Challenges in Functional Food Products with the Incorporation of Some Microalgae
Abstract
:1. Introduction
1.1. Functional Food
1.2. Microalgae and Their Valuable Metabolites
1.3. Functional Food Products with Incorporation of Microalgae
2. New Trends in Microalgae Food Application
3. Challenges in Food Products with Microalgae
3.1. Challenges for Sensory Qualities of Food in Food Products with Microalgae
3.2. Food Safety and Potential Risks
3.3. Challenge in Ensuring the Stability of the Nutritional Content of Microalgae
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNICEF. The State of Food Security and Nutrition in the World 2021; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- FAO. How to Feed the World in 2050 (High-Level Expert Forum); FAO: Rome, Italy, 2009; Volume 1, pp. 1–35. [Google Scholar]
- Aiking, H. Future Protein Supply. Trends Food Sci. Technol. 2011, 22, 112–120. [Google Scholar] [CrossRef]
- Meybeck, A.; Laval, E.; Lévesque, R.; Parent, G. Food Security and Nutrition in the Age of Climate Change. In Proceedings of the International Symposium organized by the Government of Québec in Collaboration with FAO, Québec City, QC, Canada, 24–27 September 2017; p. 132. [Google Scholar]
- Lafarga, T. Effect of Microalgal Biomass Incorporation into Foods: Nutritional and Sensorial Attributes of the End Products. Algal Res. 2019, 41, 101566. [Google Scholar] [CrossRef]
- Roohinejad, S.; Koubaa, M.; Barba, F.J.; Saljoughian, S.; Amid, M.; Greiner, R. Application of Seaweeds to Develop New Food Products with Enhanced Shelf-Life, Quality and Health-Related Beneficial Properties. Food Res. Int. 2017, 99, 1066–1083. [Google Scholar] [CrossRef]
- Borowitzka, M.A. Microalgae in Medicine and Human Health: A Historical Perspective. In Microalgae in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2018; pp. 195–210. [Google Scholar]
- Zhou, J.; Liu, J.; Lin, D.; Gao, G.; Wang, H.; Guo, J.; Rao, P.; Ke, L. Boiling-Induced Nanoparticles and Their Constitutive Proteins from Isatis Indigotica Fort. Root Decoction: Purification and Identification. J. Tradit. Complement. Med. 2017, 7, 178–187. [Google Scholar] [CrossRef]
- Arai, S. Studies on Functional Foods in Japan—State of the Art. Biosci. Biotechnol. Biochem. 1996, 60, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Iwatani, S.; Yamamoto, N. Functional Food Products in Japan: A Review. Food Sci. Hum. Wellness 2019, 8, 96–101. [Google Scholar] [CrossRef]
- Ohama, H.; Ikeda, H.; Moriyama, H. Health Foods and Foods with Health Claims in Japan. In Nutraceutical and Functional Food Regulations in the United States and Around the World; Elsevier: Amsterdam, The Netherlands, 2008; pp. 249–280. [Google Scholar]
- Swinbanks, D.; O’Brien, J. Japan Explores the Boundary between Food and Medicine. Nature 1993, 364, 180. [Google Scholar] [CrossRef]
- Health Canada. Standards of Evidence for Evaluating Foods with Health Claims: A Proposed Framework; Consultatıon Document; Health Canada: Ottawa, ON, USA, 2000; Available online: https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/fn-an/alt_formats/hpfb-dgpsa/pdf/label-etiquet/consultation_doc-eng.pdf (accessed on 14 November 2023).
- Bagchi, D. Neutraceutical and Functional Food Regulations; Elsevier: New York, NY, USA, 2008. [Google Scholar]
- EFSA. Authority European Food Safety Authority, and European Centre for Disease Prevention and Control. In The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-Borne Outbreaks in 2010; EFSA: Parma, Italy, 2015. [Google Scholar]
- Arvanitoyannis, I.S.; Van Houwelingen-Koukaliaroglou, M. Functional Foods: A Survey of Health Claims, Pros and Cons, and Current Legislation. Crit. Rev. Food Sci. Nutr. 2005, 45, 385–404. [Google Scholar] [CrossRef]
- Betoret, E.; Betoret, N.; Vidal, D.; Fito, P. Functional Foods Development: Trends and Technologies. Trends Food Sci. Technol. 2011, 22, 498–508. [Google Scholar] [CrossRef]
- Shuba, E.S.; Kifle, D. Microalgae to Biofuels: ‘Promising’ Alternative and Renewable Energy, Review. Renew. Sustain. Energy Rev. 2018, 81, 743–755. [Google Scholar] [CrossRef]
- Hosseinkhani, N.; McCauley, J.I.; Ralph, P.J. Key Challenges for the Commercial Expansion of Ingredients from Algae into Human Food Products. Algal Res. 2022, 64, 102696. [Google Scholar] [CrossRef]
- Chen, C.; Tang, T.; Shi, Q.; Zhou, Z.; Fan, J. The Potential and Challenge of Microalgae as Promising Future Food Sources. Trends Food Sci. Technol. 2022, 126, 99–112. [Google Scholar] [CrossRef]
- Becker, E.W. Micro-Algae as a Source of Protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef]
- Matos, J.; Cardoso, C.; Bandarra, N.M.; Afonso, C. Microalgae as Healthy Ingredients for Functional Food: A Review. Food Funct. 2017, 8, 2672–2685. [Google Scholar] [CrossRef] [PubMed]
- Bito, T.; Okumura, E.; Fujishima, M.; Watanabe, F. Potential of Chlorella as a Dietary Supplement to Promote Human Health. Nutrients 2020, 12, 2524. [Google Scholar] [CrossRef]
- Safi, C.; Zebib, B.; Merah, O.; Pontalier, P.-Y.; Vaca-Garcia, C. Morphology, Composition, Production, Processing and Applications of Chlorella vulgaris: A Review. Renew. Sustain. Energy Rev. 2014, 35, 265–278. [Google Scholar] [CrossRef]
- Panahi, Y.; Khosroshahi, A.Y.; Sahebkar, A.; Heidari, H.R. Impact of Cultivation Condition and Media Content On Chlorella vulgaris Composition. Adv. Pharm. Bull. 2019, 9, 182. [Google Scholar] [CrossRef]
- Sidari, R.; Tofalo, R. A Comprehensive Overview on Microalgal-Fortified/Based Food and Beverages. Food Rev. Int. 2019, 35, 778–805. [Google Scholar] [CrossRef]
- Gün, D.; Çelekli, A.; Bozkurt, H.; Kaya, S. Optimization of Biscuit Enrichment with the Incorporation of Arthrospira platensis: Nutritional and Sensory Approach. J. Appl. Phycol. 2022, 34, 1555–1563. [Google Scholar] [CrossRef]
- Grosshagauer, S.; Kraemer, K.; Somoza, V. The True Value of Spirulina. J. Agric. Food Chem. 2020, 68, 4109–4115. [Google Scholar] [CrossRef]
- ElFar, O.A.; Billa, N.; Lim, H.R.; Chew, K.W.; Cheah, W.Y.; Munawaroh, H.S.H.; Balakrishnan, D.; Show, P.L. Advances in Delivery Methods of Arthrospira platensis (Spirulina) for Enhanced Therapeutic Outcomes. Bioengineered 2022, 13, 14681–14718. [Google Scholar] [CrossRef]
- da Silva, M.R.O.B.; Moura, Y.A.S.; Converti, A.; Porto, A.L.F.; Marques, D.d.A.V.; Bezerra, R.P. Assessment of the Potential of Dunaliella Microalgae for Different Biotechnological Applications: A Systematic Review. Algal Res. 2021, 58, 102396. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Z.; Hu, Q.; Sommerfeld, M.; Lu, Y.; Han, D. Cellular Capacities for High-Light Acclimation and Changing Lipid Profiles across Life Cycle Stages of the Green Alga Haematococcus pluvialis. PLoS ONE 2014, 9, e106679. [Google Scholar] [CrossRef]
- Zhao, Y.; Yue, C.; Ding, W.; Li, T.; Xu, J.W.; Zhao, P.; Ma, H.; Yu, X. Butylated Hydroxytoluene Induces Astaxanthin and Lipid Production in Haematococcus pluvialis under High-Light and Nitrogen-Deficiency Conditions. Bioresour. Technol. 2018, 266, 315–321. [Google Scholar] [CrossRef]
- Mularczyk, M.; Michalak, I.; Marycz, K. Astaxanthin and Other Nutrients from Haematococcus pluvialis—Multifunctional Applications. Mar. Drugs 2020, 18, 459. [Google Scholar] [CrossRef]
- Nishshanka, G.K.S.H.; Liyanaarachchi, V.C.; Nimarshana, P.H.V.; Ariyadasa, T.U.; Chang, J.-S. Haematococcus pluvialis: A Potential Feedstock for Multiple-Product Biorefining. J. Clean. Prod. 2022, 344, 131103. [Google Scholar] [CrossRef]
- Gomez-Zavaglia, A.; Prieto Lage, M.A.; Jimenez-Lopez, C.; Mejuto, J.C.; Simal-Gandara, J. The Potential of Seaweeds as a Source of Functional Ingredients of Prebiotic and Antioxidant Value. Antioxidants 2019, 8, 406. [Google Scholar] [CrossRef] [PubMed]
- Lafarga, T.; Fernández-Sevilla, J.M.; González-López, C.; Acién-Fernández, F.G. Spirulina for the Food and Functional Food Industries. Food Res. Int. 2020, 137, 109356. [Google Scholar] [CrossRef]
- Gibbs, N.; Duffus, C.M. Natural Protoplast Dunaliella as a Source of Protein. Appl. Environ. Microbiol. 1976, 31, 602–604. [Google Scholar] [CrossRef]
- Ba, F.; Ursu, A.V.; Laroche, C.; Djelveh, G. Haematococcus pluvialis Soluble Proteins: Extraction, Characterization, Concentration/Fractionation and Emulsifying Properties. Bioresour. Technol. 2016, 200, 147–152. [Google Scholar] [CrossRef]
- Scodelaro Bilbao, P.G.; Damiani, C.; Salvador, G.A.; Leonardi, P. Haematococcus pluvialis as a Source of Fatty Acids and Phytosterols: Potential Nutritional and Biological Implications. J. Appl. Phycol. 2016, 28, 3283–3294. [Google Scholar] [CrossRef]
- Saha, S.K.; McHugh, E.; Hayes, J.; Moane, S.; Walsh, D.; Murray, P. Effect of Various Stress-Regulatory Factors on Biomass and Lipid Production in Microalga Haematococcus pluvialis. Bioresour. Technol. 2013, 128, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Matos, J.; Cardoso, C.L.; Falé, P.; Afonso, C.M.; Bandarra, N.M. Investigation of Nutraceutical Potential of the Microalgae Chlorella vulgaris and Arthrospira platensis. Int. J. Food Sci. Technol. 2020, 55, 303–312. [Google Scholar] [CrossRef]
- Almutairi, A.W. Effects of Nitrogen and Phosphorus Limitations on Fatty Acid Methyl Esters and Fuel Properties of Dunaliella salina. Environ. Sci. Pollut. Res. 2020, 27, 32296–32303. [Google Scholar] [CrossRef] [PubMed]
- Gonabadi, E.; Samadlouie, H.R.; Shafafi Zenoozian, M. Optimization of Culture Conditions for Enhanced Dunaliella salina Productions in Mixotrophic Culture. Prep. Biochem. Biotechnol. 2021, 52, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Colla, L.M.; Bertolin, T.E.; Costa, J.A.V. Fatty Acids Profile of Spirulina platensis Grown under Different Temperatures and Nitrogen Concentrations. Zeitschrift für Naturforsch. C 2004, 59, 55–59. [Google Scholar] [CrossRef]
- Babadzhanov, A.S.; Abdusamatova, N.; Yusupova, F.M.; Faizullaeva, N.; Mezhlumyan, L.G.; Kh Malikova, M. Chemical Composition of Spirulina platensis Cultivated In Uzbekistan; Springer: Berlin/Heidelberg, Germany, 2004; Volume 40, Available online: https://link.springer.com/article/10.1023/B:CONC.0000039141.98247.e8 (accessed on 14 November 2023).
- Çelekli, A.; Yavuzatmaca, M.; Bozkurt, H. Modeling of Biomass Production by Spirulina platensis as Function of Phosphate Concentrations and PH Regimes. Bioresour. Technol. 2009, 100, 3625–3629. [Google Scholar] [CrossRef] [PubMed]
- Çelekli, A.; Arslanargun, H.; Soysal, Ç.; Gültekin, E.; Bozkurt, H. Biochemical Responses of Filamentous Algae in Different Aquatic Ecosystems in South East Turkey and Associated Water Quality Parameters. Ecotoxicol. Environ. Saf. 2016, 133, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Markou, G.; Chatzipavlidis, I.; Georgakakis, D. Carbohydrates Production and Bio-Flocculation Characteristics in Cultures of Arthrospira (Spirulina) platensis: Improvements through Phosphorus Limitation Process. BioEnergy Res. 2012, 5, 915–925. [Google Scholar] [CrossRef]
- Çelekli, A.; Gültekin, E.; Bozkurt, H. Morphological and Biochemical Responses of Spirogyra Setiformis Exposed to Cadmium. Clean-Soil Air Water 2016, 44, 256–262. [Google Scholar] [CrossRef]
- Colla, L.M.; Reinehr, C.O.; Reichert, C.; Costa, J.A.V. Production of Biomass and Nutraceutical Compounds by Spirulina platensis under Different Temperature and Nitrogen Regimes. Bioresour. Technol. 2007, 98, 1489–1493. [Google Scholar] [CrossRef]
- Ogbonda, K.H.; Aminigo, R.E.; Abu, G.O. Influence of Temperature and PH on Biomass Production and Protein Biosynthesis in a Putative Spirulina sp. Bioresour. Technol. 2007, 98, 2207–2211. [Google Scholar] [CrossRef]
- Abeyrathne, E.D.N.S.; Lee, H.Y.; Ahn, D.U. Egg White Proteins and Their Potential Use in Food Processing or as Nutraceutical and Pharmaceutical Agents—A Review. Poult. Sci. 2013, 92, 3292–3299. [Google Scholar] [CrossRef]
- Huang, X.; Ahn, D.U. How Can the Value and Use of Egg Yolk Be Increased? J. Food Sci. 2019, 84, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Bohrer, B.M. Nutrient Density and Nutritional Value of Meat Products and Non-Meat Foods High in Protein. Trends Food Sci. Technol. 2017, 65, 103–112. [Google Scholar] [CrossRef]
- Markou, G.; Arapoglou, D.; Eliopoulos, C.; Balafoutis, A.; Taddeo, R.; Panara, A.; Thomaidis, N. Cultivation and Safety Aspects of Arthrospira platensis (Spirulina) Grown with Struvite Recovered from Anaerobic Digestion Plant as Phosphorus Source. Algal Res. 2019, 44, 101716. [Google Scholar] [CrossRef]
- Moughan, P.J. Digestion and Absorption of Proteins and Peptides. In Designing Functional Foods; Elsevier: Amsterdam, The Netherlands, 2009; pp. 148–170. [Google Scholar]
- Kazir, M.; Abuhassira, Y.; Robin, A.; Nahor, O.; Luo, J.; Israel, A.; Golberg, A.; Livney, Y.D. Extraction of Proteins from Two Marine Macroalgae, Ulva Sp. and Gracilaria Sp., for Food Application, and Evaluating Digestibility, Amino Acid Composition and Antioxidant Properties of the Protein Concentrates. Food Hydrocoll. 2019, 87, 194–203. [Google Scholar] [CrossRef]
- Niccolai, A.; Zittelli, G.C.; Rodolfi, L.; Biondi, N.; Tredici, M.R. Microalgae of Interest as Food Source: Biochemical Composition and Digestibility. Algal Res. 2019, 42, 101617. [Google Scholar] [CrossRef]
- Watts, S.A.; Lawrence, A.L.; Lawrence, J.M. Nutrition. In Developments in Aquaculture and Fisheries; Elsevier: Amsterdam, The Netherlands, 2013; Volume 38, pp. 155–169. [Google Scholar]
- Soni, R.A.; Sudhakar, K.; Rana, R.S. Spirulina–From Growth to Nutritional Product: A Review. Trends Food Sci. Technol. 2017, 69, 157–171. [Google Scholar] [CrossRef]
- Vonshak, A. Spirulina platensis Arthrospira: Physiology, Cell-Biology and Biotechnology; CRC Press: Boca Raton, FL, USA, 2002; ISBN 1482272970. [Google Scholar]
- Tudor, C.; Gherasim, E.C.; Dulf, F.V.; Pintea, A. In Vitro Bioaccessibility of Macular Xanthophylls from Commercial Microalgal Powders of Arthrospira platensis and Chlorella pyrenoidosa. Food Sci. Nutr. 2021, 9, 1896–1906. [Google Scholar] [CrossRef] [PubMed]
- Pulz, O.; Gross, W. Valuable Products from Biotechnology of Microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar] [CrossRef]
- Calella, P.; Di Dio, M.; Cerullo, G.; Di Onofrio, V.; Galle, F.; Liguori, G. Antioxidant, Immunomodulatory, and Anti-Inflammatory Effects of Spirulina in Disease Conditions: A Systematic Review. Int. J. Food Sci. Nutr. 2022, 73, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Rani, K.; Sandal, N.; Sahoo, P.K. A Comprehensive Review on Chlorella-Its Composition, Health Benefits, Market and Regulatory Scenario. Pharma Innov. J. 2018, 7, 584–589. [Google Scholar]
- Heller, W.P.; Kissinger, K.R.; Matsumoto, T.K.; Keith, L.M. Utilization of Papaya Waste and Oil Production by Chlorella protothecoides. Algal Res. 2015, 12, 156–160. [Google Scholar] [CrossRef]
- Borowitzka, M.A. Dunaliella: Biology, Production, and Markets. In Handbook of Microalgal Culture; Wiley: Hoboken, NJ, USA, 2013; pp. 359–368. [Google Scholar]
- Monte, J.; Ribeiro, C.; Parreira, C.; Costa, L.; Brive, L.; Casal, S.; Brazinha, C.; Crespo, J.G. Biorefinery of Dunaliella salina: Sustainable Recovery of Carotenoids, Polar Lipids and Glycerol. Bioresour. Technol. 2020, 297, 122509. [Google Scholar] [CrossRef] [PubMed]
- Çelekli, A.; Dönmez, G. Bir Dunaliella Türünün Gelişimine ve β-Karoten Üretimine PH ve Tuz Konsantrasyonlarının Etkisi. Ege J. Fish. Aquat. Sci. 2001, 18, 79–86. Available online: http://www.egejfas.org/en/download/article-file/58155 (accessed on 14 November 2023).
- Torres-Tiji, Y.; Fields, F.J.; Mayfield, S.P. Microalgae as a Future Food Source. Biotechnol. Adv. 2020, 41, 107536. [Google Scholar] [CrossRef]
- Onorato, C.; Rösch, C. Comparative Life Cycle Assessment of Astaxanthin Production with Haematococcus pluvialis in Different Photobioreactor Technologies. Algal Res. 2020, 50, 102005. [Google Scholar] [CrossRef]
- Brotosudarmo, T.H.P.; Limantara, L.; Setiyono, E. Heriyanto Structures of Astaxanthin and Their Consequences for Therapeutic Application. Int. J. Food Sci. 2020, 2020, 2156582. [Google Scholar] [CrossRef]
- Ren, Y.; Deng, J.; Huang, J.; Wu, Z.; Yi, L.; Bi, Y.; Chen, F. Using Green Alga Haematococcus pluvialis for Astaxanthin and Lipid Co-Production: Advances and Outlook. Bioresour. Technol. 2021, 340, 125736. [Google Scholar] [CrossRef]
- Shah, M.M.R.; Liang, Y.; Cheng, J.J.; Daroch, M. Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products. Front. Plant Sci. 2016, 7, 531. [Google Scholar] [CrossRef]
- Khoo, K.S.; Lee, S.Y.; Ooi, C.W.; Fu, X.; Miao, X.; Ling, T.C.; Show, P.L. Recent Advances in Biorefinery of Astaxanthin from Haematococcus pluvialis. Bioresour. Technol. 2019, 288, 121606. [Google Scholar] [CrossRef]
- Oslan, S.N.H.; Shoparwe, N.F.; Yusoff, A.H.; Rahim, A.A.; Chang, C.S.; Tan, J.S.; Oslan, S.N.; Arumugam, K.; Ariff, A.B.; Sulaiman, A.Z. A Review on Haematococcus pluvialis Bioprocess Optimization of Green and Red Stage Culture Conditions for the Production of Natural Astaxanthin. Biomolecules 2021, 11, 256. [Google Scholar] [CrossRef] [PubMed]
- Soto-Sierra, L.; Stoykova, P.; Nikolov, Z.L. Extraction and Fractionation of Microalgae-Based Protein Products. Algal Res. 2018, 36, 175–192. [Google Scholar] [CrossRef]
- Becker, W. Microalgae for Aquaculture: The Nutritional Value of Microalgae for Aquaculture. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology; Richmond, A., Ed.; John Wiley & Sons: Oxford, UK, 2004. [Google Scholar]
- De Luca, M.; Pappalardo, I.; Limongi, A.R.; Viviano, E.; Radice, R.P.; Todisco, S.; Martelli, G.; Infantino, V.; Vassallo, A. Lipids from Microalgae for Cosmetic Applications. Cosmetics 2021, 8, 52. [Google Scholar] [CrossRef]
- Lafarga, T.; Rodríguez-Bermúdez, R.; Morillas-España, A.; Villaró, S.; García-Vaquero, M.; Morán, L.; Sánchez-Zurano, A.; González-López, C.V.; Acién-Fernández, F.G. Consumer Knowledge and Attitudes towards Microalgae as Food: The Case of Spain. Algal Res. 2021, 54, 102174. [Google Scholar] [CrossRef]
- Priyadarshani, I.; Rath, B. Commercial and Industrial Applications of Micro Algae—A Review. J. Algal Biomass Util. 2012, 3, 89–100. [Google Scholar]
- de Morais, M.G.; Vaz, B.S.; De Morais, E.G.; Costa, J.A.V. Biologically Active Metabolites Synthesized by Microalgae. BioMed Res. Int. 2015, 2015, 835761. [Google Scholar] [CrossRef]
- Plaza, M.; Herrero, M.; Cifuentes, A.; Ibanez, E. Innovative Natural Functional Ingredients from Microalgae. J. Agric. Food Chem. 2009, 57, 7159–7170. [Google Scholar] [CrossRef]
- Hassan, S.M.; Ashour, M.; Soliman, A.A.F.; Hassanien, H.A.; Alsanie, W.F.; Gaber, A.; Elshobary, M.E. The Potential of a New Commercial Seaweed Extract in Stimulating Morpho-Agronomic and Bioactive Properties of Eruca vesicaria (L.) Cav. Sustainability 2021, 13, 4485. [Google Scholar] [CrossRef]
- Domínguez, H. Algae as a Source of Biologically Active Ingredients for the Formulation of Functional Foods and Nutraceuticals. In Functional Ingredients from Algae for Foods and Nutraceuticals; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–19. [Google Scholar]
- Ma, H.; Xiong, H.; Zhu, X.; Ji, C.; Xue, J.; Li, R.; Ge, B.; Cui, H. Polysaccharide from Spirulina platensis Ameliorates Diphenoxylate-Induced Constipation Symptoms in Mice. Int. J. Biol. Macromol. 2019, 133, 1090–1101. [Google Scholar] [CrossRef]
- The European Commission. Commission Regulation (EU) 2015/1933 of 27 October 2015 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels for Polycyclic Aromatic Hydrocarbons in Cocoa Fibre, Banana Chips, Food Supplements, Dried Herbs and Dried Spices. Off. J. Eur. Union 2015, 282, 11–13. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R1933 (accessed on 14 November 2023).
- Barta, D.G.; Coman, V.; Vodnar, D.C. Microalgae as Sources of Omega-3 Polyunsaturated Fatty Acids: Biotechnological Aspects. Algal Res. 2021, 58, 102410. [Google Scholar] [CrossRef]
- Hashimoto, M.; Maekawa, M.; Katakura, M.; Hamazaki, K.; Matsuoka, Y. Possibility of Polyunsaturated Fatty Acids for the Prevention and Treatment of Neuropsychiatric Illnesses. J. Pharmacol. Sci. 2014, 124, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Nestel, P.; Clifton, P.; Colquhoun, D.; Noakes, M.; Mori, T.A.; Sullivan, D.; Thomas, B. Indications for Omega-3 Long Chain Polyunsaturated Fatty Acid in the Prevention and Treatment of Cardiovascular Disease. Heart Lung Circ. 2015, 24, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.P.; Soares, L.d.S.; Costa, J.A.V. Revisão: Microalgas: Uma Fonte Alternativa Na Obtenção de Ácidos Gordos Essenciais. Rev. De Ciências Agrárias 2013, 36, 275–287. [Google Scholar]
- Adarme-Vega, T.C.; Thomas-Hall, S.R.; Schenk, P.M. Towards Sustainable Sources for Omega-3 Fatty Acids Production. Curr. Opin. Biotechnol. 2014, 26, 14–18. [Google Scholar] [CrossRef]
- Ho, S.-H.; Chen, C.-Y.; Chang, J.-S. Effect of Light Intensity and Nitrogen Starvation on CO2 Fixation and Lipid/Carbohydrate Production of an Indigenous Microalga Scenedesmus Obliquus CNW-N. Bioresour. Technol. 2012, 113, 244–252. [Google Scholar] [CrossRef]
- Matsui, M.S.; Muizzuddin, N.; Arad, S.; Marenus, K. Sulfated Polysaccharides from Red Microalgae Have Antiinflammatory Properties in Vitro and In Vivo. Appl. Biochem. Biotechnol. 2003, 104, 13–22. [Google Scholar] [CrossRef]
- Pradhan, B.; Patra, S.; Nayak, R.; Behera, C.; Dash, S.R.; Nayak, S.; Sahu, B.B.; Bhutia, S.K.; Jena, M. Multifunctional Role of Fucoidan, Sulfated Polysaccharides in Human Health and Disease: A Journey under the Sea in Pursuit of Potent Therapeutic Agents. Int. J. Biol. Macromol. 2020, 164, 4263–4278. [Google Scholar] [CrossRef]
- de Jesus Raposo, M.F.; De Morais, R.M.S.C.; de Morais, A.M.M.B. Bioactivity and Applications of Sulphated Polysaccharides from Marine Microalgae. Mar. Drugs 2013, 11, 233–252. [Google Scholar] [CrossRef] [PubMed]
- Rajasekar, P.; Palanisamy, S.; Anjali, R.; Vinosha, M.; Elakkiya, M.; Marudhupandi, T.; Tabarsa, M.; You, S.; Prabhu, N.M. Isolation and Structural Characterization of Sulfated Polysaccharide from Spirulina platensis and Its Bioactive Potential: In Vitro Antioxidant, Antibacterial Activity and Zebrafish Growth and Reproductive Performance. Int. J. Biol. Macromol. 2019, 141, 809–821. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.-H.; Zhu, J.; Jiang, J.-G. Carotenoids Biosynthesis and Cleavage Related Genes from Bacteria to Plants. Crit. Rev. Food Sci. Nutr. 2018, 58, 2314–2333. [Google Scholar] [CrossRef] [PubMed]
- Lisboa, C.R.; Pereira, A.; Ferreira, S.P.; Costa, J.A.V. Utilisation of Spirulina sp. and Chlorella pyrenoidosa Biomass for the Productionof Enzymatic Protein Hydrolysates. Int. J. Eng. Res. Appl. 2014, 5, 29–38. [Google Scholar]
- Hoseini, S.M.; Khosravi-Darani, K.; Mozafari, M.R. Nutritional and Medical Applications of Spirulina Microalgae. Mini Rev. Med. Chem. 2013, 13, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Christaki, E.; Florou-Paneri, P.; Bonos, E. Microalgae: A Novel Ingredient in Nutrition. Int. J. Food Sci. Nutr. 2011, 62, 794–799. [Google Scholar] [CrossRef] [PubMed]
- Ambrosi, M.A.; Reinehr, C.O.; Bertolin, T.E.; Costa, J.A.V.; Colla, L.M. Propriedades de Saúde de Spirulina spp. Rev. Ciências Farm. Básica e Apl. 2008, 29, 109–117. [Google Scholar]
- Li, Y.; Horsman, M.; Wu, N.; Lan, C.Q.; Dubois-Calero, N. Biofuels from Microalgae. Biotechnol. Prog. 2008, 24, 815–820. [Google Scholar] [CrossRef]
- Abd El-Baky, H.H.; El Baz, F.K.; El-Baroty, G.S. Production of Lipids Rich in Omega 3 Fatty Acids from the Halotolerant Alga Dunaliella salina. Biotechnology 2004, 3, 102–108. [Google Scholar]
- Gharibzahedi, S.M.T.; Jafari, S.M. The Importance of Minerals in Human Nutrition: Bioavailability, Food Fortification, Processing Effects and Nanoencapsulation. Trends Food Sci. Technol. 2017, 62, 119–132. [Google Scholar] [CrossRef]
- Shamah, T.; Villalpando, S. The Role of Enriched Foods in Infant and Child Nutrition. Br. J. Nutr. 2006, 96, S73–S77. [Google Scholar] [CrossRef]
- World Health Organization. Global Anaemia Reduction Efforts among Women of Reproductive Age: Impact, Achievement of Targets and the Way Forward for Optimizing Efforts; World Health Organization: Barcelona, Spain, 2020. [Google Scholar]
- Costa, J.A.V.; De Morais, M.G. The Role of Biochemical Engineering in the Production of Biofuels from Microalgae. Bioresour. Technol. 2011, 102, 2–9. [Google Scholar] [CrossRef]
- Barsanti, L.; Gualtieri, P. Algae: Anatomy, Biochemistry, and Biotechnology; CRC Press: Boca Raton, FL, USA, 2005; ISBN 0429095813. [Google Scholar]
- Iyer, U.M.; Dhruv, S.A.; Mani, I.U.; Gershwin, M.E.; Belay, A. Spirulina in Human Nutrition and Health. In Spirulina in Human Nutrition and Health; CRC Press: Boca Raton, FL, USA, 2008; p. 312. [Google Scholar]
- Chu, W.-L. Biotechnological Applications of Microalgae. IeJSME 2012, 6, S24–S37. [Google Scholar] [CrossRef]
- Martelli, G.; Folli, C.; Visai, L.; Daglia, M.; Ferrari, D. Thermal Stability Improvement of Blue Colorant C-Phycocyanin from Spirulina platensis for Food Industry Applications. Process Biochem. 2014, 49, 154–159. [Google Scholar] [CrossRef]
- Raja, R.; Coelho, A.; Hemaiswarya, S.; Kumar, P.; Carvalho, I.S.; Alagarsamy, A. Applications of Microalgal Paste and Powder as Food and Feed: An Update Using Text Mining Tool. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 740–747. [Google Scholar] [CrossRef]
- Vílchez, C.; Forján, E.; Cuaresma, M.; Bédmar, F.; Garbayo, I.; Vega, J.M. Marine Carotenoids: Biological Functions and Commercial Applications. Mar. Drugs 2011, 9, 319–333. [Google Scholar] [CrossRef]
- Zouari, N.; Abid, M.; Fakhfakh, N.; Ayadi, M.A.; Zorgui, L.; Ayadi, M.; Attia, H. Blue-Green Algae (Arthrospira platensis) as an Ingredient in Pasta: Free Radical Scavenging Activity, Sensory and Cooking Characteristics Evaluation. Int. J. Food Sci. Nutr. 2011, 62, 811–813. [Google Scholar] [CrossRef]
- Koli, D.K.; Rudra, S.G.; Bhowmik, A.; Pabbi, S. Nutritional, Functional, Textural and Sensory Evaluation of Spirulina Enriched Green Pasta: A Potential Dietary and Health Supplement. Foods 2022, 11, 979. [Google Scholar] [CrossRef]
- Li, H.-B.; Jiang, Y.; Chen, F. Isolation and Purification of Lutein from the Microalga Chlorella vulgaris by Extraction after Saponification. J. Agric. Food Chem. 2002, 50, 1070–1072. [Google Scholar] [CrossRef]
- Fradique, M.; Batista, A.P.; Nunes, M.C.; Gouveia, L.; Bandarra, N.M.; Raymundo, A. Incorporation of Chlorella vulgaris and Spirulina maxima Biomass in Pasta Products. Part 1: Preparation and Evaluation. J. Sci. Food Agric. 2010, 90, 1656–1664. [Google Scholar] [CrossRef]
- Fernandes, B.; Dragone, G.; Abreu, A.P.; Geada, P.; Teixeira, J.; Vicente, A. Starch Determination in Chlorella vulgaris—A Comparison between Acid and Enzymatic Methods. J. Appl. Phycol. 2012, 24, 1203–1208. [Google Scholar] [CrossRef]
- Gouveia, L.; Batista, A.P.; Miranda, A.; Empis, J.; Raymundo, A. Chlorella vulgaris Biomass Used as Colouring Source in Traditional Butter Cookies. Innov. Food Sci. Emerg. Technol. 2007, 8, 433–436. [Google Scholar] [CrossRef]
- Jaeschke, D.P.; Teixeira, I.R.; Marczak, L.D.F.; Mercali, G.D. Phycocyanin from Spirulina: A Review of Extraction Methods and Stability. Food Res. Int. 2021, 143, 110314. [Google Scholar] [CrossRef] [PubMed]
- de Morais, M.G.; de Miranda, M.Z.; Costa, J.A.V. Biscoitos de Chocolate Enriquecidos Com Spirulina platensis: Características Físicoquímicas, Sensoriais e Digestibilidade. Aliment. E Nutr. Araraquara 2009, 17, 323–328. [Google Scholar]
- Vaz, B.d.S.; Moreira, J.B.; de Morais, M.G.; Costa, J.A.V. Microalgae as a New Source of Bioactive Compounds in Food Supplements. Curr. Opin. Food Sci. 2016, 7, 73–77. [Google Scholar] [CrossRef]
- Çelekli, A.; Alslibi, Z.A.; Bozkurt, H. Influence of Incorporated Spirulina platensis on the Growth of Microflora and Physicochemical Properties of Ayran as a Functional Food. Algal Res. 2019, 44, 101710. [Google Scholar] [CrossRef]
- Çelekli, A.; Alslibi, Z.A.; Bozkurt, H. Boosting Effects of Spirulina platensis, Whey Protein, and Probiotics on the Growth of Microflora and the Nutritional Value of Ayran. Eng. Rep. 2020, 2, e12235. [Google Scholar] [CrossRef]
- Figueira, F.d.S.; Crizel, T.d.M.; Silva, C.R.; Salas-Mellado, M.d.l.M. Pão Sem Glúten Enriquecido Com a Microalga Spirulina platensis. Brazilian J. Food Technol. 2011, 14, 308–316. [Google Scholar] [CrossRef]
- Rabelo, S.F.; Lemes, A.C.; Takeuchi, K.P.; Frata, M.T.; de Carvalho, J.C.M.; Danesi, E.D.G. Development of Cassava Doughnuts Enriched with Spirulina platensis Biomass. Brazilian J. Food Technol. 2013, 16, 42–51. [Google Scholar] [CrossRef]
- Özbal, B.; Çelekli, A.; Gün, D.; Bozkurt, H. Effect of Arthrospira platensis Incorporation on Nutritional and Sensory Attributes of White Chocolate. Int. J. Gastron. Food Sci. 2022, 28, 100544. [Google Scholar] [CrossRef]
- Çelekli, A.; Maraşlı, S. Effect of Arthrospira platensis on Physicochemical, Texture, and Microstructure Properties of Low-Density Marshmallows. Food Humanit. 2024, 2, 100196. [Google Scholar] [CrossRef]
- Vandamme, D.; Foubert, I.; Muylaert, K. Flocculation as a Low-Cost Method for Harvesting Microalgae for Bulk Biomass Production. Trends Biotechnol. 2013, 31, 233–239. [Google Scholar] [CrossRef]
- Barros, A.I.; Gonçalves, A.L.; Simões, M.; Pires, J.C.M. Harvesting Techniques Applied to Microalgae: A Review. Renew. Sustain. energy Rev. 2015, 41, 1489–1500. [Google Scholar] [CrossRef]
- Suparmaniam, U.; Lam, M.K.; Uemura, Y.; Lim, J.W.; Lee, K.T.; Shuit, S.H. Insights into the Microalgae Cultivation Technology and Harvesting Process for Biofuel Production: A Review. Renew. Sustain. Energy Rev. 2019, 115, 109361. [Google Scholar] [CrossRef]
- Singh, G.; Patidar, S.K. Microalgae Harvesting Techniques: A Review. J. Environ. Manage 2018, 217, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Desmorieux, H.; Hernandez, F. Biochemical and Physical Criteria of Spirulina after Different Drying Processes. In Proceedings of the 14th International Drying Symposium (IDS), Saõ Paulo, Brazil, 22–25 August 2004; pp. 900–907. [Google Scholar]
- Larrosa, A.P.Q.; Comitre, A.A.; Vaz, L.B.; Pinto, L.A.A. Influence of Air Temperature on Physical Characteristics and Bioactive Compounds in Vacuum Drying of Arthrospira Spirulina. J. Food Process Eng. 2017, 40, e12359. [Google Scholar] [CrossRef]
- Papadaki, S.; Kyriakopoulou, K.; Tzovenis, I.; Krokida, M. Environmental Impact of Phycocyanin Recovery from Spirulina platensis Cyanobacterium. Innov. Food Sci. Emerg. Technol. 2017, 44, 217–223. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Han, X.; Ni, Y.; Zhao, D.; Hao, J. Quality Evaluation and Drying Kinetics of Shitake Mushrooms Dried by Hot Air, Infrared and Intermittent Microwave–Assisted Drying Methods. LWT 2019, 107, 236–242. [Google Scholar] [CrossRef]
- Beheshtipour, H.; Mortazavian, A.M.; Haratian, P.; Darani, K.K. Effects of Chlorella vulgaris and Arthrospira platensis Addition on Viability of Probiotic Bacteria in Yogurt and Its Biochemical Properties. Eur. Food Res. Technol. 2012, 235, 719–728. [Google Scholar] [CrossRef]
- Barkallah, M.; Dammak, M.; Louati, I.; Hentati, F.; Hadrich, B.; Mechichi, T.; Ayadi, M.A.; Fendri, I.; Attia, H.; Abdelkafi, S. Effect of Spirulina platensis Fortification on Physicochemical, Textural, Antioxidant and Sensory Properties of Yogurt during Fermentation and Storage. LWT 2017, 84, 323–330. [Google Scholar] [CrossRef]
- Gyenis, B.; Szigeti, J.F.; Ásványi-Molnár, N.; Varga, L. Use of Dried Microalgal Biomasses to Stimulate Acid Production and Growth of Lactobacillus Plantarum and Enterococcus Faecium in Milk. Acta Agrar. Kaposváriensis 2005, 9, 53–59. [Google Scholar]
- Cho, E.J.; Nam, E.S.; Park, S.I. Keeping Quality and Sensory Properties of Drinkable Yoghurt with Added Chlorella Extract. Korean J. Food Nutr. 2004, 17, 128–132. [Google Scholar]
- Batista, A.P.; Niccolai, A.; Bursic, I.; Sousa, I.; Raymundo, A.; Rodolfi, L.; Biondi, N.; Tredici, M.R. Microalgae as Functional Ingredients in Savory Food Products: Application to Wheat Crackers. Foods 2019, 8, 611. [Google Scholar] [CrossRef]
- Marti-Quijal, F.J.; Zamuz, S.; Tomašević, I.; Rocchetti, G.; Lucini, L.; Marszałek, K.; Barba, F.J.; Lorenzo, J.M. A Chemometric Approach to Evaluate the Impact of Pulses, Chlorella and Spirulina on Proximate Composition, Amino Acid, and Physicochemical Properties of Turkey Burgers. J. Sci. Food Agric. 2019, 99, 3672–3680. [Google Scholar] [CrossRef]
- De Marco, E.R.; Steffolani, M.E.; Martínez, C.S.; León, A.E. Effects of Spirulina Biomass on the Technological and Nutritional Quality of Bread Wheat Pasta. LWT-Food Sci. Technol. 2014, 58, 102–108. [Google Scholar] [CrossRef]
- da Silva, S.P.; Ferreira do Valle, A.; Perrone, D. Microencapsulated Spirulina Maxima Biomass as an Ingredient for the Production of Nutritionally Enriched and Sensorially Well-Accepted Vegan Biscuits. LWT 2021, 142, 110997. [Google Scholar] [CrossRef]
- Food Ingredients New-Look Microalgae: Newly Approved Chlorella vulgaris Powders Accentuates Ice Creams, Shakes, Cakes and Pasta. Available online: https://www.foodingredientsfirst.com/news/new-look-microalgae-newly-approved-Chlorella-vulgaris-powders-accentuates-ice-creams-shakes-and-pasta.html (accessed on 13 February 2022).
- Markou, G.; Ilkiv, B.; Brulé, M.; Antonopoulos, D.; Chakalis, L.; Arapoglou, D.; Chatzipavlidis, I. Methane Production through Anaerobic Digestion of Residual Microalgal Biomass after the Extraction of Valuable Compounds. Biomass Convers. Biorefinery 2022, 12, 419–426. [Google Scholar] [CrossRef]
- Li, S.; Ji, L.; Chen, C.; Zhao, S.; Sun, M.; Gao, Z.; Wu, H.; Fan, J. Efficient Accumulation of High-Value Bioactive Substances by Carbon to Nitrogen Ratio Regulation in Marine Microalgae Porphyridium Purpureum. Bioresour. Technol. 2020, 309, 123362. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Zhuang, D.; Chew, K.W.; Ling, T.C.; Khoo, K.S.; Van Quyen, D.; Feng, S.; Show, P.L. Current Status and Future Trends in Removal, Control, and Mitigation of Algae Food Safety Risks for Human Consumption. Molecules 2022, 27, 6633. [Google Scholar] [CrossRef] [PubMed]
- Matos, Â.P. The Impact of Microalgae in Food Science and Technology. J. Am. Oil Chem. Soc. 2017, 94, 1333–1350. [Google Scholar] [CrossRef]
- Cai, Y.; Lim, H.R.; Khoo, K.S.; Ng, H.-S.; Cai, Y.; Wang, J.; Chan, A.T.-Y.; Show, P.L. An Integration Study of Microalgae Bioactive Retention: From Microalgae Biomass to Microalgae Bioactives Nanoparticle. Food Chem. Toxicol. 2021, 158, 112607. [Google Scholar] [CrossRef] [PubMed]
- Cuellar-Bermudez, S.P.; Aguilar-Hernandez, I.; Cardenas-Chavez, D.L.; Ornelas-Soto, N.; Romero-Ogawa, M.A.; Parra-Saldivar, R. Extraction and Purification of High-value Metabolites from Microalgae: Essential Lipids, Astaxanthin and Phycobiliproteins. Microb. Biotechnol. 2015, 8, 190–209. [Google Scholar] [CrossRef] [PubMed]
- Vieira, M.V.; Pastrana, L.M.; Fuciños, P. Microalgae Encapsulation Systems for Food, Pharmaceutical and Cosmetics Applications. Mar. Drugs 2020, 18, 644. [Google Scholar] [CrossRef] [PubMed]
Category | Example |
---|---|
Basic | Carrots (containing the anti-oxidant β-carotene) |
Processed foods | Oat bran cereal |
Processed foods with added ingredients | Calcium-enriched fruit juice |
Food enhanced to have more of a functional component | Tomatoes with a higher level of lycopene |
Isolated, purified preparation of active food ingredients | Isoflavones from soy β-glucan from oat bran |
Algae | Protein | Carbohydrates | Lipid | References |
---|---|---|---|---|
Chlorella vulgaris | 42–58 | 12–17 | 10–22 | [23,24,25,26] |
Arthrospira platensis | 45–70 | 8–25 | 4–12 | [21,22,27,28,29] |
Dunaliella salina | 38–57 | 4–6 | 6–31 | [21,30] |
Haematococcus pluvialis | 5–45 | 36–40 | 25–37 | [31,32,33,34] |
Amino Acid | Chlorella sp. | Arthrospira sp. | Dunaliella sp. | Haematococcus sp. | Soy Bean |
---|---|---|---|---|---|
Lysine | 8.4–8.9 | 4.6–4.8 | 2.4–2.7 | 1.4 | 6.4 |
Leucine | 8.8–9.2 | 8.0–9.8 | 3.9–5.7 | 2.6 | 7.7 |
Isoleucine | 3.8–6.7 | 6.0–6.7 | 1.9–2.8 | 1.1 | 5.3 |
Threonine | 4.7–4.8 | 4.6–6.2 | 1.5–2.8 | 1.9 | 4.0 |
Methionine | 2.2 | 1.4–2.5 | 0.8–1.0 | - | 1.3 |
Phenylalanine | 5 | 4.9–5.3 | 2.5–2.8 | 1.5 | 5.0 |
Valine | 5.5–6.1 | 6.5–7.1 | 2.0–2.9 | 1.5 | 5.3 |
Arginine | 6.4 | 7.3 | 3.0–7.3 | 2.1 | 7.4 |
Histidine | 2.0 | 2.2 | 0.8–1.8 | 0.6 | 2.6 |
Tryptophan | 2.1 | 5.3 | 0.7–1.4 | - | 1.4 |
Reference | [19,21,26] | [19,21,28] | [21,37] | [38] | [21] |
H. pluvialis | H. pluvialis | C. vulgaris | D. salina | D. salina | A. platensis | A. platensis | A. platensis | |
---|---|---|---|---|---|---|---|---|
Palmitic acid (C16:0) | 4.38 | 28.70 | 17.2 | 12.16 | 21.53 | 45.92 | 37.6 | 44.9 |
Oleic acid (C18:1n9c) | 16.11 | 0.95 | 11.7 | - | 52.18 | - | 1.5 | - |
Linoleic acid (C18:2n6c) | 7.04 | 2.47 | - | - | 12.42 | - | - | - |
γ-linolenic acid (C18:3n6) | 4.30 | 3.06 | - | - | - | - | - | - |
α-linolenic (C18:3n3) | 21.20 | 3.06 | - | - | 2.82 | - | - | - |
PUFA | 51.51 | - | 21.9 | - | 15.50 | - | 19.4 | - |
MUFA | 17.43 | 50.07 | 35.2 | - | 53.66 | - | 8.3 | - |
SFA | 31.06 | 26.7 | 19.75 | - | - | 67.4 | - | |
Caproic (C6:0) | 18.23 | - | - | - | - | - | - | - |
Caprylic (C8:0) | 3.20 | 0.04 | - | 0.54 | - | - | - | - |
Myristic (C14:0) | 3.10 | 1.79 | 1.1 | 1.29 | 0.75 | - | 1.0 | 0.8 |
Palmitoleic (C16:1) | 0.33 | - | - | 2.88 | 1.41 | 2.74 | - | 2.3 |
Heptadecenoic (C17:1) | 0.97 | - | - | - | 0.08 | - | - | - |
Stearic (C18:0) | 2.16 | 17.25 | 3.0 | 3.64 | 8.46 | 0.89 | 1.0 | 2.2 |
Arachidonic (C20:4n6) | 4.79 | 0.27 | - | - | 0.26 | - | - | - |
Lignoceric (C24:0) | nd | 0.00 | - | - | - | - | - | - |
C20:2 | 6.98 | 0.01 | - | - | - | - | - | - |
C20:5n3 | - | 0.01 | 0.0 | - | - | - | 0.0 | - |
Reference | [39] | [40] | [41] | [42] | [43] | [44] | [44] | [45] |
Microalgae | Bioactive Compounds |
---|---|
Arthrospira species | Polysaccharides, phycocyanin, C-phycocyanin, allophycocyanin, phenolic acids, tocopherols (vitamin E), neophytadiene, phytol, PUFA (n-3) fatty acids, oleic acid, linolenic acid, palmitoleic acid, diacylglycerols, terpenoids, alkaloids, flavonoids |
Chlorella species | Carotenoids, sulfated polysaccharides, sterols, PUFA (n-3) fatty acids, canthaxanthin, astaxanthin, peptide, oleic acid, eicosapentaenoic acid (EPA), zeaxanthin, violaxanthin, lutein, phenolic, terpenoids, alkaloids, phytol, phenol |
Haematococcus pluvialis | Astaxanthin, lutein, zeaxanthin, canthaxanthin, lutein, β-carotene, oleic acid |
Dunaliella salina | All-trans-β-carotene, all-trans-zeaxanthin, all-trans-lutein, cis-betacarotene, β-carotene, oleic acid, linolenic acid, palmitic acid, diacylglycerols, sterols |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çelekli, A.; Özbal, B.; Bozkurt, H. Challenges in Functional Food Products with the Incorporation of Some Microalgae. Foods 2024, 13, 725. https://doi.org/10.3390/foods13050725
Çelekli A, Özbal B, Bozkurt H. Challenges in Functional Food Products with the Incorporation of Some Microalgae. Foods. 2024; 13(5):725. https://doi.org/10.3390/foods13050725
Chicago/Turabian StyleÇelekli, Abuzer, Buket Özbal, and Hüseyin Bozkurt. 2024. "Challenges in Functional Food Products with the Incorporation of Some Microalgae" Foods 13, no. 5: 725. https://doi.org/10.3390/foods13050725
APA StyleÇelekli, A., Özbal, B., & Bozkurt, H. (2024). Challenges in Functional Food Products with the Incorporation of Some Microalgae. Foods, 13(5), 725. https://doi.org/10.3390/foods13050725