Exploring the Antibacterial Potential and Underlying Mechanisms of Prunella vulgaris L. on Methicillin-Resistant Staphylococcus aureus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Plant Materials and Extraction
2.3. UPLC-ESI-MS/MS Analysis of PV Extract
2.4. Bacterial Strain and Preparation of Inoculum
2.5. Antibacterial Activity and Synergistic Testing of PV Extracts
2.5.1. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericide Concentration (MBC)
2.5.2. Growth Kinetic Analysis
2.5.3. Synergistic Testing
2.6. Antibacterial Mechanism of PV against MRSA
2.6.1. Integrity of Cell Membrane
2.6.2. Integrity of Bacterial Cell Wall
2.6.3. Impact on Cellular Adenosine Triphosphatase (ATPase) and Superoxide Dismutase (SOD)
2.6.4. Effect of PV on Bacterial Cellular Metabolism
2.6.5. Determination of Total Protein Concentration
2.7. Statistical Analysis
3. Results
3.1. Determination of Antibacterial Activity
3.2. Phytochemical Compositions of PV Aqueous Extract
3.3. Effects of PV Aqueous Extract on Cell Integrity of MRSA
3.4. Inhibition of PV Aqueous Extract on ATPase and SOD Activity in MRSA
3.5. Effect of PV Aqueous Extract on Cell Metabolism of MRSA
3.6. Total Protein Content Reduction upon Treatment with PV Aqueous Extract
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Żary-Sikorska, E.; Fotschki, B.; Fotschki, J.; Wiczkowski, W.; Juśkiewicz, J. Preparations from purple carrots containing anthocyanins improved intestine microbial activity, serum lipid profile and antioxidant status in rats. J. Funct. Foods 2019, 60, 103442. [Google Scholar] [CrossRef]
- Son, N.M.; Nguyen, T.-L.; Huong, P.T.; Hien, L.T. Novel System Using Blockchain for Origin Traceability of Agricultural Products. Sens. Mater. 2021, 33, 601–613. [Google Scholar] [CrossRef]
- Fetsch, A.; Johler, S. Staphylococcus aureus as a foodborne pathogen. Curr. Clin. Microbiol. Rep. 2018, 5, 88–96. [Google Scholar] [CrossRef]
- Choi, J.-G.; Kang, O.-H.; Chae, H.-S.; Obiang-Obounou, B.; Lee, Y.-S.; Oh, Y.-C.; Kim, M.-S.; Shin, D.-W.; Kim, J.-A.; Kim, Y.-H.; et al. Antibacterial activity of Hylomecon hylomeconoides against methicillin-resistant Staphylococcus aureus. Appl. Biochem. Biotechnol. 2010, 160, 2467–2474. [Google Scholar] [CrossRef] [PubMed]
- Ellington, M.; Hope, R.; Livermore, D.; Kearns, A.; Henderson, K.; Cookson, B.; Pearson, A.; Johnson, A. Decline of EMRSA-16 amongst methicillin-resistant Staphylococcus aureus causing bacteraemias in the UK between 2001 and 2007. J. Antimicrob. Chemother. 2010, 65, 446–448. [Google Scholar] [CrossRef]
- Asokan, G.V.; Ramadhan, T.; Ahmed, E.; Sanad, H. WHO global priority pathogens list: A bibliometric analysis of Medline-PubMed for knowledge mobilization to infection prevention and control practices in Bahrain. Oman Med. J. 2019, 34, 184. [Google Scholar] [CrossRef]
- Lee, K.A.; Moon, S.-H.; Lee, J.-Y.; Kim, K.-T.; Park, Y.-S.; Paik, H.-D. Antibacterial activity of a novel flavonoid, 7-O-butyl naringenin, against methicillin-resistant Staphylococcus aureus (MRSA). Food Sci. Biotechnol. 2013, 22, 1725–1728. [Google Scholar] [CrossRef]
- Akhtar, N.; Mirza, B. Phytochemical analysis and comprehensive evaluation of antimicrobial and antioxidant properties of 61 medicinal plant species. Arab. J. Chem. 2018, 11, 1223–1235. [Google Scholar] [CrossRef]
- Beya, M.M.; Netzel, M.E.; Sultanbawa, Y.; Smyth, H.; Hoffman, L.C. Plant-based phenolic molecules as natural preservatives in comminuted meats: A review. Antioxidants 2021, 10, 263. [Google Scholar] [CrossRef]
- Han, E.H.; Choi, J.H.; Hwang, Y.P.; Park, H.J.; Choi, C.Y.; Chung, Y.C.; Seo, J.K.; Jeong, H.G. Immunostimulatory activity of aqueous extract isolated from Prunella vulgaris. Food Chem. Toxicol. 2009, 47, 62–69. [Google Scholar] [CrossRef]
- Hwang, Y.-J.; Lee, E.-J.; Kim, H.-R.; Hwang, K.-A. NF-κB-targeted anti-inflammatory activity of Prunella vulgaris var. lilacina in macrophages RAW 264.7. Int. J. Mol. Sci. 2013, 14, 21489–21503. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, Q.; Wang, C. Textual research on change of medicinal parts and herbal medicine of Prunella vulgaris. China J. Chin. Mater. Medica 2010, 35, 242–246. [Google Scholar] [CrossRef]
- Li, C.; Fu, X.; Huang, Q.; Luo, F.; You, L. Ultrasonic extraction and structural identification of polysaccharides from Prunella vulgaris and its antioxidant and antiproliferative activities. Eur. Food Res. Technol. 2015, 240, 49–60. [Google Scholar] [CrossRef]
- Qu, Z.; Zhang, J.; Yang, H.; Gao, J.; Chen, H.; Liu, C.; Gao, W. Prunella vulgaris L., an edible and medicinal plant, attenuates scopolamine-induced memory impairment in rats. J. Agric. Food Chem. 2017, 65, 291–300. [Google Scholar] [CrossRef]
- Dhama, K.; Sharun, K.; Gugjoo, M.B.; Tiwari, R.; Alagawany, M.; Iqbal Yatoo, M.; Thakur, P.; Iqbal, H.M.; Chaicumpa, W.; Michalak, I.; et al. A Comprehensive review on chemical profile and pharmacological activities of Ocimum basilicum. Food Rev. Int. 2021, 39, 119–147. [Google Scholar] [CrossRef]
- Wang, S.-J.; Wang, X.-H.; Dai, Y.-Y.; Ma, M.-H.; Rahman, K.; Nian, H.; Zhang, H. Prunella vulgaris: A comprehensive review of chemical constituents, pharmacological effects and clinical applications. Curr. Pharm. Des. 2019, 25, 359–369. [Google Scholar] [CrossRef]
- Mahboubi, M.; Mahboubi, A.; Kazempour, N. The antimicrobial activity of Prunella vulgaris extracts. Herba Pol. 2015, 61, 31–38. [Google Scholar] [CrossRef]
- Lebovics, V.; Lugasi, A.; Hóvari, J.; Aubourg, S.P. Partial inhibition of cholesterol oxides formation in frozen fish pre-treated with a plant extract. Int. J. Food Sci. Technol. 2009, 44, 342–348. [Google Scholar] [CrossRef]
- Zuo, G.-Y.; Zhang, X.-J.; Yang, C.-X.; Han, J.; Wang, G.-C.; Bian, Z.-Q. Evaluation of traditional Chinese medicinal plants for anti-MRSA activity with reference to the treatment record of infectious diseases. Molecules 2012, 17, 2955–2967. [Google Scholar] [CrossRef]
- Zuo, G.; Han, Z.; Hao, X.; Han, J.; Li, Z.; Wang, G. Synergy of aminoglycoside antibiotics by 3-Benzylchroman derivatives from the Chinese drug Caesalpinia sappan against clinical methicillin-resistant Staphylococcus aureus (MRSA). Phytomedicine 2014, 21, 936–941. [Google Scholar] [CrossRef]
- Xing, H.; Fu, R.; Cheng, C.; Cai, Y.; Wang, X.; Deng, D.; Gong, X.; Chen, J. Hyperoside protected against oxidative stress-induced liver injury via the PHLPP2-AKT-GSK-3β signaling pathway in vivo and in vitro. Front. Pharmacol. 2020, 11, 1065. [Google Scholar] [CrossRef]
- Komal, S.; Kazmi SA, J.; Khan, J.A.; Gilani, M.M. Antimicrobial activity of Prunella vulgaris extracts against multi-drug resistant Escherichia coli from patients of urinary tract infection. Pak. J. Med. Sci. 2018, 34, 616. [Google Scholar] [CrossRef]
- Firuzi, O.; Asadollahi, M.; Gholami, M.; Javidnia, K. Composition and biological activities of essential oils from four Heracleum species. Food Chem. 2010, 122, 117–122. [Google Scholar] [CrossRef]
- Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48 (Suppl. S1), 5–16. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Xu, L.; Lin, Y.; Cai, X.; Wang, S. The preservative potential of Octopus scraps peptides−Zinc chelate against Staphylococcus aureus: Its fabrication, antibacterial activity and action mode. Food Control 2019, 98, 24–33. [Google Scholar] [CrossRef]
- Kamjumphol, W.; Chareonsudjai, P.; Chareonsudjai, S. Antibacterial activity of chitosan against Burkholderia pseudomallei. Microbiologyopen 2018, 7, e00534. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Zhang, C.; Li, C.; Lin, L. Antimicrobial mechanism of clove oil on Listeria monocytogenes. Food Control 2018, 94, 140–146. [Google Scholar] [CrossRef]
- Sun, X.-H.; Zhou, T.-T.; Wei, C.-H.; Lan, W.-Q.; Zhao, Y.; Pan, Y.-J.; Wu, V.C. Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various foodborne pathogens. Food Control 2018, 94, 155–161. [Google Scholar] [CrossRef]
- Mullard, A. An audience with... Jim O’Neill. Nat. Rev. Drug Discov. 2016, 15, 526–527. [Google Scholar]
- Moses, A.; Uchenna, U.; Nworie, O. Epidemiology of vancomycin resistant Staphyloccus aureus among clinical isolates in a tertiary hospital in Abakaliki, Nigeria. Am. J. Epidemiol. Infect. Dis. 2013, 1, 24–26. [Google Scholar]
- Rasool, R.; Ganai, B.A. Prunella vulgaris L.: A literature review on its therapeutic potentials. Pharmacologia 2013, 4, 441–448. [Google Scholar] [CrossRef]
- Hayouni, E.A.; Abedrabba, M.; Bouix, M.; Hamdi, M. The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extracts. Food Chem. 2007, 105, 1126–1134. [Google Scholar] [CrossRef]
- Ngo, T.V.; Scarlett, C.J.; Bowyer, M.C.; Ngo, P.D.; Vuong, Q.V. Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis L. J. Food Qual. 2017, 2017, 9305047. [Google Scholar] [CrossRef]
- Okwu, M.U.; Olley, M.; Akpoka, A.O.; Izevbuwa, O.E. Methicillin-resistant Staphylococcus aureus (MRSA) and anti-MRSA activities of extracts of some medicinal plants: A brief review. AIMS Microbiol. 2019, 5, 117. [Google Scholar] [CrossRef]
- Tian, Y.; Puganen, A.; Alakomi, H.-L.; Uusitupa, A.; Saarela, M.; Yang, B. Antioxidative and antibacterial activities of aqueous ethanol extracts of berries, leaves, and branches of berry plants. Food Res. Int. 2018, 106, 291–303. [Google Scholar] [CrossRef]
- Gu, X.; Li, Y.; Mu, J.; Zhang, Y. Chemical constituents of Prunella vulgaris. J. Environ. Sci. 2013, 25, S161–S163. [Google Scholar] [CrossRef]
- Yang, J.; Hu, Y.-J.; Yu, B.-Y.; Qi, J. Integrating qualitative and quantitative characterization of Prunellae Spica by HPLC-QTOF/MS and HPLC-ELSD. Chin. J. Nat. Med. 2016, 14, 391–400. [Google Scholar] [CrossRef]
- Deepika, M.S.; Thangam, R.; Vijayakumar, T.S.; Sasirekha, R.; Vimala, R.; Arun, S.; Babu, M.D.; Sivasubramanian, S.; Thirumurugan, R. Antibacterial synergy between rutin and florfenicol enhances therapeutic spectrum against drug resistant Aeromonas hydrophila. Microb. Pathog. 2019, 135, 103612. [Google Scholar] [CrossRef]
- Ekambaram, S.P.; Perumal, S.S.; Balakrishnan, A.; Marappan, N.; Gajendran, S.S.; Viswanathan, V. Antibacterial synergy between rosmarinic acid and antibiotics against methicillin-resistant Staphylococcus aureus. J. Intercult. Ethnopharmacol. 2016, 5, 358. [Google Scholar] [CrossRef]
- Kępa, M.; Miklasińska-Majdanik, M.; Wojtyczka, R.D.; Idzik, D.; Korzeniowski, K.; Smoleń-Dzirba, J.; Wąsik, T.J. Antimicrobial potential of caffeic acid against Staphylococcus aureus clinical strains. BioMed Res. Int. 2018, 2018, 7413504. [Google Scholar] [CrossRef]
- Song, J.; He, Y.; Luo, C.; Feng, B.; Ran, F.; Xu, H.; Ci, Z.; Xu, R.; Han, L.; Zhang, D. New progress in the pharmacology of protocatechuic acid: A compound ingested in daily foods and herbs frequently and heavily. Pharmacol. Res. 2020, 161, 105109. [Google Scholar] [CrossRef]
- Davis, J.S.; van Hal, S.; Tong, S. Combination antibiotic treatment of serious methicillin-resistant Staphylococcus aureus infections. In Seminars in Respiratory and Critical Care Medicine; Thieme Medical Publishers: New York, NY, USA, 2015; Volume 36, pp. 3–16. [Google Scholar] [CrossRef]
- Kuok, C.-F.; Hoi, S.-O.; Hoi, C.-F.; Chan, C.-H.; Fong, I.-H.; Ngok, C.-K.; Meng, L.-R.; Fong, P. Synergistic antibacterial effects of herbal extracts and antibiotics on methicillin-resistant Staphylococcus aureus: A computational and experimental study. Exp. Biol. Med. 2017, 242, 731–743. [Google Scholar] [CrossRef]
- Babii, C.; Bahrin, L.; Neagu, A.N.; Gostin, I.; Mihasan, M.; Birsa, L.; Stefan, M. Antibacterial activity and proposed action mechanism of a new class of synthetic tricyclic flavonoids. J. Appl. Microbiol. 2016, 120, 630–637. [Google Scholar] [CrossRef]
- Meng, X.; Li, D.; Zhou, D.; Wang, D.; Liu, Q.; Fan, S. Chemical composition, antibacterial activity and related mechanism of the essential oil from the leaves of Juniperus rigida Sieb. et Zucc against Klebsiella pneumoniae. J. Ethnopharmacol. 2016, 194, 698–705. [Google Scholar] [CrossRef]
- Shen, S.; Zhang, T.; Yuan, Y.; Lin, S.; Xu, J.; Ye, H. Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane. Food Control 2015, 47, 196–202. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, C.; Cui, H.; Lin, L. Antimicrobial mechanism of pulsed light for the control of Escherichia coli O157: H7 and its application in carrot juice. Food Control 2019, 106, 106751. [Google Scholar] [CrossRef]
- Cui, H.; Zhou, H.; Lin, L.; Zhao, C.; Zhang, X.; Xiao, Z.; Li, C. Antibacterial activity and mechanism of cinnamon essential oil and its application in milk. JAPS J. Anim. Plant Sci. 2016, 26, 532–541. [Google Scholar]
- Hermes-Lima, M. Oxygen in biology and biochemistry: Role of free radicals. Funct. Metab. Regul. Adapt. 2004, 1, 319–368. [Google Scholar] [CrossRef]
- Lan, W.; Zhang, N.; Liu, S.; Chen, M.; Xie, J. ε-Polylysine inhibits Shewanella putrefaciens with membrane disruption and cell damage. Molecules 2019, 24, 3727. [Google Scholar] [CrossRef]
- Villegas-Mendoza, J.; Cajal-Medrano, R.; Maske, H. INT (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(phenyl) tetrazolium chloride) is toxic to prokaryote cells precluding its use with whole cells as a proxy for in vivo respiration. Microb. Ecol. 2015, 70, 1004–1011. [Google Scholar] [CrossRef]
- Wang, C.-M.; Jhan, Y.-L.; Tsai, S.-J.; Chou, C.-H. The pleiotropic antibacterial mechanisms of ursolic acid against methicillin-resistant Staphylococcus aureus (MRSA). Molecules 2016, 21, 884. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, H.; Hao, T.; Li, S. In vitro antibacterial activities and mechanism of sugar fatty acid esters against five food-related bacteria. Food Chem. 2015, 187, 370–377. [Google Scholar] [CrossRef] [PubMed]
Antibiotics | Antibiotic Alone MIC (mg/L) | PV Extract Alone MIC (mg/mL) | Combination Antibiotic MIC (mg/L) | Combination PV Extract MIC (mg/mL) | FICI | Outcome |
---|---|---|---|---|---|---|
Penicillin | 64 | 2.5 | 16 | 1.25 | 0.75 | additivity |
Erythromycin | 128 | 2.5 | 64 | 1.25 | 1 | additivity |
Number | RT (min) | Molecular Weight | Type | Elemental Composition | Tentative Identification | Intensity |
---|---|---|---|---|---|---|
1 | 0.48 | 126.03 | [M − H]− | C6H6O3 | 5-Hydroxymethylfurfural | 200,786,294.28 |
2 | 0.85 | 192.03 | [M − H]− | C6H8O7 | Citric acid | 231,224,124.95 |
3 | 0.91 | 147.05 | [M − H]− | C5H9NO4 | L-Glutamic acid | 118,909,823.16 |
4 | 0.93 | 192.06 | [M − H]− | C7H12O6 | Quinic acid | 121,100,618.62 |
5 | 1.08 | 154.03 | [M − H]− | C7H6O4 | Protocatechuic acid | 29,413,149.12 |
6 | 1.10 | 294.18 | [M − H]− | C17H26O4 | 6-Gingerol | 117,982,186.76 |
7 | 1.35 | 198.05 | [M − H]− | C9 H10O5 | Danshensu | 82,420,769.72 |
8 | 1.93 | 180.04 | [M − H]− | C9H8O4 | Caffeic acid | 284,978,181.05 |
9 | 2.07 | 244.07 | [M − H]− | C9H12N2O6 | Uridine | 10,320,534.18 |
10 | 2.54 | 164.05 | [M − H]− | C9H8O3 | p-Hydroxy-cinnamic acid | 20,103,597.17 |
11 | 2.63 | 283.09 | [M − H]− | C10H13N5O5 | Isoguanosine | 26,317,693.32 |
12 | 2.76 | 135.05 | [M − H]− | C5H5N5 | Adenine | 28,285,891.13 |
13 | 2.84 | 165.08 | [M − H]− | C9H11NO2 | L-Phenylalanine | 60,424,033.14 |
14 | 3.15 | 267.10 | [M − H]− | C10H1N5O4 | Adenosine | 150,919,822.07 |
15 | 3.26 | 251.10 | [M − H]− | C10H13N5O3 | Cordycepin | 15,636,305.51 |
16 | 3.33 | 494.12 | [M − H]− | C26H22O10 | Salvianolic acid A | 9,241,354.22 |
17 | 3.82 | 360.08 | [M − H]− | C18H16O8 | Rosmarinic acid | 466,272,838.52 |
18 | 3.95 | 138.03 | [M − H]− | C7H6O3 | Protocatechualdehyde | 201,195,637.62 |
19 | 4.68 | 610.15 | [M − H]− | C27H30O16 | Rutin | 23,523,415.72 |
20 | 4.69 | 464.10 | [M − H]− | C21H20O12 | Hyperoside | 34,180,910.77 |
21 | 14.75 | 152.12 | [M − H]− | C10H16O | Camphor | 130,897,410.82 |
22 | 1.08 | 154.03 | [M − H]− | C7 H6O4 | Gentisic acid | 29,413,149.12 |
23 | 3.95 | 152.05 | [M − H]− | C8 H8O3 | Anillin | 18,295,473.19 |
24 | 1.74 | 181.07 | [M − H]− | C9H11NO3 | L-Tyrosine | 4,548,704.97 |
25 | 3.82 | 194.06 | [M − H]− | C10H10O4 | Isoferulic acid | 82,584,298.91 |
26 | 5.44 | 470.34 | [M − H]− | C30H46O4 | 18 β-Glycyrrhetintic acid | 6,110,146.94 |
27 | 1.66 | 243.09 | [M − H]− | C9H13N3O5 | Cytidine | 14,310,456.88 |
28 | 3.82 | 194.06 | [M − H]− | C10H10O4 | Ferulic acid | 82,584,298.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; He, Q.; Xu, F.; Yin, X.; Guan, Z.; Song, J.; He, Z.; Yang, X.; Situ, C. Exploring the Antibacterial Potential and Underlying Mechanisms of Prunella vulgaris L. on Methicillin-Resistant Staphylococcus aureus. Foods 2024, 13, 660. https://doi.org/10.3390/foods13050660
Li Z, He Q, Xu F, Yin X, Guan Z, Song J, He Z, Yang X, Situ C. Exploring the Antibacterial Potential and Underlying Mechanisms of Prunella vulgaris L. on Methicillin-Resistant Staphylococcus aureus. Foods. 2024; 13(5):660. https://doi.org/10.3390/foods13050660
Chicago/Turabian StyleLi, Ziyin, Qiqi He, Feifei Xu, Xinxin Yin, Zhuofan Guan, Jia Song, Zhini He, Xingfen Yang, and Chen Situ. 2024. "Exploring the Antibacterial Potential and Underlying Mechanisms of Prunella vulgaris L. on Methicillin-Resistant Staphylococcus aureus" Foods 13, no. 5: 660. https://doi.org/10.3390/foods13050660
APA StyleLi, Z., He, Q., Xu, F., Yin, X., Guan, Z., Song, J., He, Z., Yang, X., & Situ, C. (2024). Exploring the Antibacterial Potential and Underlying Mechanisms of Prunella vulgaris L. on Methicillin-Resistant Staphylococcus aureus. Foods, 13(5), 660. https://doi.org/10.3390/foods13050660