M. Enhance the stability of yam beverage by synergistic hydrolysis efficiency. Food Sci. Technol. 2017, 42, 254–257. [Google Scholar]
- Bao, C.; Zeng, H.L.; Zhang, Y.; Zhang, L.T.; Lu, X.; Guo, Z.B.; Miao, S.; Zheng, B.D. Structural characteristics and prebiotic effects of Semen coicis resistant starches (type 3) prepared by different methods. Int. J. Biol. Macromol. 2017, 105, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, H.X.; Zhang, H.T.; Niu, L.; Chen, J.Y. Ginkgo biloba resistant starch by microwave-enzymatic method and analysis of its properties. Food Ind. 2018, 39, 5–10. [Google Scholar]
- Wang, B.L.; Lin, X.; Zheng, Y.X.; Zeng, M.H.; Huang, M.L.; Guo, Z.B. Effect of homogenization-pressure-assisted enzymatic hydrolysis on the structural and physicochemical properties of lotus-seed starch nanoparticles. Int. J. Biol. Macromol. 2020, 167, 1579–1586. [Google Scholar] [CrossRef]
- Sopawong, P.; Warodomwichit, D.; Srichamnong, W.; Methacanon, P.; Tangsuphoom, N. Effect of physical and enzymatic modifications on composition, properties and in vitro starch digestibility of Sacred lotus (Nelumbo nucifera) seed flour. Foods 2022, 11, 2473. [Google Scholar] [CrossRef]
- Wang, H.Q.; Wu, J.Y.; Luo, S.J.; Zou, P.; Guo, B.Z.; Liu, Y.F.; Chen, J.; Liu, C.M. Improving instant properties of kudzu powder by extrusion treatment and its related mechanism. Food Hydrocoll. 2020, 101, 105475. [Google Scholar] [CrossRef]
- Xiao, J.X.; Duan, Y.Y.; Zhang, R.F.; Liu, L.; Zou, X.Q.; Ma, Q.; Zhang, M.W. Process optimization for enzymatic hydrolysis coupled with extrusion puffing to improve reconstitutability and predigestibility of Chinese yam powder. Mod. Food Sci. Technol. 2023, 39, 163–171. [Google Scholar]
- Muhammad, Z.; Ramzan, R.; Zhang, R.F.; Zhao, D.; Khalid, N.; Deng, M.; Dong, L.H.; Aziz, M.; Batool, R.; Zhang, M.W. Enhanced Bioaccessibility of microencapsulated puerarin delivered by pickering emulsions stabilized with OSA-modified hydrolyzed Pueraria montana starch: In Vitro release, storage stability, and physicochemical properties. Foods 2022, 11, 3591. [Google Scholar] [CrossRef]
- Liang, W.; Zhang, Q.; Guo, S.F.; Ge, X.Z.; Shen, H.S.; Zeng, J.; Gao, H.Y.; Li, W.B. Investigating the influence of CaCl2 induced surface gelatinization of red adzuki bean starch on its citric acid esterification modification: Structure-property related mechanism. Food Chem. 2024, 436, 137724. [Google Scholar] [CrossRef]
- Li, H.; Wang, R.R.; Liu, J.; Zhang, Q.; Li, G.Y.; Shen, Y.; Ding, S.H. Effects of heat-moisture and acid treatments on the structural, physicochemical, and in vitro digestibility properties of lily starch. Int. J. Biol. Macromol. 2020, 148, 956–968. [Google Scholar] [CrossRef]
- Yang, M.; Guan, Y.M.; Dong, H.H.; Chen, L.H.; Duan, X.T.; Wang, S.Y.; Zou, J.H. Research progress on physicochemical properties, physiological functions and application of resistant starch in edible medicinal substances with starch as the main component. Sci. Technol. Food Ind. 2023, 44, 486–495. [Google Scholar]
- Sajilata, M.G.; Singhal, R.S.; Kulkarni, P.R. Resistant starch-A Review. Compr. Rev. Food Sci. Food Saf. 2006, 5, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Liu, H.L.; Qin, N.B.; Ren, X.M.; Zhu, B.W.; Xia, X.D. Impact of food additives on the composition and function of gut microbiota: A review. Trends Food Sci. Technol. 2020, 99, 295–310. [Google Scholar] [CrossRef]
- Dobranowski, P.A.; Stintzi, A. Resistant starch, microbiome, and precision modulation. Gut Microbes 2021, 13, 1926842. [Google Scholar] [CrossRef] [PubMed]
- Lian, Y.R.; Xu, Y.; Wang, C.; Chen, Y.; Yuan, L.; Liu, Z.Y.; Liu, Y.R.; He, P.S.; Cai, Z.; Zhao, J. Gut microbiota-derived melatonin from Puerariae lobatae radix-resistant starch supplementation attenuates ischemic stroke injury via a positive microbial co-occurrence pattern. Pharmacol. Res. 2023, 190, 106714. [Google Scholar] [CrossRef]
- Zeng, H.L.; Zheng, Y.X.; Lin, Y.; Huang, C.C.; Lin, S.; Zheng, B.D.; Zhang, Y. Effect of fractionated lotus seed resistant starch on proliferation of Bifidobacterium longum and Lactobacillus delbrueckii subsp. bulgaricus and its structural changes following fermentation. Food Chem. 2018, 268, 134–142. [Google Scholar] [CrossRef]
- Lei, S.Z.; Liu, L.; Ding, L.Y.; Zhang, Y.; Zeng, H.L. Lotus seed resistant starch affects the conversion of sodium taurocholate by regulating the intestinal microbiota. Int. J. Biol. Macromol. 2021, 186, 227–236. [Google Scholar] [CrossRef]
- Li, T.; Chen, L.; Xiao, J.B.; An, F.P.; Cheng, W.; Song, H.B. Prebiotic effects of resistant starch from purple yam (Dioscorea alata L.) on the tolerance and proliferation ability of Bifidobacterium adolescentis in vitro. Food Funct. 2018, 9, 2416–2425. [Google Scholar] [CrossRef]
- Bao, C. The structural Characteristic of Semen coicis (Coix lachrymal-jobi) Resistant Starch and its Mechanism in Regulating Intestinal Flora. Ph.D. Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2017. [Google Scholar]
- Song, X.Q.; Dong, H.H.; Zang, Z.Z.; Wu, W.T.; Zhu, W.F.; Zhang, H.; Guan, Y.M. Kudzu resistant starch: An effective regulator of type 2 diabetes mellitus. Oxid. Med. Cell. Longev. 2021, 2021, 4448048. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, Y.F.; Zhuang, W.J.; Lu, X.; Luo, X.L.; Zheng, B.D. Genome-wide transcriptional changes in type 2 diabetic mice supplemented with lotus seed resistant starch. Food Chem. 2018, 264, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.X.; Wang, L.L.; Ding, L.; Zhou, X.R.; Li, C.H.; Zhou, S.M. Effects of different processing methods on physicochemical properties and estimate glycemic index of adzuki bean (Vigna angularis) powder. J. Chin. Cere Oils Assoc. 2021, 36, 33–38. [Google Scholar]
- Maibam, B.D.; Nickhil, C.; Deka, S.C. Preparation, physicochemical characterization, and in vitro starch digestibility on complex of Euryale ferox kernel starch with ferulic acid and quercetin. Int. J. Biol. Macromol. 2023, 250, 126178. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhang, X.Y.; Meng, X.X.; Zhang, N.; Li, J.; Wang, T.X.; Gao, S.; Liu, S.W.; Wang, H. Studies on nutritional intervention of ginkgo starch-lauric acid complex in obese rats induced by a high-fat diet. Food Biosci. 2023, 53, 102644. [Google Scholar] [CrossRef]
- Yang, Y.F.; Li, M.X.; Wang, Q.; Huang, H.M.; Zhao, Y.S.; Du, F.K.; Chen, Y.; Shen, J.; Luo, H.M.; Zhao, Q.Y.; et al. Pueraria lobata starch regulates gut microbiota and alleviates high-fat high-cholesterol diet induced non-alcoholic fatty liver disease in mice. Food Res. Int. 2022, 157, 111401. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.J.; Yu, J.L.; Liu, H.Y.; Chen, W.P. Characterisation and preliminary lipid-lowering evaluation of starch from Chinese yam. Food Chem. 2008, 108, 176–181. [Google Scholar]
- Zeng, H.L.; Huang, C.C.; Lin, S.; Zheng, M.J.; Chen, C.J.; Zheng, B.D.; Zhang, Y. Lotus seed resistant starch regulates gut microbiota and increases short-chain fatty acids production and mineral absorption in mice. J. Agric. Food Chem. 2017, 65, 9217–9225. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Lin, J.; Li, L.; Zheng, B.; Zeng, H.; Wang, Y.; Zhang, Y. Oral administration of Lotus-seed resistant starch protects against food allergy. Foods 2023, 12, 737. [Google Scholar] [CrossRef]
- Alves, R.M.L.; Grossmann, M.V.E.; Silva, R.S.S.F. Gelling properties of extruded yam (Dioscorea alata) starch. Food Chem. 1999, 67, 123–127. [Google Scholar] [CrossRef]
Plant Source | Pharmacological Action | Active Constituents | Reference |
---|---|---|---|
Pueraria root | Healing wounds and relieving fever, promoting eruption, promoting fluid production to quench thirst, ascending yang, and relieving diarrhea. | Flavonoids, triterpenes, coumarins, and organic acid | [15,16] |
Lotus seed | Tonifying the spleen and stopping diarrhea, stopping band, tonifying the kidney and astringent essence, nourishing the heart, and calming nerves. | Starch, polysaccharides, and alkaloid | [17] |
Yam tuber | Tonifying the spleen and stomach, generating fluid to nourish the lungs, and reinforcing the kidney to consolidate essence. | Steroidal saponins, polysaccharides, starch, flavonoids, phenolic glycosides, and fatty acids | [18,19] |
Coix seed | Strengthening the spleen and tonifying the lungs, eliminating heat and dampness, removing pus and paralysis, and stopping diarrhea. | Esters, fatty acids, polysaccharides, phenolic acids, sterols, flavonoids, lactams, triterpenes, alkaloids, and adenosine | [20] |
Rice bean | Eliminating heat and quenching thirst, decanting wine and detoxifying | Polyphenols, flavone, saponin, and polysaccharides | [21] |
Gordon Euryale seed | Invigorating the spleen and stopping diarrhea, invigorating the kidney and reinforcing essence, removing dampness, and stopping belt. | Sterols, flavonoids, cyclic peptides, sesquineolignan, tocopherol, and cerebroside | [22] |
Ginkgo seed | Reducing phlegm, eliminating poison, and treating diarrhea and frequent urination. | Flavonoids, terpene lactones, phenolic acid, polysaccharides, and organic acid | [23] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Wei, P.; Jia, M.; Wang, L.; Li, Z.; Zhang, Z.; Liu, Y.; Shi, L. Research Progress in Modifications, Bioactivities, and Applications of Medicine and Food Homologous Plant Starch. Foods 2024, 13, 558. https://doi.org/10.3390/foods13040558
Chen K, Wei P, Jia M, Wang L, Li Z, Zhang Z, Liu Y, Shi L. Research Progress in Modifications, Bioactivities, and Applications of Medicine and Food Homologous Plant Starch. Foods. 2024; 13(4):558. https://doi.org/10.3390/foods13040558
Chicago/Turabian StyleChen, Kai, Pinghui Wei, Meiqi Jia, Lihao Wang, Zihan Li, Zhongwei Zhang, Yuhuan Liu, and Lin Shi. 2024. "Research Progress in Modifications, Bioactivities, and Applications of Medicine and Food Homologous Plant Starch" Foods 13, no. 4: 558. https://doi.org/10.3390/foods13040558
APA StyleChen, K., Wei, P., Jia, M., Wang, L., Li, Z., Zhang, Z., Liu, Y., & Shi, L. (2024). Research Progress in Modifications, Bioactivities, and Applications of Medicine and Food Homologous Plant Starch. Foods, 13(4), 558. https://doi.org/10.3390/foods13040558