Dairy, Plant, and Novel Proteins: Scientific and Technological Aspects
Abstract
:1. Introduction
2. Materials and Methods
3. Dairy Proteins
4. Plant Proteins
5. Precision Fermentation-Derived Proteins
6. Cell-Cultured Proteins
7. Algal Proteins
8. Mycoproteins
9. Discussion
10. Conclusions
11. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nielsen. We are what we eat: Healthy eating trends around the world. In Global Health and Wellness Report—January 2015; The Nielsen Company: New York, NY, USA, 2015; pp. 1–27. [Google Scholar]
- Keefer, H.R.M.; Racette, C.M.; Drake, M.A. Factors influencing consumer motivations for protein choice. J. Food Sci. 2024, 89, 596–613. [Google Scholar] [CrossRef] [PubMed]
- Fiszman, S.; Varela, P.; Diaz, P.; Linares, M.B.; Garrido, M.D. What is satiating? Consumer perceptions of satiating foods and expected satiety of protein-based meals. Food Res. Int. 2014, 62, 551–560. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Perez-Alvarez, J.A.; Pateiro, M.; Viuda-Matos, M.; Fernandez-lopez, J.; Lorenzo, J.M. Satiety from healthier and functional foods. Trends Food Sci. Technol. 2021, 113, 397–410. [Google Scholar] [CrossRef]
- Pasiakos, S.M. Metabolic Advantages of Higher Protein Diets and Benefits of Dairy Foods on Weight Management, Glycemic Regulation, and Bone. J. Food Sci. 2015, 80, A2–A7. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J.; Springmann, M.; Sexton, A.; Lynch, J.; Hepburn, C.; Jebb, S. Meat: The Future Series—Alternative Proteins. 2019. Available online: https://www3.weforum.org/docs/WEF_White_Paper_Alternative_Proteins.pdf (accessed on 20 December 2023).
- Nguyen, J.; Ferrara, C.; Sands, S.; Luxton, S. Alternative protein consumption: A systematic review and future research directions. Int. J. Consum. Stud. 2022, 46, 1691–1717. [Google Scholar] [CrossRef]
- Parodi, A.; Leip, A.; De Boer, I.J.M.; Slegers, P.M.; Ziegler, F.; Temme, E.H.M.; Herrero, M.; Tuomisto, H.; Valin, H.; Van Middelaar, C.E.; et al. The potential of future foods for sustainable and healthy diets. Nat. Sustain. 2019, 2, 342–347. [Google Scholar] [CrossRef]
- De Boer, J.; Helms, M.; Aiking, H. Protein consumption and sustainability: Diet diversity in EU-15. Ecol. Econ. 2006, 59, 267–274. [Google Scholar] [CrossRef]
- Fischer, A.R.H.; Onwezen, M.C.; van der Meer, M. Consumer perceptions of different protein alternatives. In Meat and Meat Replacements: An Interdisciplinary Assessment of Current Status and Future Directions; Woodhead Publishing: Sawston, UK, 2023; Chapter 13; pp. 333–362. [Google Scholar]
- Lappe, F.M. Diet for a Small Planet; Ballantine Books: New York, NY, USA, 1991. [Google Scholar]
- United Nation. Sustainable Development Goals. 2023. Available online: https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on 20 December 2023).
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef]
- Nadathur, S.R.; Wanasundara, J.P.D.; Scanlin, L. Proteins in the Diet: Challenges in Feeding the Global Population. In Sustainable Protein Sources; Academic Press: Cambridge, MA, USA, 2017; pp. 1–19. [Google Scholar]
- Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks. 2023. Available online: https://www.epa.gov/system/files/documents/2023-04/US-GHG-Inventory-2023-Main-Text.pdf (accessed on 20 December 2023).
- Bruno, M.; Thomsen, M.; Pulselli, F.M.; Patrizi, N.; Marini, M.; Caro, D. The carbon footprint of Danish diets. Clim. Chang. 2019, 156, 489–507. [Google Scholar] [CrossRef]
- Graça, J.; Oliveira, A.; Calheiros, M.M. Meat, beyond the plate: Data-driven hypotheses for understanding consumer willingness to adopt a more plant-based diet. Appetite 2015, 1, 80–90. [Google Scholar] [CrossRef]
- Harwood, W.S.; Drake, M.A. Understanding implicit and explicit consumer desires for protein bars, powders, and beverages. J. Sens. Stud. 2019, 34, 12493. [Google Scholar] [CrossRef]
- Schiano, A.N.; Harwood, W.S.; Gerard, P.D.; Drake, M.A. Consumer perception of the sustainability of dairy products and plant-based dairy alternatives. J. Dairy Sci. 2020, 103, 11228–11243. [Google Scholar] [CrossRef]
- Teng, T.S.; Chin, Y.L.; Chai, K.F.; Chen, W.N. Fermentation for future food systems: Precision fermentation can complement the scope and applications of traditional fermentation. EMBO Rep. 2021, 22, e52680. [Google Scholar] [CrossRef] [PubMed]
- Terefe, N.S. 5—Recent developments in fermentation technology: Toward the next revolution in food production. In Food Engineering Innovations across the Food Supply Chain; Academic Press: Cambridge, MA, USA, 2022; pp. 89–106. [Google Scholar]
- Stahmann, K.P.; Revuelta, J.L.; Seulberger, H. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl. Microbiol. Biotechnol. 2000, 53, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Nicaud, J.; Ledesma-Amaro, R. The Engineering Potential of Rhodosporidium toruloides as a Workhorse for Biotechnological Applications. Trends Biotechnol. 2017, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Eibl, R.; Meier, P.; Stutz, I.; Schildberger, D.; Huhn, T.; Dibl, D. Plant cell culture technology in the cosmetics and food industries: Current state and future trends. Appl. Microbiol. Biotechnol. 2018, 102, 8661–8675. [Google Scholar] [CrossRef] [PubMed]
- Rischer, H.; Szilvay, G.R.; Oksman-Caldentey, K. Cellular agriculture—Industrial biotechnology for food and materials. Curr. Opin. Biotechnol. 2020, 61, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Post, M.J. An alternative animal protein source: Cultured beef. Front. Sustain. Food Syst. 2014, 1328, 29–33. [Google Scholar] [CrossRef]
- Shah-Neville, W. 6 Cultured Meat Companies Making Waves. Labiotech. 2023. Available online: https://www.labiotech.eu/best-biotech/cultured-meat-companies/ (accessed on 20 December 2023).
- Scispot. Top 20 Emerging Lab-Grown Meat Companies Leading the Charge in 2023. 2023. Available online: https://www.scispot.com/blog/lab-grown-meat-companies-leading-the-charge-in-2023 (accessed on 20 December 2023).
- Waltz, E. No bones, no scales, no eyeballs: Appetite grows for cell-based seafood. Nat. Biotechnol. 2021. Available online: https://www.nature.com/articles/d41587-021-00022-6 (accessed on 20 December 2023).
- Bleakley, S.; Hayes, M. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods 2017, 6, 33. [Google Scholar] [CrossRef]
- González, A.; Paz, S.; Rubio, C.; Gutiérrez, Á.J.; Hardisson, A. Human exposure to iodine from the consumption of edible seaweeds. Biol. Trace Elem. Res. 2020, 197, 361–366. [Google Scholar] [CrossRef]
- Phong, W.N.; Le, C.F.; Show, P.L.; Lam, H.L.; Ling, T.C. Evaluation of Different Solvent Types on the Extraction of Proteins from Microalgae. Chem. Eng. Trans. 2016, 52, 1063–1068. [Google Scholar] [CrossRef]
- Chronakis, I.S. Gelation of edible blue-green algae protein isolate (Spirulina platensis strain pacifica): Thermal transitions, rheological properties, and molecular forces involved. J. Agric. Food Chem. 2001, 49, 888–898. [Google Scholar] [CrossRef]
- Whittaker, J.A.; Johnson, R.I.; Finnigan, T.J.A.; Avery, S.V.; Dyer, P.S. The Biotechnology of Quorn Mycoprotein: Past, Present and Future Challenges. In Grand Challenges in Fungal Biotechnology; Nevalainen, H., Ed.; Springer: Cham, Switzerland, 2020; Chapter 3; pp. 59–79. [Google Scholar] [CrossRef]
- Hashempour-Baltork, F.; Jannat, B.; Dadgarnejad, M.; Mirza Alizadeh, A.; Khosravi-Darani, K.; Hosseini, H. Mycoprotein as chicken meat substitute in nugget formulation: Physicochemical and sensorial characterization. Food Sci. Nutr. 2023, 11, 4289–4295. [Google Scholar] [CrossRef] [PubMed]
- Koyande, A.K.; Chew, K.W.; Rambabu, K.; Tao, Y.; Chu, D.T.; Show, P.L. Microalgae: A potential alternative to health supplementation for humans. Food Sci. Hum. Wellness 2019, 8, 16–24. [Google Scholar] [CrossRef]
- Edwards, D.; Cummings, J. The Protein Quality of Mycoprotein. Proc. Nutr. Soc. 2010, 69, E331. [Google Scholar] [CrossRef]
- Landeta-Salgado, C.; Cicatiello, P.; Lienqueo, M.E. Mycoprotein and hydrophobin like protein produced from marine fungi Paradendryphiella salina in submerged fermentation with green seaweed Ulva spp. Algal Res. 2021, 56, 102314. [Google Scholar] [CrossRef]
- Filho, P.F.S.; Andersson, D.; Ferreira, J.A.; Taherzadeh, M.J. Mycoprotein: Environmental impact and health aspects. World J. Microbiol. Biotechnol. 2019, 35, 147. [Google Scholar] [CrossRef]
- Khan, R.; Brishti, F.H.; Arulrajah, B.; Goh, Y.M.; Rahim, M.H.A.; Karim, R.; Hajar-Azhari, S.; Kit, S.K.; Anwar, F.; Saari, N. Mycoprotein as a meat substitute: Production, functional properties, and current challenges-a review. Int. J. Food Sci. 2024, 59, 522–544. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Hoffmann, T.C.; Ak, E.A.; Grimshaw, M.; Stewart, A.; Brennan, S.E.; Bossuyt, P.M.; Mulrow, C.D.; Shamseer, L.; et al. The PRISMA 2020 statement: An ed guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Drake, M.A.; Miracle, R.E.; Wright, J.M. Chapter 16—Sensory Properties of Dairy Proteins. In Milk Proteins, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 473–492. [Google Scholar] [CrossRef]
- Punia, H.; Tokas, J.; Malik, A.; Sangwan, S.; Baloda, S.; Singh, N.; Singh, S.; Bhuker, A.; Singh, P.; Yasjveer, S.; et al. Identification and Detection of Bioactive Peptides in Milk and Dairy Products: Remarks about Agro-Foods. Molecules 2020, 25, 3328. [Google Scholar] [CrossRef]
- Carter, B.G.; Cheng, N.; Kapoor, R.; Meletharayil, H.G.; Drake, M.A. Microfiltration derived casein and whey proteins from milk. J. Dairy Sci. 2021, 104, 2465–2479. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. CFR—Code of Federal Regulations Title 21. Part 184—Direct Food Substances Affirmed as Generally Recognized as Safe. 2023. Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-184 (accessed on 23 December 2023).
- Panchaud, A.; Affolter, M.; Kussmann, M. Mass spectrometry for nutritional peptidomics: How to analyze food bioactives and their health effects. J. Proteom. 2012, 75, 3546–3559. [Google Scholar] [CrossRef] [PubMed]
- Welderufael, F.T.; Gibson, T.; Jauregi, P. Production of angiotensin-I-converting enzyme inhibitory peptides from β-lactoglobulin and casein-derived peptides: An integrative approach. Biotechnol. Prog. 2012, 28, 746–755. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, A.D.; Morawicki, R.O.; Hager, T. Hydrolysis of whey protein isolate using subcritical water. J. Food Sci. 2012, 77, C20–C26. [Google Scholar] [CrossRef] [PubMed]
- Piccolomini, A.F.; Iskandar, M.M.; Lands, L.C.; Kubow, S. High hydrostatic pressure pre-treatment of whey proteins enhances whey protein hydrolysate inhibition of oxidative stress and IL-8 secretion in intestinal epithelial cells. Food Nutr. Res. 2012, 56, 17549. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Vela, C.I.; Amaya-Llano, S.L.; Castano-Tostado, E.C.; Castillo-Herrera, G.A. Protein Hydrolysis by Subcritical Water: A New Perspective on Obtaining Bioactive Peptides. Molecules 2021, 26, 6655. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Timilsena, Y.P.; Blanch, E.; Adhukari, B. Lactoferrin: Structure, function, denaturation and digestion. Crit. Rev. Food Sci. Nutr. 2017, 59, 580–596. [Google Scholar] [CrossRef] [PubMed]
- Artym, J. A remedy against obesity? The role of lactoferrin in the metabolism of glucose and lipids. Adv. Hyg. Exp. Med. 2012, 66, 937–953. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J.; Wang, J.; Ma, M.; Lu, Y.; Wang, R.; Guo, H. Lactoferrin is a potential activator of the vitamin D receptor in its regulation of osteogenic activities in C57BL/6J mice and MC3T3-E1 cells. J. Nutr. 2021, 151, 2105–2113. [Google Scholar] [CrossRef]
- Jenssen, H.; Hancock, R.E.W. Antimicrobial properties of lactoferrin. Biochimie 2009, 91, 19–29. [Google Scholar] [CrossRef]
- Gauthier, S.F.; Pouliot, Y.; Saint-Sauveur, D. Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Int. Dairy J. 2006, 16, 1315–1323. [Google Scholar] [CrossRef]
- Almaas, H.; Berner, V.; Holm, H.; Langsrud, T.; Vegarud, G.E. Degradation of whey from caprine milk by human proteolytic enzymes, and the resulting antibacterial effect against Listeria monocytogenes. Small Rumin. Res. 2008, 79, 11–15. [Google Scholar] [CrossRef]
- Oevermann, A.; Engels, M.; Thomas, U.; Pellegrini, A. The antiviral activity of naturally occurring proteins and their peptide fragments after chemical modification. Antivir. Res. 2003, 59, 23–33. [Google Scholar] [CrossRef]
- Hernández-Ledesma, B.; Valos, A.D.; Bartolomé, B.; Amigo, L. Preparation of antioxidant enzymatic hydrolysates from α-lactalbumin and β-lactoglobulin. Identification of active peptides by HPLC-MS. J. Agric. Food Chem. 2005, 53, 588–593. [Google Scholar] [CrossRef]
- Stelwagen, K.; Carpenter, E.; Haigh, B.; Hodgkinson, A.; Wheeler, T.T. Immune components of bovine colostrum and milk. J. Anim. Sci. 2009, 87, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Hou, Y.; Xie, K.; Zhang, L.; Zhou, P. Digestive differences in immunoglobulin G and lactoferrin among human, bovine, and caprine milk following in vitro digestion. Int. Dairy J. 2021, 120, 105081. [Google Scholar] [CrossRef]
- European Dairy Association. Food Safety in the Dairy Chain. 2020. Available online: https://eda.euromilk.org/uploads/media/EDA_Fact_sheet_on_Food_Safety_-_February_2020.pdf (accessed on 23 December 2023).
- Hermann, M. The impact of the European Novel Food Regulation on trade and food innovation based on traditional plant foods from developing countries. Food Policy 2009, 34, 499–507. [Google Scholar] [CrossRef]
- Lähteenmäki-Uutela, A.; Rahikainen, M.; Lonkila, A.; Yang, B. Alternative proteins and EU food law. Food Control 2021, 130, 108336. [Google Scholar] [CrossRef]
- European Food Safety Authority Panel. FHI LFC24, a bovine milk-derived casein hydrolysate, and a reduction of post-prandial blood glucose responses: Evaluation of a health claim pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA J. 2016, 14, e04540. [Google Scholar] [CrossRef]
- European Food Safety Authority Panel. Safety of Whey basic protein isolates as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2018, 16, e05360. [Google Scholar] [CrossRef]
- European Food Safety Authority Panel. N utritional safety and suitability of a specific protein hydrolysate derived from whey protein concentrate and used in an infant and follow-on formula manufactured from hydrolysed protein by HIPP-Werk Georg Hipp. OHG (dossier submitted by meyer.science GmbH). EFSA J. 2022, 20, e07141. [Google Scholar] [CrossRef]
- Straits Research. Dairy Protein Market. 2023. Available online: https://straitsresearch.com/report/dairy-protein-market (accessed on 23 December 2023).
- Future Market Insights. Bio-Active Peptide Market Outlook (2023 to 2033). 2023. Available online: https://www.futuremarketinsights.com/reports/bio-active-peptide-market#:~:text=According%20to%20FMI%20analysis%2C%20the%20milk%20bioactive%20peptides%20segment%20is,US%24%201%2C467.1%20million%20by%202033 (accessed on 23 December 2023).
- Ortolani, C.; Pastorello, E.A. Food allergies and food intolerances. Best. Pract. Res. Clin. Gastroenterol. 2006, 20, 467–483. [Google Scholar] [CrossRef] [PubMed]
- El-Agamy, E.I. The challenge of cow milk protein allergy. Small Rumin. Res. 2007, 68, 64–72. [Google Scholar] [CrossRef]
- Martorell-Aragonés, A.; Echeverría-Zudaire, L.; Alonso-Lebrero, E.; Boné-Calvo, J.; Martín-Muñoz, M.F.; Nevot-Falcó, S.; Piquer-Gibert, M.; Valdesoiro-Navarrete, L. Position document: IgE-mediated cow’s milk allergy. Allergol. Immunopathol. 2015, 43, 507–526. [Google Scholar] [CrossRef] [PubMed]
- Wal, J.M. Structure and function of milk allergens. Allergy 2001, 56, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Chicon, R.; Belloque, J.; Alonso, E.; Lopez-Fandino, R. Antibody binding and functional properties of whey protein hydrolysates obtained under high pressure. Food Hydrocoll. 2009, 23, 593–599. [Google Scholar] [CrossRef]
- Izquierdo, F.J.; Peñas, E.; Baeza, M.L.; Gomez, R. Effects of combined microwave and enzymatic treatments on the hydrolysis and immunoreactivity of dairy whey proteins. Int. Dairy J. 2008, 18, 918–922. [Google Scholar] [CrossRef]
- El Mecherfi, K.E.; Rouaud, O.; Curet, S.; Negaoui, H.; Chobert, J.M.; Kheroua, O.; Saidi, D.; Haertlé, T. Peptic hydrolysis of bovine β-lactoglobulin under microwave treatment reduces its allergenicity in an ex vivo murine allergy model. Int. J. Food Sci. Technol. 2015, 50, 356–364. [Google Scholar] [CrossRef]
- Meng, X.; Li, X.; Wang, X.; Gao, J.; Yang, H.; Chen, H. Potential allergenicity response to structural modification of irradiated bovine α-lactalbumin. Food Funct. 2016, 7, 3102–3110. [Google Scholar] [CrossRef]
- Hu, G.; Zheng, Y.; Liu, Z.; Deng, Y.; Zhao, Y. Structure and IgE-binding properties of α-casein treated by high hydrostatic pressure, UV-C, and far-IR radiations. Food Chem. 2016, 204, 46–55. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Dietary Protein Quality Evaluation in Human Nutrition. 2013. Available online: https://www.fao.org/ag/humannutrition/35978-02317b979a686a57aa4593304ffc17f06.pdf (accessed on 23 December 2023).
- Gertjan, S. The Protein Digestibility–Corrected Amino Acid Score. J. Nutr. 2000, 130, 1865s–1867s. [Google Scholar] [CrossRef]
- Wolfe, R.R.; Rutherfurd, S.M.; Kim, I.; Moughan, P.J. Protein quality as determined by the Digestible Indispensable Amino Acid Score: Evaluation of factors underlying the calculation. Nutr. Rev. 2016, 74, 584–599. [Google Scholar] [CrossRef] [PubMed]
- Van Vilet, S.; Burd, N.A.; van Loon, L.J.C. The skeletal muscle anabolic response to plant- versus animal-based protein consumption. J. Nutr. 2015, 145, 1981–1991. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M. The impact of protein quality on the promotion of resistance-exercise-induced changes in muscle mass. Nutr. Metab. 2016, 13, 64. [Google Scholar] [CrossRef] [PubMed]
- Devries, M.C.; Philips, S.M. Supplemental protein in support of muscle mass and health: Advantage whey. J. Food Sci. 2015, 80, S1. [Google Scholar] [CrossRef] [PubMed]
- Ricci, I.; Artacho, R.; Olalla, M. Milk protein peptides with angiotensin I-converting enzyme inhibitory (ACEI) activity. Crit. Rev. Food Sci. Nutr. 2010, 50, 390–402. [Google Scholar] [CrossRef] [PubMed]
- El-Beeh, M.E.; El-Badawi, A.A.; Amin, A.H.; Qari, S.H.; Ramadan, M.F.; Filfilan, W.M.; El-Sayyad, H.I.H. Anti-aging trait of whey protein against brain damage of senile rats. J. Umm Al-Qura Univ. Appl. Sci. 2022, 8, 8–20. [Google Scholar] [CrossRef]
- Sakaguchi, M.; Koseki, M.; Wakamatsu, M.; Matsumura, E. Effects of systemic administration of β-casomorphin-5 on learning and memory in mice. Eur. J. Pharmacol. 2006, 530, 81–87. [Google Scholar] [CrossRef]
- Duarte, D.C.; Nicolau, A.; Teixeira, J.A.; Rodrigues, L.R. The effect of bovine milk lactoferrin on human breast cancer cell lines. J. Dairy Sci. 2011, 94, 66–76. [Google Scholar] [CrossRef]
- Augustyniak, A.; Gottardi, D.; Giordani, B.; Gaffey, J.; Mahon, H.M. Dairy bioactives and functional ingredients with skin health benefits. J. Funct. Foods 2023, 104, 105528. [Google Scholar] [CrossRef]
- Schaafsma, G. The Protein Digestibility-Corrected Amino Acid Score (PDCAAS)—A Concept for Describing Protein Quality in Foods and Food Ingredients: A Critical Review. J. AOAC Int. 2005, 88, 988–994. [Google Scholar] [CrossRef] [PubMed]
- Marinangeli, C.P.; House, J.D. Potential impact of the digestible indispensable amino acid score as a measure of protein quality on dietary regulations and health. Nutr. Rev. 2017, 75, 658–667. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Wang, L.M.; Sivendiran, T.; Bohrer, B.M. Review: Amino acid concentration of high protein food products and an overview of the current methods used to determine protein quality. Crit. Rev. Food Sci. Nutr. 2018, 58, 2673–2678. [Google Scholar] [CrossRef] [PubMed]
- Nosworthy, M.G.; Neufeld, J.; Frohlich, P.; Young, G.; Malcolmson, L.; House, J.D. Determination of the protein quality of cooked Canadian pulses. Food Sci. Nutr. 2017, 5, 896–903. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, L.A.; Mes, J.J.; Mensink, M.; Wanders, A.J. Protein quality of soy and the effect of processing: A quantitative review. Front. Nutr. 2022, 9, 1004754. [Google Scholar] [CrossRef]
- Sari, Y.W.; Mulder, W.J.; Sanders, J.P.M.; Bruions, M.E. Towards plant protein refinery: Review on protein extraction using alkali and potential enzymatic assistance. Biotechnol. J. 2015, 10, 1138–1157. [Google Scholar] [CrossRef] [PubMed]
- Hughes, G.J.; Ryan, D.J.; Mukherjea, R.; Schasteen, C.S. Protein Digestibility-Corrected Amino Acid Scores (PDCAAS) for Soy Protein Isolates and Concentrate: Criteria for Evaluation. J. Agric. Food Chem. 2011, 59, 12707–12712. [Google Scholar] [CrossRef]
- Wang, Y.; Tibbetts, S.M.; Berrue, F.; McGinn, P.J.; MacQuarrie, S.P.; Puttaswamy, A.; Patelakis, S.; Schmidt, D.; Melanson, R.; MacKenzie, S.E. A rat study to evaluate the protein quality of three green microalgal species and the impact of mechanical cell wall disruption. Foods 2020, 9, 1531. [Google Scholar] [CrossRef]
- De Bhowmick, G.; Hayes, B. In Vitro Protein Digestibility of Selected Seaweeds. Foods 2022, 11, 289. [Google Scholar] [CrossRef]
- Palinska, K.A.; Krumbein, W.E. Perforation patterns in the peptidoglycan wall of filamentous cyanobacteria. J. Phycol. 2000, 36, 139–145. [Google Scholar] [CrossRef]
- Takeda, H. Classification of Chlorella strains by cell wall sugar composition. Phytochemistry 1988, 27, 3823–3826. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; da Silva Bon, E.P. Evaluation of Chlorella (Chlorophyta) as source of fermentable sugars via cell wall enzymatic hydrolysis. Enzym. Res. 2011, 2011, 405603. [Google Scholar] [CrossRef] [PubMed]
- Traksele, L.; Speiciene, V.; Smicius, R.; Alencikiene, G.; Salaseviciene, A.; Garmiene, G.; Zigmantaite, V.; Grigaleviciute, R.; Kucinskas, A. Investigation of in vitro and in vivo digestibility of black soldier fly (Hermetia illucens L.) larvae protein. J. Funct. Foods 2021, 79, 104402. [Google Scholar] [CrossRef]
- Eilam, Y.; Khattib, H.; Pintel, N.; Avni, D. Microalgae—Sustainable Source for Alternative Proteins and Functional Ingredients Promoting Gut and Liver Health. Glob. Chall. 2023, 7, 2200177. [Google Scholar] [CrossRef] [PubMed]
- Cian, R.E.; Caballero, M.S.; Sabbag, N.; Gonzalez, R.J.; Drago, S.R. Bio-accessibility of bioactive compounds (ACE inhibitors and antioxidants) from extruded maize products added with a red seaweed Porphyra columbina. LWT 2014, 55, 51–58. [Google Scholar] [CrossRef]
- Williamson, E.; Ross, I.L.; Wall, B.T.; Hankamer, B. Microalgae: Potential novel protein for sustainable human nutrition. Trends Plant Sci. 2023, in press. [CrossRef] [PubMed]
- Kim, W.; Wang, Y.; Selomulya, C. Dairy and plant proteins as natural food emulsifiers. Trends Food Sci. Technol. 2020, 105, 261–272. [Google Scholar] [CrossRef]
- Smith, T.J.; Foegeding, E.A.; Drake, M.A. Flavor and Functional Characteristics of Whey Protein Isolates from Different Whey Sources. J. Food Sci. 2016, 81, C849–C857. [Google Scholar] [CrossRef]
- Minj, S.; Anand, S. Whey Proteins and Its Derivatives: Bioactivity, Functionality, and Current Applications. Dairy 2020, 1, 233–258. [Google Scholar] [CrossRef]
- Singh, R.; Rathod, G.; Meletharayil, G.H.; Kapoor, K.; Sankarlal, V.M.; Amamcharla, J.K. Invited review: Shelf-stable dairy protein beverages—Scientific and technological aspects. J. Dairy Sci. 2022, 105, 9327–9346. [Google Scholar] [CrossRef]
- Carter, B.G.; Foegeding, E.A.; Drake, M.A. Astringency in whey protein beverages. J. Dairy Sci. 2020, 103, 5793–5804. [Google Scholar] [CrossRef] [PubMed]
- Hoyt, H.M.; Pranata, J.; Barbano, D.M.; Drake, D.M. Effect of dipotassium phosphate and heat on milk protein beverage viscosity and color. J. Dairy Sci. 2023, 106, 3884–3899. [Google Scholar] [CrossRef] [PubMed]
- Pranata, J.; Hoyt, H.; Drake, M.A.; Barbano, D.M. Effect of dipotassium phosphate addition and heat on proteins and minerals in milk protein beverages. J. Dairy Sci. 2024, 107, 695–710. [Google Scholar] [CrossRef] [PubMed]
- Carunchia Whetstine, M.E.; Croissant, A.E.; Drake, M.A. Characterization of WPC80 and WPI flavor. J. Dairy Sci. 2005, 88, 3826–3829. [Google Scholar] [CrossRef] [PubMed]
- Wright, B.J.; Zevchak, S.E.; Wright, J.M.; Drake, M.A. Impact of agglomeration on flavor and flavor stability of whey proteins. J. Food Sci. 2009, 74, S17–S29. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.J.; Campell, R.E.; Jo, Y.; Drake, M.A. Flavor and stability of milk proteins. J. Dairy Sci. 2016, 99, 4325–4346. [Google Scholar] [CrossRef] [PubMed]
- Carter, B.G.; Patel, H.; Barbano, D.M.; Drake, M.A. The effect of spray drying on the difference in flavor and functional properties of liquid and dried whey proteins, milk proteins, and micellar casein concentrates. J. Dairy Sci. 2018, 101, 3900–3909. [Google Scholar] [CrossRef] [PubMed]
- Drake, M.A.; Karagul-Yuceer, Y.; Cadwallader, K.R.; Civille, G.V.; Tong, P.S. Determination of the sensory attributes of dried milk powders and dairy ingredients. J. Sens. Stud. 2003, 18, 199–216. [Google Scholar] [CrossRef]
- Karagul-Yuceer, Y.; Drake, M.A.; Cadwallader, K.R. Aroma active components of liquid Cheddar whey. J. Food Sci. 2003, 68, 1215–1219. [Google Scholar] [CrossRef]
- Wright, J.M.; Carunchia Whetstine, M.E.; Miracle, R.E.; Drake, M.A. Characterization of a cabbage off-flavor in whey protein isolate. J. Food Sci. 2006, 71, C91–C96. [Google Scholar] [CrossRef]
- Shogren, R.L.; Mohamed, A.A.; Carriere, C.J. Sensory Analysis of Whole Wheat/Soy Flour Breads. J. Food Sci. 2003, 68, 1896–2156. [Google Scholar] [CrossRef]
- Chen, J.; Serafin, F.L.; Pandya, R.N.; Daun, H. Effects of Extrusion Conditions on Sensory Properties of Corn Meal Extrudates. J. Food Sci. 1991, 56, 84–89. [Google Scholar] [CrossRef]
- Sinesio, F.; Paoletti, F.; D’Egidio, M.G.; Moneta, E.; Nardo, N.; Peparaio, M.; Comendador, F.J. Flavor and texture as critical sensory parameters of consumer acceptance of barley pasta. Cereal Foods World 2008, 53, 206–213. [Google Scholar] [CrossRef]
- Heiniö, R.; Oksman-Caldentey, K.; Latva-Kala, K.; Lehtinen, P.; Poutanen, K. Effect of Drying Treatment Conditions on Sensory Profile of Germinated Oat. Cereal Chem. 2001, 78, 707–714. [Google Scholar] [CrossRef]
- Arsa, S.; Theerakulkait, C. Preparation, aroma characteristics and volatile compounds of flavorings from enzymatic hydrolyzed rice bran protein concentrate. J. Sci. Food Agric. 2018, 98, 4479–4487. [Google Scholar] [CrossRef] [PubMed]
- Nishku, S. Development of a Lexicon for Plant Protein Powders. North Carolina State University. 2020. Available online: https://www.proquest.com/docview/2477999561?pq-origsite=gscholar&fromopenview=true&sourcetype=Dissertations%20&%20Theses (accessed on 12 January 2024).
- Almaguer, C.; Kollmannsberger, H.; Gastl, M.; Becker, T. Characterization of the aroma profile of quinoa (Chenopodium quinoa Willd.) and assessment of the impact of malting on the odor-active volatile composition. J. Sci. Food Agric. 2022, 103, 2283–2294. [Google Scholar] [CrossRef]
- Škrobot, D.; Pezo, L.; Tomin, K.; Pestoric, M.; Sakac, M.; Mandic, A. Insights into sensory and hedonic perception of wholegrain buckwheat enriched pasta. LWT 2022, 153, 112528. [Google Scholar] [CrossRef]
- Russell, T.A.; Drake, M.A.; Gerard, P.D. Sensory Properties of Whey and Soy Proteins. J. Food Sci. 2006, 71, S447–S455. [Google Scholar] [CrossRef]
- Liu, Y.; Cadwallader, D.C.; Drake, M.A. Identification of predominant aroma components of dried pea protein concentrates and isolates. Food Chem. 2023, 406, 134998. [Google Scholar] [CrossRef]
- Tuccillo, F.; Kantanen, K.; Wang, Y.; Diaz, J.M.R.; Pulkkinen, M.; Edelmann, M.; Knaapila, A.; Jouppila, K.; Piironen, V.; Lampi, A.; et al. The flavor of faba bean ingredients and extrudates: Chemical and sensory properties. Food Res. Int. 2022, 162, 112036. [Google Scholar] [CrossRef]
- Bader, S.; Oviedo, J.P.; Pickardt, C.; Eisner, P. Influence of different organic solvents on the functional and sensory properties of lupin (Lupinus angustifolius L.) proteins. LWT 2011, 44, 1396–14004. [Google Scholar] [CrossRef]
- Chen, Y.; Tao, X.; Hu, S.; He, R.; Ju, X.; Wang, Z.; Aluko, R.E. Effects of phytase/ethanol treatment on aroma characteristics of rapeseed protein isolates. Food Chem. 2024, 431, 137119. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hu, H.; Liu, H.; Wamg, Q. Recent Advances for the Developing of Instant Flavor Peanut Powder: Generation and Challenges. Foods 2022, 11, 1544. [Google Scholar] [CrossRef] [PubMed]
- Van Durme, J.; Goiris, K.; De Winne, A.; De Cooman, L.; Muylaert, K. Evaluation of the Volatile Composition and Sensory Properties of Five Species of Microalgae. J. Agric. Food Chem. 2013, 61, 10881–10890. [Google Scholar] [CrossRef] [PubMed]
- Loveday, S.M. Food Proteins: Technological, Nutritional, and Sustainability Attributes of Traditional and Emerging Proteins. Annu. Rev. Food Sci. 2019, 10, 311–339. [Google Scholar] [CrossRef] [PubMed]
- Sa, A.G.A.; Moreno, Y.M.F.; Carciofi, B.A.M. Plant proteins as high-quality nutritional source for human diet. Trends Food Sci. Technol. 2020, 97, 170–184. [Google Scholar] [CrossRef]
- Nehete, J.Y.; Bhambar, R.S.; Narkhede, M.R.; Gawali, S.R. Natural proteins: Sources, isolation, characterization and applications. Pharmacogn. Rev. 2013, 7, 107–116. [Google Scholar] [CrossRef]
- Osborne, T.B. Our present knowledge of plant proteins. Science 1908, 28, 417–427. [Google Scholar] [CrossRef]
- Chéreau, D.; Videcoq, P.; Ruffieux, C.; Pichon, L.; Motte, J.C.; Belaid, S.; Lopez, M. Combination of existing and alternative technologies to promote oilseeds and pulses proteins in food applications. OCL 2016, 23, D406. [Google Scholar] [CrossRef]
- Naguleswaran, S.; Vasanthan, T. Dry milling of field pea (Pisum sativum L.) groats prior to wet fractionation influences the starch yield and purity. Food Chem. 2010, 118, 627–633. [Google Scholar] [CrossRef]
- Wronkowska, M. Wet-Milling of Cereals. J. Food Process. Preserv. 2015, 40, 572–580. [Google Scholar] [CrossRef]
- Fernando, S. Production of protein-rich pulse ingredients through dry fractionation: A review. LWT 2021, 141, 110961. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Potkule, J.; Verma, R.; Punia, S.; Mahapatra, A.; Belwal, T.; Dahuja, A.; Joshi, S.; Berwal, M.K.; et al. Advances in the plant protein extraction: Mechanism and recommendations. Food Hydrocoll. 2021, 115, 106595. [Google Scholar] [CrossRef]
- Pojic, M.; Misan, A.; Tiwari, B. Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends Food Sci. 2018, 75, 93–104. [Google Scholar] [CrossRef]
- Schutyser, M.A.I.; van der Goot, A.J. The potential of dry fractionation processes for sustainable plant protein production. Trends Food Sci. Technol. 2011, 22, 154–164. [Google Scholar] [CrossRef]
- Loveday, S.M. Plant protein ingredients with food functionality potential. Nutr. Bull. 2020, 45, 321–327. [Google Scholar] [CrossRef]
- Hadi, J.; Brightwell, G. Safety of Alternative Proteins: Technological, Environmental and Regulatory Aspects of Cultured Meat, Plant-Based Meat, Insect Protein and Single-Cell Protein. Foods 2021, 10, 1226. [Google Scholar] [CrossRef]
- Fellows, P.J. Extrusion Cooking. In Food Processing Technology; Woodhead Publishing: Cambridge, UK, 2017; pp. 753–780. [Google Scholar]
- Wittek, P.; Walther, G.; Karbstein, H.P.; Emin, M.A. Comparison of the rheological properties of plant proteins from various sources for extrusion applications. Foods 2021, 10, 1700. [Google Scholar] [CrossRef]
- Aimutis, W.R. Plant-Based Proteins: The Good, Bad, and Ugly. Annu. Rev. Food Sci. Technol. 2022, 13, 1–17. [Google Scholar] [CrossRef]
- Zahari, I.; Ferawati, F.; Purhagen, J.K.; Rayner, M.; Ahlstrom, C.; Helstad, A.; Östbring, K. Development and characterization of extrudates based on rapeseed and pea protein blends using high-moisture extrusion cooking. Foods 2021, 10, 2397. [Google Scholar] [CrossRef]
- Lee, J.S.; Oh, H.; Choi, I.; Yoon, C.S.; Han, J. Physico-chemical characteristics of rice protein-based novel textured vegetable proteins as meat analogues produced by low-moisture extrusion cooking technology. LWT 2022, 157, 113056. [Google Scholar] [CrossRef]
- Pöri, P.; Nisov, A.; Nordlund, E. Enzymatic modification of oat protein concentrate with trans- and protein-glutaminase for increased fibrous structure formation during high-moisture extrusion processing. LWT 2022, 156, 113035. [Google Scholar] [CrossRef]
- Palanisamy, M.; Franke, K.; Berger, R.G.; Heinz, V.; Topfl, S. High moisture extrusion of lupin protein: Influence of extrusion parameters on extruder responses and product properties. J. Sci. Food Agric. 2019, 99, 2175–2185. [Google Scholar] [CrossRef] [PubMed]
- US Dairy Export Council. Research Brief: Comparing Commercial Processing of Dairy and Plant Protein Ingredients. 2020. Available online: https://www.thinkusadairy.org/resources-and-insights/resources-and-insights/application-and-technical-materials/research-brief-comparing-commercial-processing-of-dairy-and-plant-protein-ingredients (accessed on 12 January 2024).
- Rubio, N.R.; Xiang, N.; Kaplan, D.L. Plant-Based and Cell-Based Approaches to Meat Production. Nat. Commun. 2020, 11, 6276. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Re: GRAS Notice No. GRN 000091; Food Additive Petition FAP 6A3930. 2002. Available online: https://www.cspinet.org/sites/default/files/attachment/quornltr.pdf (accessed on 26 December 2023).
- European Commission. The Commission Authorises Eight Genetically Modified Crops for Use as Food and Feed. 2021. Available online: https://ec.europa.eu/commission/presscorner/detail/en/mex_21_190 (accessed on 26 December 2023).
- Zhao, X.; Zhou, J.; Du, G.; Chen, J. Recent Advances in the Microbial Synthesis of Hemoglobin. Trends Biotechnol. 2021, 39, 286–297. [Google Scholar] [CrossRef]
- Food and Drug Administration. FDA in Brief: FDA Approval of Soy Leghemoglobin as a Color Additive Is Now Effective. 2019. Available online: https://www.fda.gov/news-events/fda-brief/fda-brief-fda-approval-soy-leghemoglobin-color-additive-now-effective#:~:text=The%20U.S.%20Food%20and%20Drug,4%2C%202019 (accessed on 26 December 2023).
- Fraser, R.Z.; Shitut, M.; Agrawal, P.; Mendes, O.; Klapholz, S. Safety Evaluation of Soy Leghemoglobin Protein Preparation Derived From Pichia Pastoris, Intended for Use as a Flavor Catalyst in Plant-Based Meat. Int. J. Toxicol. 2018, 37, 241–262. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.; Lee, G.; Na, H.; Park, J.; Kim, T.; Oh, S.; Jeong, D. Current status of the novel food ingredient safety evaluation system. Food Sci. Biotechnol. 2023, 33, 1–11. [Google Scholar] [CrossRef]
- Akhtar, S.; Ismail, T.; Layla, A.; Hussaim, M.; Qamar, M. An Overview of Plant-Based Protein Rich Products. In Plant Protein Foods; Manickavasagan, A., Lim, L.T., Ali, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 27–60. [Google Scholar]
- Market Data Forcast. Global Plant-Based Protein Market by Type (Isolates, Concentrates, Protein Flour), Application (Protein Beverages, Dairy Alternatives, Meat Alternatives, Protein Bars, Processed Meat, Poultry & Seafood, Bakery Product), Source (Soy, Pea, Wheat, Others) and by Regional Analysis (North America, Europe, Asia Pacific, Latin America, and Middle East & Africa)—Global Industry Analysis, Size, Share, Growth, Trends, and Forecast (2023–2028). 2023. Available online: https://www.marketdataforecast.com/market-reports/plant-based-protein-market (accessed on 26 December 2023).
- Fasolin, L.H.; Pereira, R.N.; Pinheiro, A.C.; Pinheiro, A.C.; Martins, J.T.; Andrade, C.C.P.; Ramos, O.L.; Vicente, A.A. Emergent food proteins–Towards sustainability, health and innovation. Food Res. Int. 2019, 125, 108586. [Google Scholar] [CrossRef]
- Hadidi, M.; Hossienpour, Y.; Nooshkam, M.; Mahfouzi, M.; Gharagozlou, M.; Aliakbari, F.S.; Aghababaei, F.; McClement, D.J. Green leaf proteins: A sustainable source of edible plant-based proteins. Crit. Rev. Food Sci. Nutr. 2023, 2023, 1–18. [Google Scholar] [CrossRef]
- European Food Safety Authority Panel. Opinion on the safety of ‘Alfalfa protein concentrate’ as food. EFSA J. 2009, 7, 997. [Google Scholar] [CrossRef]
- Vanga, S.K.; Wang, J.; Singh, A.; Raghavan, V. Simulations of temperature and pressure unfolding in soy allergen Gly m 4 using molecular modeling. J. Agric. Food Chem. 2019, 67, 12547–12557. [Google Scholar] [CrossRef]
- Ding, Y.; Ban, Q.; Wu, Y.; Sun, Y.; Zhou, Z.; Wang, Q.; Cheng, J.; Xiao, H. Effect of high hydrostatic pressure on the edible quality, health and safety attributes of plant-based foods represented by cereals and legumes: A review. Crit. Rev. Food Sci. Nutr. 2021, 63, 4636–4654. [Google Scholar] [CrossRef] [PubMed]
- Olatunde, O.O.; Hewage, A.; Dissanayake, T.; Aluko, R.E.; Karaca, A.C.; Shang, N.; Bandara, N. Cold atmospheric plasma-induced protein modification: Novel nonthermal processing technology to improve protein quality, functionality, and allergenicity reduction. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2197–2234. [Google Scholar] [CrossRef] [PubMed]
- Olatunde, O.O.; Owolabi, I.O.; Fadairo, O.S.; Ghosal, A.; Coker, O.J.; Soladoye, O.P.; Aluko, R.E.; Bandara, N. Enzymatic Modification of Plant Proteins for Improved Functional and Bioactive Properties. Food Bioprocess Technol. 2023, 16, 1216–1234. [Google Scholar] [CrossRef]
- Tahmasian, A.; Drew, R.; Broadbent, J.A.; Juhasz, A.; Nye-Wood, M.; Colgrave, M.L. Conventional solid-state fermentation impacts the white lupin proteome reducing the abundance of allergenic peptides. Food Chem. 2023, 426, 136622. [Google Scholar] [CrossRef] [PubMed]
- Berrazaga, I.; Micard, V.; Gueugneau, M.; Walrand, S. The role of the anabolic properties of plant-versus animal-based protein sources in supporting muscle mass maintenance: A critical review. Nutrients 2019, 11, 1825. [Google Scholar] [CrossRef] [PubMed]
- Shanthakumar, P.; Klepacka, J.; Bains, A.; Chawla, P.; Dhull, S.B.; Najda, A. The Current Situation of Pea Protein and Its Application in the Food Industry. Molecules 2022, 27, 5354. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.X.; He, J.F.; Zhang, Y.C.; Bing, D.J. Composition, physicochemical properties of pea protein and its application in functional foods. Crit. Rev. Food Sci. Nutr. 2020, 60, 2593–2605. [Google Scholar] [CrossRef]
- Chandran, A.S.; Suri, S.; Choudhary, P. Sustainable plant protein: An up-to-date overview of sources, extraction techniques and utilization. Sustain. Food Technol. 2023, 1, 466–483. [Google Scholar] [CrossRef]
- Tulbek, M.; Lam, R.S.H.; Wang, Y.C.; Asavajaru, P.; Lam, A. Pea: A Sustainable Vegetable Protein Crop. In Sustainable Protein Sources; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Qin, P.; Wang, T.; Luo, Y. A review on plant-based proteins from soybean: Health benefits and soy product development. J. Agric. Food Res. 2022, 7, 100265. [Google Scholar] [CrossRef]
- Munialo, C.D. A review of alternative plant protein sources, their extraction, functional characterisation, application, nutritional value and pinch points to being the solution to sustainable food production. Int. J. Food Sci. Technol. 2023, 59, 462–472. [Google Scholar] [CrossRef]
- Tan, M.; Nawaz, M.A.; Buckow, R. Functional and food application of plant proteins—A review. Food Rev. Int. 2021, 39, 2428–2456. [Google Scholar] [CrossRef]
- Rao, M.V.; Sunil, C.K.; Rawson, A.; Chidanand, D.V.; Venkatachlapathy, N. Modifying the plant proteins techno-functionalities by novel physical processing technologies: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 4070–4091. [Google Scholar] [CrossRef]
- Munialo, C.D.; Martin, A.H.; van der Linden, E.; de Jongh, H.H. Fibril formation from pea protein and subsequent gel formation. J. Agric. Food Chem. 2014, 62, 2418–2427. [Google Scholar] [CrossRef] [PubMed]
- Day, L.; Cakebread, J.A.; Loveday, S.M. Food proteins from animals and plants: Differences in the nutritional and functional properties. Trends Food Sci. Technol. 2022, 119, 428–442. [Google Scholar] [CrossRef]
- Sa, A.G.A.; Moreno, Y.M.F.; Carciofi, B.A.M. Food processing for the improvement of plant proteins digestibility. Crit. Rev. Food Sci. Nutr. 2019, 60, 3367–3386. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Klebach, M.; Visser, M.; Hofman, Z. Amino acid availability of a dairy and vegetable protein blend compared to single casein, whey, soy, and pea proteins: A double-blind, cross-over trial. Nutrients 2019, 11, 2613. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, B.; Dou, J.; Ning, Y.; Wang, H.; Huang, Y.; Li, Y.; Qi, B.; Jiang, L. pH and ultrasound driven structure-function relationships of soy protein hydrolysate. Innov. Food Sci. Emerg. Technol. 2023, 85, 103324. [Google Scholar] [CrossRef]
- Jia, Y.; Yan, X.; Li, X.; Zhang, S.; Huang, Y.; Zhang, D.; Li, Y.; Qi, B. Soy protein–phlorizin conjugate prepared by tyrosinase catalysis: Identification of covalent binding sites and alterations in protein structure and functionality. Food Chem. 2023, 404, 134610. [Google Scholar] [CrossRef]
- Wang, R.; Wang, L.; Wen, Q.; He, F.; Xum, F.; Chen, B.; Zeng, X. Combination of pulsed electric field and pH shifting improves the solubility, emulsifying, foaming of commercial soy protein isolate. Food Hydrocoll. 2023, 134, 108049. [Google Scholar] [CrossRef]
- Yolandani; Ma, H.; Li, Y.; Liu, D.; Zhou, H.; Liu, X.; Wan, Y.; Zhao, Z. Ultrasound-assisted limited enzymatic hydrolysis of high concentrated soy protein isolate: Alterations on the functional properties and its relation with hydrophobicity and molecular weight. Ultrason. Sonochem. 2023, 95, 106414. [Google Scholar] [CrossRef] [PubMed]
- Rajpurohit, B.; Li, Y. Overview on pulse proteins for future foods: Ingredient development and novel applications. J. Future Foods 2023, 3, 340–356. [Google Scholar] [CrossRef]
- Estell, M.; Hughes, J.; Grafenauer, S. Plant protein and plant-based meat alternatives: Consumer and nutrition professional attitudes and perceptions. Sustainability 2021, 13, 1478. [Google Scholar] [CrossRef]
- Chen, D.; Jones, O.G.; Campanella, O.H. Plant protein-based fibers: Fabrication, characterization, and potential food applications. Crit. Rev. Food Sci. Nutr. 2023, 63, 4554–4578. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Zhang, J.; Zhang, H.; Duan, Y.; Ma, H. Plant protein-derived antioxidant peptides: Isolation, identification, mechanism of action and application in food systems: A review. Trends Food Sci. Technol. 2020, 105, 308–322. [Google Scholar] [CrossRef]
- Prietto, L.; Pinto, V.Z.; El Halal, S.L.M.; de Morais, M.G.; Costa, J.A.V.; Lim, L.T.; Dias, A.R.G.; Zavareze, E.D.R. Ultrafine fibers of zein and anthocyanins as natural pH indicator. J. Sci. Food Agric. 2017, 98, 2735–2741. [Google Scholar] [CrossRef]
- Ismail, B.P.; Senaratne-Lenagala, L.; Stube, A.; Brackenridge, A. Protein demand: Review of plant and animal proteins used in alternative protein product development and production. Anim. Front. 2020, 10, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Keefer, H.R.M.; Nishku, S.; Gerard, P.D.; Drake, M.A. Role of sweeteners on temporality and bar hardening of protein bars. J. Dairy Sci. 2020, 103, 6032–6053. [Google Scholar] [CrossRef]
- Lee, H.J.; Yong, H.I.; Kim, M.; Choi, Y.S.; Jo, C. Status of meat alternatives and their potential role in the future meat market—A review. Asian J. Anim. Sci. 2020, 33, 1533–1543. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Gantriis, R.F.; Fraga, P.; Perez-Cueto, F.J.A. Plant-based food and protein trend from a business perspective: Markets, consumers, and the challenges and opportunities in the future. Crit. Rev. Food Sci. Nutr. 2021, 61, 3119–3128. [Google Scholar] [CrossRef]
- Clark, L.F.; Bogdan, A.M. The role of plant-based foods in canadian diets: A survey examining food choices, motivations and dietary identity. J. Food Prod. Mark. 2019, 25, 355–377. [Google Scholar] [CrossRef]
- Chalupa-Krebzdak, S.; Long, C.J.; Bohrer, B.M. Nutrient density and nutritional value of milk and plant-based milk alternatives. Int. Dairy J. 2018, 87, 84–92. [Google Scholar] [CrossRef]
- Circus, V.E.; Robinson, R. Exploring perceptions of sustainable proteins and meat attachment. Br. Food J. 2019, 121, 533–545. [Google Scholar] [CrossRef]
- Hassoun, A.; Bekhit, A.E.; Jambrak, A.R.; Regenstein, J.M.; Chemat, F.; Morton, J.D.; Gudjónsdóttir, M.; Carpena, M.; Prieto, M.A.; Varela, P.; et al. The fourth industrial revolution in the food industry—Part II: Emerging food trends. Crit. Rev. Food Sci. Nutr. 2022, 64, 407–437. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.H.; Hwang, J.Y.; Lee, H.G.; Song, M.K.; Kang, Y.S.; Rhee, M.S. Strategic approaches to communicating with food consumers about genetically modified food. Food Control 2018, 92, 523–531. [Google Scholar] [CrossRef]
- Dupuis, J.H.; Cheung, L.K.Y.; Newman, L.; Dee, D.R.; Yada, R.Y. Precision cellular agriculture: The future role of recombinantly expressed protein as food. Compr. Rev. Food Sci. Food Saf. 2022, 22, 882–912. [Google Scholar] [CrossRef] [PubMed]
- Aro, N.; Ercili-Cura, D.; Andberg, M.; Silventoinen, P.; Lille, M.; Hosia, W.; Nordlund, E.; Landowski, C.P. Production of bovine β-lactoglobulin and hen egg ovalbumin by Trichoderma reesei using precision fermentation technology and testing of their techno-functional properties. Food Res. Int. 2023, 163, 112131. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Li, M.; Wang, Q.; Yan, J.; Han, S.; Ma, C.; Liu, X.; McClements, D.J. Future foods: Alternative proteins, food architecture, sustainable packaging, and precision nutrition. Crit. Rev. Food Sci. Nutr. 2022, 63, 6423–6444. [Google Scholar] [CrossRef]
- Nielsen, M.B.; Meyer, A.S.; Arnau, J. The next food revolution is here: Recombinant microbial production of milk and egg proteins by precision fermentation. Annu. Rev. Food Sci. Technol. 2024, 15, 1–15. [Google Scholar] [CrossRef]
- Food and Drug Administration. Re: GRAS Notice No. GRN 000967. 2021. Available online: https://www.fda.gov/media/152289/download (accessed on 28 December 2023).
- Al-Hawash, A.B.; Li, S.; Zhang, X.; Zhang, X.; Ma, F. Productivity of γ-linoleic acid by oleaginous fungus Cunninghamella echinulata using a pulsed high magnetic field. Food Biosci. 2018, 21, 1–7. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Adhikari, B.; Fang, Z. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnol. Adv. 2021, 49, 107763. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, W.; Zheng, S.; Zhang, Y.; Bao, Y. Genetic engineering of Bacillus sp. and fermentation process optimizing for diacetyl production. J. Biotechnol. 2019, 301, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.-O.; Jin, Y.-S. Next-generation genetic and fermentation technologies for safe and sustainable production of food ingredients: Colors and flavorings. Annu. Rev. Food Sci. 2022, 13, 463–488. [Google Scholar] [CrossRef]
- Tubb, C.; Seba, T. Rethinking Food and Agriculture 2020–2030. RethinkX. 2019. Available online: https://static1.squarespace.com/static/585c3439be65942f022bbf9b/t/5d7fe0e83d119516bfc0017e/1568661791363/RethinkX+Food+and+Agriculture+Report.pdf (accessed on 28 December 2023).
- Augstin, M.A.; Hartley, C.J.; Maloney, G.; Tyndall, S. Innovation in precision fermentation for food ingredients. Crit. Rev. Food Sci. Nutr. 2023, 2023, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Pozas, N.S.; Bushnell, C. Fermentation Can Help Build a More Efficient and Sustainable Food System—Here’s How. World Economic Forum. 2020. Available online: https://www.weforum.org/agenda/2020/11/fermentation-can-help-build-a-more-efficient-and-sustainable-food-system-here-s-how/ (accessed on 28 December 2023).
- Food and Drug Administration. GRAS Notice (GRN) No.863, β-Lactoglobulin Produced by Trichoderma Reesei. 2019. Available online: https://www.fda.gov/media/136754/download (accessed on 28 December 2023).
- Southey, F. Regulating Precision Fermentation: Challenges and Opportunities in Marketing Microbially-Derived Foods in Europe. Food Navigator. 2022. Available online: https://www.foodnavigator.com/Article/2022/04/14/Regulating-precision-fermentation-Challenges-and-opportunities-in-marketing-microbially-derived-foods-in-Europe (accessed on 28 December 2023).
- European Food Safety Authority Panel on Biological Hazards (EFSA BIOHAZ). Scientific Opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA (2017–2019). EFSA J. 2020, 18, e05966. [Google Scholar] [CrossRef]
- Ronchetti, F.; Springer, L.; Purnhagen, K. The Regulatory Landscape in the EU for Dairy Products Derived from Precision Fermentation: An Analysis on the Example of Cheese; Springer: Cham, Switzerland, 2023; Available online: https://eref.uni-bayreuth.de/id/eprint/86882/ (accessed on 28 December 2023).
- Zhao, J.; Fang, H.; Zhang, D. Expanding application of CRISPR-Cas9 system in microorganisms. Synth. Syst. Biotechnol. 2020, 5, 269–276. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Overview of EFSA and European national authorities’ scientific opinions on the risk assessment of plants developed through New Genomic Techniques. EFSA J. 2021, 19, e06314. [Google Scholar] [CrossRef]
- Rostoks, N. Implications of the EFSA Scientific Opinion on Site Directed Nucleases 1 and 2 for Risk Assessment of Genome-Edited Plants in the EU. Agronomy 2021, 11, 572. [Google Scholar] [CrossRef]
- Pappalardo, G.; D’Amico, M.; Lusk, J.L. Comparing the views of the Italian general public and scientists on GMOs. Int. J. Food Sci. Technol. 2021, 56, 3641–3650. [Google Scholar] [CrossRef]
- Banovic, M.; Grunert, K.G. Consumer acceptance of precision fermentation technology: A cross-cultural study. IFSET 2023, 88, 103435. [Google Scholar] [CrossRef]
- Pérez-Torrado, R.; Querol, A.; Guillamón, J.M. Genetic improvement of non-GMO wine yeasts: Strategies, advantages and safety. Trends Food Sci. 2015, 45, 1–11. [Google Scholar] [CrossRef]
- Perfect Day. Applications of ProFerm. 2024. Available online: https://perfectday.com/applications/ (accessed on 2 January 2024).
- PR Newswire. TurtleTree Obtains the World’s First Self-GRAS for Animal-Free Lactoferrin, LF+™ Now Approved to Commercialize in the U.S. 2023. Available online: https://www.prnewswire.com/apac/news-releases/turtletree-obtains-the-worlds-first-self-gras-for-animal-free-lactoferrin-lf-now-approved-to-commercialize-in-the-us-301996148.html (accessed on 2 January 2024).
- Food Navigator USA. Remilk and Imagin Dairy from Israel Also Have GRAS Approved Lactoglobulin. 2023. Available online: https://www.foodnavigator-usa.com/Article/2023/08/17/imagindairy-s-self-affirmed-gras-for-animal-free-dairy-protein-paves-way-for-commercial-partnerships-in-the-us (accessed on 2 January 2024).
- Brune, S.E.; Hoppenreijs, L.J.; Kühl, T.; Lautenbach, V.; Walter, J.; Peukert, W.; Schwarz, K.; Imhof, D.; Boom, R.M.; Krull, R.; et al. Precision fermentation as a route to modify β-lactoglobulin structure through substitution of specific cysteine residues. Int. Dairy J. 2023, 147, 105772. [Google Scholar] [CrossRef]
- Chai, K.F.; Ng, K.R.; Samarasiri, M.; Chen, W.N. Precision fermentation to advance fungal food fermentations. Curr. Opin. Food Sci. 2022, 47, 100881. [Google Scholar] [CrossRef]
- Ganeshan, S.; Kim, S.H.; Vujanovic, V. Scaling-up production of plant endophytes in bioreactors: Concepts, challenges and perspectives. Bioresour. Bioprocess. 2021, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- Pleissner, D.; Lam, W.C.; Sun, Z.; Lin, C.S.K. Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresour. Technol. 2013, 137, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Verni, M.; Minisci, A.; Convertino, S.; Nionelli, L.; Rizzello, C.G. Wasted bread as substrate for the cultivation of starters for the food industry. Front. Microbiol. 2020, 11, 293. [Google Scholar] [CrossRef] [PubMed]
- Boukid, F.; Ganeshan, S.; Wang, Y.; Tülbek, M.Ç.; Nickerson, M.T. Bioengineered enzymes and precision fermentation in the food industry. Int. J. Mol. Sci. 2023, 24, 10156. [Google Scholar] [CrossRef] [PubMed]
- Aschemann-Witzel, J. Consumer perception and trends about health and sustainability: Trade-offs and synergies of two pivotal issues. Curr. Opin. Food Sci. 2015, 3, 6–10. [Google Scholar] [CrossRef]
- Frank-Podlech, S.; Watson, P.; Verhoeven, A.A.C.; Stegmaier, S.; Preissl, H.; de Wit, S. Competing influences on healthy food choices: Mindsetting versus contextual food cues. Appetite 2021, 166, 105476. [Google Scholar] [CrossRef]
- Battacchi, D.; Verkerk, R.; Pellegrini, N.; Fogliano, V.; Steenbekkers, B. The state of the art of food ingredients’ naturalness evaluation: A review of proposed approaches and their relation with consumer trends. Trends Food Sci. 2020, 106, 434–444. [Google Scholar] [CrossRef]
- Baker, M.T.; Lu, P.; Parrella, J.A.; Leggette, H.R. Consumer acceptance toward functional foods: A scoping review. Int. J. Environ. Res. Public Health 2022, 19, 1217. [Google Scholar] [CrossRef] [PubMed]
- Siegrist, M.; Hartmann, C. Consumer acceptance of novel food technologies. Nat. Food. 2020, 1, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Thomas, O.Z.; Chong, M.; Leunh, A.K.Y.; Fernandex, T.M.; NG, S.T. Not getting laid: Consumer acceptance of precision fermentation made egg. Front. Sustain. Food Syst. 2023, 7, 1–16. [Google Scholar] [CrossRef]
- Post, M.J. Cultured meat from stem cells: Challenges and prospects. Meat Sci. 2012, 92, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Benjaminson, M.A.; Gilchriest, J.A.; Lorenz, M. In vitro edible muscle protein production system (mpps): Stage 1, fish. Acta Astronaut. 2022, 51, 879–889. [Google Scholar] [CrossRef] [PubMed]
- Post, M.J. Cultured beef: Medical technology to produce food. J. Sci. Food Agric. 2013, 94, 1039–1041. [Google Scholar] [CrossRef]
- van der Weele, C.; Tramper, J. Cultured meat: Every village its own factory? Trends Biotechnol. 2014, 32, 294–296. [Google Scholar] [CrossRef]
- Humbird, D. Scale-up economics for cultured meat. Biotechnol. Bioeng. 2021, 118, 3239–3250. [Google Scholar] [CrossRef]
- Risner, D.; Li, F.; Fell, J.S.; Pace, S.A.; Siegel, J.B.; Tagkopoulos, I.; Spang, E.S. Preliminary Techno-Economic Assessment of Animal Cell-Based Meat. Foods 2021, 10, 3. [Google Scholar] [CrossRef]
- Garrison, G.L.; Biermacher, J.T.; Wade Brorsen, B. How much will large-scale production of cell-cultured meat cost? J. Agric. Food Res. 2021, 10, 100358. [Google Scholar] [CrossRef]
- Food and Drug Administration; U.S. Department of Agriculture Food Safety and Inspection Service. Formal Agreement between the U.S. Department of Health and Human Services Food and Drug Administration and U.S. Department of Agriculture Office of Food Safety. 2019. Available online: https://www.fsis.usda.gov/sites/default/files/media_file/2020-07/Formal-Agreement-FSIS-FDA.pdf (accessed on 2 January 2024).
- The US Cattlemen’s Association. Petition for the Imposition of Beef and Meat Labeling Requirements. FSIS Case No. 2018; 114p. 2018. Available online: https://www.fsis.usda.gov/sites/default/files/media_file/2020-07/18-01-Petition-US-Cattlement-Association020918.pdf (accessed on 2 January 2024).
- Petetin, L. Frankenburgers, Risks and Approval. Eur. J. Risk Regul. 2017, 5, 168–186. [Google Scholar] [CrossRef]
- Ong, K.J.; Johnston, J.; Datar, I.; Sewalt, V.; Holmes, D.; Shatkin, J.A. Food safety considerations and research priorities for the cultured meat and seafood industry. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5421–5448. [Google Scholar] [CrossRef] [PubMed]
- Wilks, M.; Phillips, C.J.C. Attitudes to In Vitro Meat: A Survey of Potential Consumers in the United States. PLoS ONE 2017, 12, e0171904. [Google Scholar] [CrossRef] [PubMed]
- Noguerol, A.T.; Pagán, M.J.; García-Segovia, P.; Varela, P. Green or clean? Perception of clean label plant-based products by omnivorous, vegan, vegetarian and flexitarian consumers. Food Res. Int. 2021, 149, 110652. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, L.; Bai, J. Consumer acceptance of cultured meat in urban areas of three cities in China. Food Control 2020, 118, 107390. [Google Scholar] [CrossRef]
- Benny, A.; Pandi, K.; Upadhyay, R. Techniques, challenges and future prospects for cell-based meat. Food Sci. Biotechnol. 2022, 31, 1225–1242. [Google Scholar] [CrossRef] [PubMed]
- Bryant, C.; Barnett, J. Consumer acceptance of cultured meat: A systematic review. Meat Sci. 2018, 143, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Siegrist, M.; Sütterlin, B. Importance of perceived naturalness for acceptance of food additives and cultured meat. Appetite 2017, 113, 320–326. [Google Scholar] [CrossRef]
- Tucker, C.A. The significance of sensory appeal for reduced meat consumption. Appetite 2014, 81, 168–179. [Google Scholar] [CrossRef]
- Bekker, G.A.; Fischer, A.R.; Tobi, H.; van Trijp, H.C. Explicit and implicit attitude toward an emerging food technology: The case of cultured meat. Appetite 2017, 108, 245–254. [Google Scholar] [CrossRef]
- O’Keefe, L.; McLachlan, C.; Gough, C.; Mander, S.; Bows-Larkin, A. Consumer responses to a future UK food system. Br. Food J. 2016, 118, 412–428. [Google Scholar] [CrossRef]
- Rolland, N.C.; Markus, C.R.; Post, M.J. The effect of information content on acceptance of cultured meat in a tasting context. PLoS ONE 2020, 15, e0231176. [Google Scholar] [CrossRef]
- Bryant, C.; Barnett, J. What’s in a name? Consumer perceptions of in vitro meat under different names. Appetite 2019, 137, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Cavalier-Smith, T. Evolution and relationships. In Unravelling the Algae: The Past, Present, and Future of Algal Systematics; Brodie, J., Ed.; CRC Press: Boca Raton, FL, USA, 2007; p. 21. [Google Scholar]
- Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Application of novel extraction technologies for bioactives from marine algae. J. Agric. Food Chem. 2013, 61, 4667–4675. [Google Scholar] [CrossRef] [PubMed]
- Larkum, A.W.D.; Ross, I.L.; Kruse, O.; Hankamer, B. Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol. 2012, 30, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Norton, T.A.; Melkonian, M.; Andersen, R.A. Algal biodiversity. Phycologia 1996, 35, 308–326. [Google Scholar] [CrossRef]
- Caporgno, M.P.; Mathys, A. Trends in Microalgae Incorporation into Innovative Food Products with Potential Health Benefits. Front. Nutr. 2018, 5, 58. [Google Scholar] [CrossRef]
- Lucáková, S.; Branyikova, I.; Hayes, M. Microalgal Proteins and Bioactives for Food, Feed, and Other Applications. Appl. Sci. 2022, 12, 4402. [Google Scholar] [CrossRef]
- Fowden, L. A comparison of the compositions of some algal proteins. Ann. Bot. 1954, 18, 257–266. [Google Scholar] [CrossRef]
- Taub, F.B.; Dollar, A.M. Control of Protein Level of Algae, Chlorella. J. Food Sci. 1965, 30, 359–364. [Google Scholar] [CrossRef]
- Mayfield, S.P.; Franklin, S.E.; Lerner, R.A. Expression and assembly of a fully active antibody in algae. Proc. Natl. Acad. Sci. USA 2003, 100, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Borowitzka, M.A. Microalgae for aquaculture: Opportunities and constraints. J. Appl. Phycol. 1997, 9, 393–401. [Google Scholar] [CrossRef]
- Gladue, R.M.; Maxey, J.E. Microalgal feeds for aquaculture. J. Appl. Phycol. 1994, 6, 131–141. [Google Scholar] [CrossRef]
- Anupama & Ravindra, P. Value-added food: Single cell protein. Biotechnol. Adv. 2000, 18, 459–479. [Google Scholar] [CrossRef]
- Postma, P.R.; Miron, T.L.; Olivieri, G.; Barbosa, M.J.; Wijffels, R.H.; Eppink, M.H.M. Mild disintegration of the green microalgae Chlorella vulgaris using bead milling. Bioresour. Technol. 2015, 184, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Ba, F.; Ursu, A.V.; Laroche, C.; Djelveh, G. Haematococcus pluvialis soluble proteins: Extraction, characterization, concentration/fractionation and emulsifying properties. Bioresour. Technol. 2016, 200, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Awaluddin, S.A.; Thiruvenkadam, S.; Izhar, S.; Hiroyuki, Y.; Danquah, M.K.; Harun, R. Subcritical Water Technology for Enhanced Extraction of Biochemical Compounds from Chlorella vulgaris. Biomed. Res. Int. 2016, 2016, 5816974. [Google Scholar] [CrossRef] [PubMed]
- Ijaola, A.O.; Akamp, D.O.; George, T.T.; Sengul, A.; Adediji, M.Y.; Asmatulu, E. Algae as a potential source of protein: A review on cultivation, harvesting, extraction, and applications. Algal Res. 2024, 77, 103329. [Google Scholar] [CrossRef]
- Tadesse, S.A.; Emire, S.A. Production and processing of antioxidant bioactive peptides: A driving force for the functional food market. Heliyon 2020, 6, e04765. [Google Scholar] [CrossRef]
- Echave, J.; Fraga-Corral, M.; Garcia-Perez, P.; Popović-Djordjević, J.; Avdović, E.H.; Radulović, M.; Xiao, J.; Prieto, M.A.; Simal-Gandara, J. Seaweed Protein Hydrolysates and Bioactive Peptides: Extraction, Purification, and Applications. Mar. Drugs 2021, 19, 500. [Google Scholar] [CrossRef]
- Bertsch, P.; Böcker, L.; Mathys, A.; Fischer, P. Proteins from microalgae for the stabilization of fluid interfaces, emulsions, and foams. Trends Food Sci. Technol. 2021, 108, 326–342. [Google Scholar] [CrossRef]
- Markou, G.; Chentir, I.; Tzocenis, I. Microalgae and cyanobacteria as food: Legislative and safety aspects. In Cultured Microalgae for the Food Industry: Current and Potential Applications; Academic Press: Cambridge, MA, USA, 2023. [Google Scholar]
- Ścieszka, S.; Klewicka, E. Algae in food: A general review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3538–3547. [Google Scholar] [CrossRef]
- Markets and Markets. Algae Products Market. 2023. Available online: https://www.marketsandmarkets.com/Market-Reports/algae-product-market-250538721.html (accessed on 8 January 2024).
- Grand View Research. Global Algae Protein Market Size, Share & Growth Peport by Type (Microalgae, Macroalgae), by Source (Freshwater, Marine), by Application (Dietary Supplements, Human Food, Animal Feed), by Region, and Segment Forecasts, 2022–2030. 2023. Available online: https://www.grandviewresearch.com/industry-analysis/algae-protein-market (accessed on 8 January 2024).
- Yoshimura, M.; Akama, A. Radioactive contamination of aquatic insects in a stream impacted by the Fukushima nuclear power plant accident. Hydrobiologia 2014, 722, 19–30. [Google Scholar] [CrossRef]
- Kawai, H.; Kitamura, A.; Mimura, M.; Mimura, T.; Tahara, T.; Aida, D.; Sato, K.; Sasaki, H. Radioactive cesium accumulation in seaweeds by the Fukushima 1 Nuclear Power Plant accident—Two years’ monitoring at Iwaki and its vicinity. J. Plant Res. 2014, 127, 23–42. [Google Scholar] [CrossRef]
- Turner, A.; Pollock, H.; Brown, M.T. Accumulation of Cu and Zn from antifouling paint particles by the marine macroalga, Ulva lactuca. Environ. Pollut. 2009, 157, 2314–2319. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, R.A.; Pais, S.; Racamonde, I.; García-Rodríguez, D.; Carro, A.M. Pesticides in seaweed: Optimization of pressurized liquid extraction and in-cell clean-up and analysis by liquid chromatography–mass spectrometry. Anal. Bioanal. Chem. 2012, 404, 173–181. [Google Scholar] [CrossRef]
- Xu, D.; Xiao, Y.; Pan, H.; Mei, Y. Toxic effects of tetracycline and its degradation products on freshwater green algae. Ecotoxicol. Environ. Saf. 2019, 174, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Jeon, M.J.; Kim, W.G.; Kwon, H.; Kim, M.; Park, S.; Oh, H.S.; Han, M.; Kim, T.Y.; Shong, Y.K.; Kim, W.B. Excessive iodine intake and thyrotropin reference interval: Data from the Korean national health and nutrition examination survey. Thyroid 2017, 27, 967–972. [Google Scholar] [CrossRef]
- Kim, H.J.; Park, H.K.; Byun, D.W.; Suh, K.; Yoo, M.H.; Min, Y.-K.; Kim, S.W.; Chung, J.H. Iodine intake as a risk factor for BRAF mutations in papillary thyroid cancer patients from an iodine-replete area. Eur. J. Nutr. 2018, 57, 809–815. [Google Scholar] [CrossRef]
- Zimmermann, M.B. Iodine: It’s important in patients that require parenteral nutrition. Gastroenterology 2009, 137, S36–S46. [Google Scholar] [CrossRef]
- Wu, G.; Zhuang, D.; Chew, K.W.; Ling, T.C.; Khoo, K.S.; Quyen, D.V.; Feng, S.; Show, P.L. Algae food safety risks for human consumption. Molecules 2022, 27, 6633. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.K.; Rai, A.K. Allergenicity of airborne cyanobacteria Phormidium fragile and Nostoc muscorum. Ecotoxicol. Environ. Saf. 2008, 69, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Szabo, N.J.; Matulka, R.A.; Kiss, L.; Licari, P. Safety evaluation of a high lipid Whole Algalin Flour (WAF) from Chlorella protothecoides. Regul. Toxicol. Pharmacol. 2012, 63, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Heussner, A.H.; Mazija, L.; Fastner, J.; Dietrich, D.R. Toxin content and cytotoxicity of algal dietary supplements. Toxicol. Appl. Pharmacol. 2012, 265, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Hammann, M.; Rempt, M.; Pohnert, G.; Wang, G.; Boo, S.M.; Weinberger, F. Increased potential for wound activated production of Prostaglandin E-2 and related toxic compounds in non-native populations of Gracilaria vermiculophylla. Harmful Algae 2016, 51, 81–88. [Google Scholar] [CrossRef] [PubMed]
- van der Spiegel, M.; Noordam, M.Y.; van der Fels-Klerx, H.J. Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and papeseed) and legislative aspects for their application in food and feed production. Compr. Rev. Food Sci. Food Saf. 2013, 12, 662–678. [Google Scholar] [CrossRef] [PubMed]
- Banach, J.L.; Hoek-van den Hil, E.F.; van der Fels-Klerx, H.J. Food safety hazards in the European seaweed chain. Compr. Rev. Food Sci. Food Saf. 2020, 19, 332–364. [Google Scholar] [CrossRef]
- Choi, E.S.; Kim, N.H.; Kim, H.W.; Kim, S.A.; Jo, J.I.; Kim, S.H.; Lee, S.H.; Ho, S.D.; Rhee, M.S. Microbiological quality of seasoned roasted laver and potential hazard control in a real processing line. J. Food Protect. 2014, 77, 2069–2075. [Google Scholar] [CrossRef]
- Fleurence, J.; Morancais, M.; Dumay, J. Seaweed proteins. In Proteins in Food Processing, 2nd ed.; Woodhead Publishing: Sawston, UK, 2018; Chapter 9; pp. 245–262. [Google Scholar]
- Lourenco, S.O.; Barbarino, E.; De-Paila, J.C.; da, S. Pereira, L.O.; Lanfer Marquez, W.M. Amino acid composition, protein content and calculation of nitrogen-to-protein conversion factors for 19 tropical seaweeds. Phycol. Res. 2002, 50, 233–241. [Google Scholar] [CrossRef]
- Wang, Y.; Tibbetts, S.M.; McGinn, P.J. Microalgae as Sources of High-Quality Protein for Human Food and Protein Supplements. Foods 2021, 10, 3002. [Google Scholar] [CrossRef]
- Nosworthy, M.G.; Franczyk, A.J.; Medina, G.; Neufeld, J.; Appah, P.; Utioh, A.; Frohlich, P.; House, J.D. Effect of processing on the in vitro and in vivo protein quality of yellow and green dplit peas (Pisum sativum). J. Agric. Food Chem. 2017, 65, 7790–7796. [Google Scholar] [CrossRef] [PubMed]
- Galland-Irmouli, A.V.; Fleurence, J.; Lamghari, R.; Lucë, O.N.M.; Rouxel, C.; Barbaroux, O.; Bronowicki, J.P.; Villaume, C.; Gueâant, J.L. Nutritional value of proteins from edible seaweed Palmaria palmata (Dulse). J. Nutr. Biochem. 1999, 10, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Fleurence, J. Seaweed proteins: Biochemical, nutritional aspects and potential uses. Trends Food Sci. Technol. 1999, 10, 25–28. [Google Scholar] [CrossRef]
- Marrion, O.; Schwertz, A.; Fleurence, J.; Gueant, J.L.; Villaume, C. Improvement of the digestibility of the proteins of the red alga Palmaria palmata by physical processes and fermentation. Nahrung 2003, 5, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.P.T.; Fleurence, J.; Morancais, M.; Dumay, J. Mastocarpus stellatus as a source of R-phycoerythrin: Optimization of enzyme assisted extraction using response surface methodology. J. Appl. Phycol. 2017, 29, 1563–1570. [Google Scholar] [CrossRef]
- Chen, C.; Xia, S.F.; He, J.; Lu, G.; Xie, Z.; Han, H. Roles of taurine in cognitive function of physiology, pathologies and toxication. Life Sci. 2019, 231, 116584. [Google Scholar] [CrossRef] [PubMed]
- Robin, A.; Kazir, M.; Sack, M.; Israel, A.; Frey, W.; Mueller, G.; Livney, Y.D.; Golberg, A. Functional protein concentrates extracted from the green marine macroalga Ulva sp., by high voltage pulsed electric fields and mechanical press. ACS Sustain. Chem. Eng. 2018, 6, 13696–13705. [Google Scholar] [CrossRef]
- Sheih, I.; Fang, T.J.; We, T.; Lin, P. Anticancer and antioxidant activities of the peptide fraction from algae protein waste. J. Agric. Food Chem. 2010, 58, 1202–1207. [Google Scholar] [CrossRef]
- Kazir, M.; Abuhassira, Y.; Robin, A.; Nahor, O.; Luo, J.; Israel, A.; Golberg, A.; Livney, Y.E. Extraction of proteins from two marine macroalgae, Ulva sp. and Gracilaria sp., for food application, and evaluating digestibility, amino acid composition and antioxidant properties of the protein concentrates. Food Hydrocoll. 2019, 87, 194–203. [Google Scholar] [CrossRef]
- Zheng, W.; Duan, M.; Jia, J.; Song, S.; Ai, C. Low-molecular alginate improved diet-induced obesity and metabolic syndrome through modulating the gut microbiota in BALB/c mice. Int. J. Biol. Macromol. 2021, 187, 811–820. [Google Scholar] [CrossRef]
- da Silva Chagas, F.D.; Lima, G.C.; Dos Santos, V.I.; Costa, L.E.; de Sousa, W.M.; Sombra, V.G.; de Araújo, D.F.; Barros, F.C.; Marinho-Soriano, E.; de Andrade Feitosa, J.P.; et al. Sulfated polysaccharide from the red algae Gelidiella acerosa: Anticoagulant, antiplatelet and antithrombotic effects. Int. J. Biol. Macromol. 2020, 159, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zhu, S.; Li, S.; Feng, Y.; Wu, H.; Zeng, M. Microalgae polysaccharides ameliorates obesity in association with modulation of lipid metabolism and gut microbiota in high-fat-diet fed C57BL/6 mice. Int. J. Biol. Macromol. 2021, 182, 1371–1383. [Google Scholar] [CrossRef] [PubMed]
- Teuling, E.; Wierenga, P.A.; Schrama, J.W.; Gruppen, H. Comparison of Protein Extracts from Various Unicellular Green Sources. J. Agric. Food Chem. 2017, 65, 7989–8002. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, L.; Ebert, S.; Hinrichs, J.; Weiss, J. Effect of precipitation, lyophilization, and organic solvent extraction on preparation of protein-rich powders from the microalgae Chlorella protothecoides. Algal Res. 2018, 29, 266–276. [Google Scholar] [CrossRef]
- Grossmann, L.; Hinrichs, J.; Weiss, J. Solubility of extracted proteins from Chlorella sorokiniana, Phaeodactylum tricornutum, and Nannochloropsis oceanica: Impact of pH-value. LWT 2019, 105, 408–416. [Google Scholar] [CrossRef]
- Schwenzfeier, A.; Helbig, A.; Wierenga, P.A.; Gruppen, H. Emulsion properties of algae soluble protein isolate from Tetraselmis sp. Food Hydrocoll. 2012, 30, 258–263. [Google Scholar] [CrossRef]
- Chronakis, I.S.; Galatanu, A.N.; Nylander, T.; Lindman, B. The behaviour of protein preparations from blue-green algae (Spirulina platensis strain Pacifica) at the air/water interface. Colloids Surf. A Physicochem. Eng. Asp. 2000, 173, 181–192. [Google Scholar] [CrossRef]
- Schwenzfeier, A.; Lech, F.; Wierenga, P.A.; Eppink, M.H.; Gruppen, H. Foam properties of algae soluble protein isolate: Effect of pH and ionic strength. Food Hydrocoll. 2013, 33, 111–117. [Google Scholar] [CrossRef]
- Ursu, A.V.; Marcati, A.; Sayd, T.; Sante-Lhoutellier, V.; Djelveh, G.; Michaud, P. Extraction, fractionation and functional properties of proteins from the microalgae Chlorella vulgaris. Bioresour. Technol. 2014, 157, 134–139. [Google Scholar] [CrossRef]
- Suarez Garcia, E.; van Leeuwen, J.; Safi, C.; Sijtsma, L.; Eppink, M.H.M.; Wijffels, R.H.; van den Berg, C. Selective and energy efficient extraction of functional proteins from microalgae for food applications. Bioresour. Technol. 2018, 268, 197–203. [Google Scholar] [CrossRef]
- Waghmare, A.G.; Salve, M.K.; LeBlanc, J.G.; Arya, S.S. Concentration and characterization of microalgae proteins from Chlorella pyrenoidosa. Bioresour. Bioprocess. 2016, 3, 16. [Google Scholar] [CrossRef]
- Lafarga, T. Effect of microalgal biomass incorporation into foods: Nutritional and sensorial attributes of the end products. Algal Res. 2019, 41, 101566. [Google Scholar] [CrossRef]
- Nova, P.; Martins, A.P.; Teixeira, C.; Abreu, H.; Silva, J.G.; Silva, A.M.; Freitas, A.C.; Gomes, A.M. Foods with microalgae and seaweeds fostering consumers health: A review on scientific and market innovations. J. Appl. Phycol. 2020, 32, 1789–1802. [Google Scholar] [CrossRef]
- Malik, P.; Kempanna, C.; Paul, A. Quality characteristics of ice cream enriched with Spirulina powder. Int. J. Food Nutr. Sci. 2013, 2, 44–50. [Google Scholar]
- Sidari, R.; Tofalo, R. A comprehensive overview on microalgal-fortified/based food and beverages. Food Rev. Int. 2019, 35, 778–805. [Google Scholar] [CrossRef]
- García, J.L.; De Vicente, M.; Galán, B. Microalgae, old sustainable food and fashion nutraceuticals. Microb. Biotechnol. 2017, 10, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Mouritsen, O.G.; Williams, L.; Bjerregaard, R.; Duelund, L. Seaweeds for umami flavour in the New Nordic Cuisine. Flavour 2012, 1, 4. [Google Scholar] [CrossRef]
- Coleman, B.; Van Poucke, C.; Dewitte, B.; Ruttens, A.; Moerdijk-Poortvliet, T.; Latsos, C.; De Reu, K.; Blommaert, L.; Duquenne, B.; Timmermans, K.; et al. Potential of microalgae as flavoring agents for plant-based seafood alternatives. Future Foods 2022, 5, 100139. [Google Scholar] [CrossRef]
- Isleten Hosoglu, M. Aroma characterization of five microalgae species using solid-phase microextraction and gas chromatography–mass spectrometry/olfactometry. Food Chem. 2018, 240, 1210–1218. [Google Scholar] [CrossRef]
- Mendes, M.C.; Navalho, S.; Ferreira, A.; Paulino, C.; Figueiredo, D.; Silva, D.; Gao, F.; Gama, F.; Bombo, G.; Jacinto, R.; et al. Algae as food in rurope: An overview of species diversity and their application. Foods 2022, 11, 1871. [Google Scholar] [CrossRef]
- Batista, A.P.; Niccolai, A.; Fradinho, P.; Fragoso, S.; Bursic, I.; Rodolfi, L.; Biondi, N.; Tredici, M.R.; Sousa, I.; Raymundo, A. Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Res. 2017, 26, 141–171. [Google Scholar] [CrossRef]
- Grahl, S.; Palanisamy, M.; Strack, M.; Meier-Dinkel, L.; Toepfl, S.; Mörlein, D. Towards more sustainable meat alternatives: How technical parameters affect the sensory properties of extrusion products derived from soy and algae. J. Clean. Prod. 2018, 198, 962–971. [Google Scholar] [CrossRef]
- Barkallah, M.; Dammak, M.; Louati, I.; Hentati, F.; Hadrich, B.; Mechichi, T.; Ayadi, M.A.; Fendri, I.; Attia, H.; Abdelkafi, S. Effect of Spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage. LWT 2017, 84, 323–330. [Google Scholar] [CrossRef]
- Lucas, B.F.; de Morais, M.G.; Santos, T.D.; Costa, J.A.V. Spirulina for snack enrichment: Nutritional, physical and sensory evaluations. LWT 2018, 90, 270–276. [Google Scholar] [CrossRef]
- Atitallah, A.B.; Hentati, F.; Dammak, M.; Hadrich, B.; Fendri, I. Effect of microalgae incorporation on quality characteristics and functional and antioxidant capacities of ready-to-eat fish burgers made from common carp (Cyprinus carpio). Appl. Sci. 2019, 9, 1830. [Google Scholar] [CrossRef]
- Marti-Quijal, F.J.; Zamuz, S.; Tomašević, I.; Gómez, B.; Rocchetti, G.; Lucini, L.; Lorenzo, J.M. Influence of different sources of vegetable, whey and microalgae proteins on the physicochemical properties and amino acid profile of fresh pork sausages. LWT. 2019, 110, 316–323. [Google Scholar] [CrossRef]
- Parniakov, O.; Toepfl, S.; Barba, F.J.; Granato, D.; Lorenzo, M.; Zamuz, S.; Lorenzo, M. Impact of the soy protein replacement by legumes and algae based proteins on the quality of chicken rotti. J. Food Sci. Technol. 2018, 55, 2552–2559. [Google Scholar] [CrossRef]
- Žugčić, T.; Abdelkebir, R.; Barba, F.J.; Rezek-Jambrak, A.; Gálvez, F.; Zamuz, S.; Granato, D.; Lorenzo, J.M. Effects of pulses and microalgal proteins on quality traits of beef patties. J. Food Sci. Technol. 2018, 55, 4544–4553. [Google Scholar] [CrossRef]
- Barkallah, M.; Ben Atitallah, A.; Hentati, F.; Dammak, M.; Hadrich, B.; Fendri, I.; Ayadi, M.A.; Michaud, P.; Abdelkafi, S. Effect of Spirulina platensis biomass with high polysaccharides content on quality attributes of common Carp (Cyprinus carpio) and Common Barbel (Barbus barbus) fish burgers. Appl. Sci. 2019, 9, 2197. [Google Scholar] [CrossRef]
- Zhang, W.; Boateng, I.S.; Xu, J. Novel marine proteins as a global protein supply and human nutrition: Extraction, bioactivities, potential applications, safety assessment, and deodorization technologies. Trends Food Sci. 2024, 143, 104283. [Google Scholar] [CrossRef]
- Michel, F.; Knaapila, A.; Hartmann, C.; Siegrist, M. A multi-national comparison of meat eaters’ attitudes and expectations for burgers containing beef, pea or algae protein. Food Qual. Prefer. 2021, 91, 104195. [Google Scholar] [CrossRef]
- van der Stricht, H.; Hung, Y.; Fischer, A.R.H.; Verbeke, W. Consumer segments less or more willing to adopt foods with microalgae proteins. Food Qual. Prefer. 2024, 113, 105047. [Google Scholar] [CrossRef]
- Mellor, C.; Embling, R.; Neilson, L.; Randall, T.; Wakeham, C.; Lee, M.D.; Wilkinson, L.L. Consumer knowledge and acceptance of “algae” as a protein alternative: A UK-based qualitative study. Foods 2022, 11, 1703. [Google Scholar] [CrossRef] [PubMed]
- Weickert, S.; Grahl, S.; Weinrich, R. Algae production technology: Effect of framing on German consumer acceptance. Algal Res. 2021, 58, 102401. [Google Scholar] [CrossRef]
- Lafarga, T.; Rodríguez-Bermúdez, R.; Morillas-España, A.; Villaró, S.; García-Vaquero, M.; Morán, L.; Sánchez-Zurano, A.; González-López, C.V.; Acién-Fernández, F.G. Consumer knowledge and attitudes towards microalgae as food: The case of Spain. Algal Res. 2021, 54, 102174. [Google Scholar] [CrossRef]
- Denny, A.; Aisbitt, B.; Lunn, J. Mycoprotein and Health. Nutr. Bull. 2008, 33, 298–310. [Google Scholar] [CrossRef]
- Wiebe, M.G. QuornTM mycoprotein-overview of a successful fungal product. Mycologist 2004, 18, 17–20. [Google Scholar] [CrossRef]
- Liang, J.; Xu, N.; Nedele, A.K.; Rigling, M.; Zhu, L.; Zhang, Y.; Zhang, Y. Upcycling of soy whey with Ischnoderma benzoinum toward production of bioflavors and mycoprotein. J. Agric. Food Chem. 2023, 71, 9070–9079. [Google Scholar] [CrossRef]
- Umesh, M.; Suresh, S.; Santosh, A.S.; Prasad, S.; Chinnathambi, A.; Al Obaid, S.; Jhanani, G.K.; Shanmugam, S. Valorization of pineapple peel waste for fungal pigment production using Talaromyces albobiverticillius: Insights into antibacterial, antioxidant and textile dyeing properties. Environ. Res. 2023, 229, 115973. [Google Scholar] [CrossRef]
- Reihani, S.F.S.; Khosravi-Darani, K. Mycoprotein production from date waste using Fusarium venenatum in a submerged culture. Appl. Food Biotechnol. 2018, 5, 243–352. [Google Scholar] [CrossRef]
- Ahlborn, J.; Stephan, A.; Meckel, T.; Maheshwari, G.; Rühl, M.; Zorn, H. Upcycling of food industry side streams by basidiomycetes for production of a vegan protein source. Int. J. Recycl. Org. Waste Agric. 2019, 8, 447–455. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Khosravi-Darani, K. Response surface methodology for mycoprotein production by Fusarium venenatum ATCC 20334. J. Bioprocess Biotech. 2011, 1, 1–5. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, R.; Zhang, Y.; Li, J.; Gooneratne, R. Effect of amino acids on Fusarium oxysporum growth and pathogenicity regulated by TORC1-Tap42 gene and related interaction protein analysis. Foods 2023, 12, 1829. [Google Scholar] [CrossRef] [PubMed]
- Dudekula, U.T.; Doriya, K.; Devarai, S.K. A critical review on submerged production of mushroom and their bioactive metabolites. 3 Biotech. 2020, 10, 337. [Google Scholar] [CrossRef] [PubMed]
- Salgado, C.L.; Muñoz, R.; Blanco, A.; Lienqueo, M.E. Valorization and upgrading of the nutritional value of seaweed and seaweed waste using the marine fungi Paradendryphiella salina to produce mycoprotein. Algal Res. 2021, 53, 102135. [Google Scholar] [CrossRef]
- Upcraft, T.; Tu, W.; Johnson, R.; Finnigan, T.; Hung, N.V.; Hallett, J.; Guo, M. Protein from renewable resources: Mycoprotein production from agricultural residues. Green. Chem. 2021, 23, 5150–5165. [Google Scholar] [CrossRef]
- Finnigan, T.; Needham, L.; Abbott, C. Mycoprotein: A healthy new protein with a low environmental impact. In Sustainable Protein Sources; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar] [CrossRef]
- Gerbens-Leenes, P.; Mekonnen, M.; Hoekstra, A.Y. The water footprint of poultry, pork and beef: A comparative study in different countries and production systems. Water Resour. Ind. 2013, 1, 25–36. [Google Scholar] [CrossRef]
- Matassa, S.; Boon, N.; Pikaar, I.; Verstraete, W. Microbial protein: Future sustainable food supply route with low environmental footprint. Microb. Biotechnol. 2016, 9, 568–575. [Google Scholar] [CrossRef]
- Saeed, F.; Afzaal, M.; Khalid, A.; Shah, Y.A.; Ateeq, H.; Islam, F.; Akram, N.; Ejaz, A.; Nayik, G.A.; Shah, M.A. Role of mycoprotein as a non-meat protein in food security and sustainability: A review. Int. J. Food Prop. 2023, 26, 683–695. [Google Scholar] [CrossRef]
- Asgar, M.; Fazilah, A.; Huda, N.; Bhat, R.; Karim, A. Nonmeat Protein Alternatives as Meat Extenders and Meat Analogues. Compr. Rev. Food Sci. Food Saf. 2010, 9, 513–529. [Google Scholar] [CrossRef]
- Quorn. Net Positive Report 2022. 2022. Available online: https://www.quorn.co.uk/files/content/Sustainability-Report-2022.pdf (accessed on 12 January 2024).
- Majumder, R.; Miatur, S.; Saha, A.; Hossain, S. Mycoprotein: Production and nutritional aspects: A review. Sustain. Food Technol. 2024, 2, 81–91. [Google Scholar] [CrossRef]
- Research and Markets. Mycoprotein—Global Strategic Business Report. 2024. Available online: https://www.researchandmarkets.com/report/mycoprotein (accessed on 12 January 2024).
- Furey, B.; Slingerland, K.; Bauter, M.R.; Dunn, C.; Goodman, R.E.; Koo, S. Safety evaluation of Fy protein™ (nutritional fungi protein), a macro ingredient for human consumption. Food Chem. Toxicol. 2022, 166, 113005. [Google Scholar] [CrossRef] [PubMed]
- Hashempour-Baltork, F.; Hosseini, S.M.; Assarehzadegan, M.A.; Khosravi-Darani, K.; Hosseini, H. Safety assays and nutritional values of mycoprotein produced by Fusarium venenatum IR372C from date waste as substrate. J. Sci. Food Agric. 2020, 100, 4433–4441. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.F.; DePorter, J. Self-reported adverse reactions associated with mycoprotein (Quorn-brand) containing foods. Ann. Allergy Asthma Immunol. 2018, 120, 626–630. [Google Scholar] [CrossRef]
- Tee, R.D.; Gordon, D.J.; Welch, J.A.; Newman Taylor, A.J. Investigation of possible adverse allergic reactions to mycoprotein (‘Quorn’). Clin. Exp. Allergy 1993, 23, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Finnigan, T.J.A.; Wall, B.T.; Wilde, P.J.; Stephens, F.B.; Taylor, S.L.; Freedman, M.R. Mycoprotein: The future of nutritious nonmeat protein, a symposium review. Curr. Dev. Nutr. 2019, 3, nzz021. [Google Scholar] [CrossRef]
- Bartholomai, B.M.; Ruwe, K.M.; Thurston, J.; Jha, P.; Scaife, L.; Simon, R.; Abdelmoteleb, N.; Goodman, R.E.; Farhi, M. Safety evaluation of Neurospora crassa mycoprotein for use as a novel meat alternative and enhancer. Food Chem. Toxicol. 2022, 168, 113342. [Google Scholar] [CrossRef]
- Xing, H.; Wang, J.; Sun, Y.; Wang, H. Recent advances in the allergic cross-reactivity between fungi and foods. J. Immunol. Res. 2022, 2022, 7583400. [Google Scholar] [CrossRef]
- Muthukumar, J.; Selvasekaran, P.; Lokanadham, M.; Chidambaram, R. Food and food products associated with food allergy and food intolerance–an overview. Food Res. Inter. 2020, 138, 109780. [Google Scholar] [CrossRef]
- Kurek, M.A.; Onopiuk, A.; Pogorzelska-Nowicka, E.; Szpicer, A.; Zalewska, M.; Półtorak, A. Novel protein sources for applications in meat-alternative products—Insight and challenges. Food 2022, 11, 957. [Google Scholar] [CrossRef]
- Harris, H.C.; Edwards, C.A.; Morrison, D.J. Short chain fatty acid production from mycoprotein and mycoprotein fibre in an in vitro fermentation model. Nutrients 2019, 11, 800. [Google Scholar] [CrossRef] [PubMed]
- Cherta-Murillo, A.; Lett, A.M.; Frampton, J.; Chambers, E.S.; Finnigan, T.J.A.; Frost, G.S. Effects of mycoprotein on glycaemic control and energy intake in humans: A systematic review. Br. J. Nutr. 2020, 123, 1321–1332. [Google Scholar] [CrossRef] [PubMed]
- Bottin, J.H.; Swann, J.R.; Cropp, E.; Chambers, E.S.; Ford, H.E.; Ghatei, M.A.; Frost, G.S. Mycoprotein reduces energy intake and postprandial insulin release without altering glucagon-like peptide-1 and peptide tyrosine-tyrosine concentrations in healthy overweight and obese adults: A randomised-controlled trial. Br. J. Nutr. 2016, 116, 360–374. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, M.V.; Kilroe, S.P.; Bowtell, J.L.; Finnigan, T.J.A.; Salmon, D.L.; Wall, B.T. Mycoprotein represents a bioavailable and insulinotropic non-animal-derived dietary protein source: A dose-response study. Br. J. Nutr. 2017, 118, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Ruxton, C.H.; McMillan, B. The impact of mycoprotein on blood cholesterol levels: A pilot study. Br. Food J. 2010, 112, 1092–1101. [Google Scholar] [CrossRef]
- Thomas, A.B.; Shetane, T.D.; Singha, R.G.; Nanda, R.K.; Poddar, S.S.; Shirsat, A. Employing central composite design for evaluation of biomass production by Fusarium venenatum: In vivo antioxidant and antihyperlipidemic properties. Appl. Biochem. Biotechnol. 2017, 183, 91–109. [Google Scholar] [CrossRef] [PubMed]
- Colosimo, R.; Mulet-Cabero, A.M.; Warren, F.J.; Edwards, C.H.; Finnigan, T.J.A.; Wilde, P.J. Mycoprotein ingredient structure reduces lipolysis and binds bile salts during simulated gastrointestinal digestion. Food Funct. 2020, 11, 10896–10906. [Google Scholar] [CrossRef] [PubMed]
- West, S.; Monteyne, A.J.; Whelehan, G.; van der Heijden, I.; Abdelrahman, D.R.; Murton, A.J.; Fommogan, T.J.; Stephens, F.B.; Wall, B.T. Ingestion of mycoprotein, pea protein, and their blend support comparable postexercise myofibrillar protein synthesis rates in resistance-trained individuals. Am. J. Physiol. Endocrinol. Metab. 2023, 325, E267–E279. [Google Scholar] [CrossRef]
- Shahid, M.; Gaines, A.; Coyle, D.; Alessandrini, R.; Finnigan, T.; Frost, G.; Marklund, M.; Neal, B. The effect of mycoprotein intake on biomarkers of human health: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2023, 118, 141–150. [Google Scholar] [CrossRef]
- Lonchamp, J.; Akintoye, M.; Clegg, P.S.; Euston, S.R. Sonicated extracts from the Quorn fermentation co-product as oil-lowering emulsifiers and foaming agents. Eur. Food Res. Technol. 2020, 246, 767–780. [Google Scholar] [CrossRef]
- Zeng, B.; Nilssom, K.; Teixeira, P.G.; Bergenstahl, B. Study of mycoprotein extraction methods and its functional properties. Colloids Surf. A Physicochem. Eng. Asp. 2023, 659, 130800. [Google Scholar] [CrossRef]
- Lonchamp, J.; Stewart, K.; Munialo, C.D.; Evans, L.; Akintoye, M.; Gordon, S.; Clegg, P.S.; Willoughby, N.; Euston, S.R. Mycoprotein as novel functional ingredient: Mapping of functionality, composition and structure throughout the Quorn fermentation process. Food Chem. 2022, 396, 133736. [Google Scholar] [CrossRef] [PubMed]
- Lonchamp, J.; Clegg, P.S.; Euston, S.R. Foaming, emulsifying and rheological properties of extracts from a co-product of the Quorn fermentation process. Eur. Food Res. Technol. 2019, 245, 1825–1839. [Google Scholar] [CrossRef]
- Gibbs, J.; Leung, G. The Effect of Plant-Based and Mycoprotein-Based Meat Substitute Consumption on Cardiometabolic Risk Factors: A Systematic Review and Meta-Analysis of Controlled Intervention Trials. Dietetics 2023, 2, 104–122. [Google Scholar] [CrossRef]
- Singh, M.; Trivedi, N.; Enamala, M.K.; Kuppam, C.; Parikh, P.; Nikolova, M.P.; Chavali, M. Plant-Based Meat Analogue (PBMA) as a Sustainable Food: A Concise Review. Eur. Food Res. Technol. 2021, 247, 2499–2526. [Google Scholar] [CrossRef]
- Barzee, T.J.; Cao, L.; Pan, Z.; Zhang, R. Fungi for future foods. J. Future Foods 2021, 1, 25–37. [Google Scholar] [CrossRef]
- Shahbazpour, N.; Khosravi-Darani, K.; Sharifan, A.; Hosseini, H. Replacement of meat by mycoproteins in cooked sausages: Effects on oxidative stability, texture, and color. Ital. J. Food Sci. 2021, 33, 163–169. [Google Scholar] [CrossRef]
- Elzerman, J.E.; Hoek, A.C.; Van Boekel, M.A.; Luning, P.A. Consumer acceptance and appropriateness of meat substitutes in a meal context. Food Qual. Prefer. 2011, 22, 233–240. [Google Scholar] [CrossRef]
- Dean, D.; Rombach, M.; Koning, W.D.; Vriesekoop, F.; Satyajaya, W.; Yuliandari, P.; Anderson, M.; Mongondry, P.; Urbano, B.; Luciano, C.A.G.; et al. Understanding key factors influencing consumers’ willingness to try, buy, and pay a price premium for mycoproteins. Nutrients 2022, 14, 3292. [Google Scholar] [CrossRef]
- Chezan, D.; Flannery, O.; Patel, A. Factors affecting consumer attitudes to fungi-based protein: A pilot study. Appetite 2022, 175, 106403. [Google Scholar] [CrossRef]
- Ziarno, M.; Cichonska, P. Lactic acid bacteria-fermentable cereal- and pseudocereal-based beverages. Microorganisms 2021, 9, 2532. [Google Scholar] [CrossRef] [PubMed]
- Cichonska, P.; Ziarno, M. Legumes and legume-based beverages fermented with lactic acid bacteria as a potential carrier of probiotics and prebiotics. Microorganisms 2022, 10, 91. [Google Scholar] [CrossRef] [PubMed]
- Mitloehner, F. Livestock’s Contributions to Climate Change: Facts and Fiction. 2017. Available online: https://cekern.ucanr.edu/files/256942.pdf (accessed on 12 January 2024).
- US Dairy Export Council. A New Era for Protein: Why U.S. Dairy Delivers in the Crowded Protein Marketplace. 2018. Available online: https://www.thinkusadairy.org/resources-and-insights/resources-and-insights/application-and-technical-materials/a-new-era-for-protein-why-us-dairy-delivers-in-the-crowded-protein-marketplace (accessed on 28 December 2023).
- Geada, P.; Moreira, C.; Silva, M.; Nunes, R.; Madureira, L.; Rocha, C.M.R.; Pereira, R.N.; Vicente, A.A.; Teixeira, J.A. Algal proteins: Production strategies and nutritional and functional properties. Bioresour. Technol. 2021, 332, 125125. [Google Scholar] [CrossRef] [PubMed]
- Schouteten, J.J.; Steur, H.D.; Pelsmoeker, S.D.; Lagast, S.; Juvinal, J.G.; Bourdeaudhuij, I.D.; Verbeke, W.; Gellynck, X. Emotional and sensory profiling of insect-, plant- and meat-based burgers under blind, expected and informed conditions. Food Qual. Prefer. 2016, 52, 27–31. [Google Scholar] [CrossRef]
- Anchel, D. Methods and Compositions for Egg White Protein Production. 2015. Available online: https://patents.google.com/patent/US11518797B2/en (accessed on 18 January 2024).
- Geistlinger, T.; Jhala, R.; Krueger, K.P.; Ramesh, B. Food Products Comprising Milk Proteins and Non-Animal Proteins, and Methods of Producing the Same. 2019. Available online: https://patents.google.com/patent/US20190216106A1/en (accessed on 18 January 2024).
- Ouzounov, N.; Mellin, J.R.; Co, J. Animal-Free Dietary Collagen. 2021. Available online: https://patents.google.com/patent/US11174300B2/en (accessed on 18 January 2024).
- Li, C.P.; Enomoto, H.; Hayashi, Y.; Zhao, H.; Aoki, T. Recent advances in phosphorylation of food proteins: A review. LWT 2010, 43, 1295–1300. [Google Scholar] [CrossRef]
- Siddique, A.; Tayyaba, T.; Imran, M.; Rahman, A. Chapter 12—Biotechnology applications in precision food. In Biotechnology in Healthcare; Academic Press: Cambridge, MA, USA, 2022; pp. 197–222. [Google Scholar] [CrossRef]
- Verbeke, W.; Marcu, A.; Rutsaert, P.; Gaspar, R.; Seibt, B.; Fletcher, D.; Barnett, J. Would you eat cultured meat?’: Consumers’ reactions and attitude formation in Belgium, Portugal and the United Kingdom. Meat Sci. 2015, 102, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Slade, P. If you build it, will they eat it? Consumer preferences for plant-based and cultured meat burgers. Appetite 2018, 125, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.K. Meat. In Springer Handbook of Odor; Buettner, A., Ed.; Springer: Cham, Switzerland, 2017; pp. 191–221. [Google Scholar]
- Fraeye, I.; Kratka, M.; Vandenburgh, H.; Thorrez, L. Sensorial and nutritional aspects of cultured meat in comparison to traditional meat: Much to be inferred. Front. Nutr. 2020, 7, 35. [Google Scholar] [CrossRef]
- Post, M.J.; Hocquette, J.F. New sources of animal proteins in vitro meat. In New Aspects of Meat Quality; Elsevier: Cambridge, UK, 2017; pp. 425–441. [Google Scholar]
- Simsa, R.; Yuen, J.; Stout, A.; Rubio, N.; Fogelstrand, P.; Kaplan, D.L. Extracellular heme proteins influence bovine myosatellite cell proliferation and the color of cell-based meat. Foods 2019, 8, 521. [Google Scholar] [CrossRef]
- Kuppusamy, P.; Kim, D.; Soundharrajan, I.; Hwang, I.; Choi, K.C. Adipose and muscle cell co-culture system: A novel in vitro tool to mimic the in vivo cellular environment. Biology 2020, 10, 6. [Google Scholar] [CrossRef]
- Levi, S.; Yen, F.C.; Baruch, L.; Machluf, M. Scaffolding technologies for the engineering of cultured meat: Towards a safe, sustainable, and scalable production. Trends Food Sci. Technol. 2022, 126, 13–25. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Kumar, S.; Fayaz, H. In vitro meat production: Challenges and benefits over conventional meat production. J. Integr. Agric. 2015, 14, 241–248. [Google Scholar] [CrossRef]
- Broucke, K.; Pamel, E.V.; Coillie, E.V.; Herman, L.; Royen, G.V. Cultured meat and challenges ahead: A review on nutritional, technofunctional and sensorial properties, safety and legislation. Meat Sci. 2023, 195, 109006. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Jeon, D.S.; Kim, H.; Jang, H.; Kim, M.H. View-dependent Scene Appearance Synthesis using Inverse Rendering from Light Fields. In Proceedings of the 2021 IEEE International Conference on Computational Photography, Haifa, Israel, 23–25 May 2021; p. 20758133. Available online: https://ieeexplore.ieee.org/document/9466274 (accessed on 18 January 2024).
- Singh, S.; Yap, W.S.; Ge, X.Y.; Min, V.L.X.; Choudhury, D. Cultured meat production fuelled by fermentation. Trends Food Sci. 2022, 120, 48–58. [Google Scholar] [CrossRef]
- Antoniak, M.A.; Szymkowiak, A.; Peplinski, B. The Source of Protein or Its Value? Consumer Perception Regarding the Importance of Meat(-like) Product Attributes. Appl. Sci. 2022, 12, 4128. [Google Scholar] [CrossRef]
- Moss, R.; Barker, S.; Falkeisen, A.; Gorman, M.; Knowles, S.; McSweeney, M.B. An investigation into consumer perception and attitudes towards plant-based alternatives to milk. Food Res. Int. 2022, 159, 111648. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, L.; Falkeisen, A.; Knowles, S.; Gorman, M.; Barker, S.; Moss, R.; McSweeney, M.B. Consumer Perception and Acceptability of Plant-Based Alternatives to Chicken. Foods 2022, 11, 2271. [Google Scholar] [CrossRef] [PubMed]
- Röös, E.; de Groote, A.; Stephan, A. Meat tastes good, legumes are healthy and meat substitutes are still strange—The practice of protein consumption among Swedish consumers. Appetite 2022, 174, 106002. [Google Scholar] [CrossRef]
- Hartmann, C.; Furtwaengler, P.; Siegrist, M. Consumers’ evaluation of the environmental friendliness, healthiness and naturalness of meat, meat substitutes, and other protein-rich foods. Food Qual. Prefer. 2022, 97, 104486. [Google Scholar] [CrossRef]
- Grymshi, D.; Cresoi-Cebada, E.; Elghannam, A.; Mesias, F.J.; Diaz-caro, C. Understanding consumer attitudes towards ecolabeled food products: A latent class analysis regarding their purchasing motivations. Agribusiness 2022, 38, 93–107. [Google Scholar] [CrossRef]
- Reijnders, L.; Sam, S. Quantification of the Environmental Impact of Different Dietary Protein Choices. Am. J. Clin. Nutr. 2003, 78, 664–668. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Clark, M. Global Diets Link Environmental Sustainability and Human Health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Saget, S.; Costa, M.P.; Santos, C.S.; Vasconcelos, M.; Styles, D.; Williams, M. Comparative life cycle assessment of plant and beef-based patties, including carbon opportunity costs. Sustain. Prod. Consum. 2021, 28, 936–952. [Google Scholar] [CrossRef]
- Bryant, C. Plant-based animal product alternatives are healthier and more environmentally sustainable than animal products. Future Foods 2022, 6, 100174. [Google Scholar] [CrossRef]
- Friis, C.; Nielsen, J.; Otero, I.; Haberl, H.; Niewöhner, J.; Hostert, P. From teleconnection to telecoupling: Taking stock of an emerging framework in land system science. J. Land. Use Sci. 2016, 11, 131–153. [Google Scholar] [CrossRef]
- Newman, L.; Newell, R.; Mendly-Zambo, Z.; Powell, L. Bioengineering, telecoupling, and alternative dairy: Agricultural land use futures in the Anthropocene. Geogr. J. 2021, 188, 342–357. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Protein ingredients (dairy/milk protein, plant proteins, precision fermentation protein, cell-cultured protein) are the primary part or a part of the study. | Publications that were not peer-reviewed |
Studies must cover at least one of the following topics: definition, composition, processing, regulation, market, safety, protein quality nutrition, diseases risks, functional properties, applications, sensory properties, and consumer perception. | Studies published before 2000 |
Studies published in scientific journals | |
Studies published in English | |
Studies based on primary data | |
Studies of subjects within the following categories: agriculture, food studies, environmental sciences, health sciences, public policy and administration, science and technology, and sustainability. |
Types | Source | PDCAAS | References |
---|---|---|---|
Dairy | Casein | 1.00 | Schaafsma, 2005 [90] |
Milk | 1.00 | Marinangeli and House, 2017 [91] | |
Whey | 1.00 | Huang et al., 2018 [92] | |
Plants | Almond | 0.39 | Marinangeli and House, 2017 [93] |
Black beans | 0.72 | Schaafsma, 2005 [90] | |
Chickpeas | 0.74 | Marinangeli and House, 2017 [91] | |
Green lentils | 0.63 | Marinangeli and House, 2017 [91] | |
Green peas | 0.50 | Nosworthy et al., 2017 [93] | |
Navy beans | 0.67 | Marinangeli and House, 2017 [91] | |
Oats | 0.82 | Marinangeli and House, 2017 [91] | |
Red kidney beans | 0.55 | Nosworthy et al., 2017 [93] | |
Red lentils | 0.54 | Marinangeli and House, 2017 [91] | |
Soy protein concentrate | 1.00 | van den Berg et al., 2022 [94] | |
Soy protein isolate | 1.00 | Hughes et al., 2011; Huang et al., 2018 [95,96] | |
Soybeans | 0.82 | van den Berg et al., 2022 [94] | |
Sunflower seeds | 0.66 | Marinangeli and House, 2017 [91] | |
White rice | 0.56 | Nosworthy et al., 2017 [93] | |
Yellow peas | 0.64 | Nosworthy et al., 2017 [93] | |
Algae | Acutodesmus obliquus | 0.46 | Wang et al., 2020 [97] |
Alaria esculenta | 0.59 | De Bhowmick and Hayes, 2022 [98] | |
Arthrospira platensis | 0.84 | Palinska and Krumbein, 2000 [99] | |
Asparagopsis taxiformis | 0.31 | De Bhowmick and Hayes, 2022 [98] | |
Chlorella sorokiniana | 0.81 | Takeda, 1998; Wang et al., 2020 [97,100] | |
Chlorella vulgaris | 0.77 | Rodrigues and da Silva Bon, 2011; Wang et al., 2020 [97,101] | |
Fucus serratus | 0.63 | De Bhowmick and Hayes, 2022 [98] | |
Fucus vesiculosus | 0.08 | De Bhowmick and Hayes, 2022 [98] | |
Hermetia illucens L. | 0.75 | Traksele et al., 2021 [102] | |
Nannochloropsis oceanica | 0.36 | Eilam et al., 2023 [103] | |
Palmaria palmata | 0.69 | De Bhowmick and Hayes, 2022 [98] | |
Porphyra columbina | 0.33 | Cian et al., 2014 [104] | |
Scenedesmus obliquus | 0.29 | Williamson et al., 2023 [105] | |
Ulva lactuca | 0.15 | De Bhowmick and Hayes, 2022 [98] | |
Fungi | Fusarium venenatum | 1.00 | Edwards and Cummings, 2010 [37] |
Protein Source | Sample Evaluated 1 | Flavor Attributes | References |
---|---|---|---|
Milk proteins | Rehydrated proteins | Cooked/milky, sweet aromatic, cereal, tortilla, brothy, cardboard, animal, sweet taste, astringent | Drake et al., 2003; Drake et al., 2014 [42,117] |
Whey proteins | Rehydrated proteins | Sweet aromatic, cooked/milky, doughy/fatty/pasta, fatty, metallic, cucumber, brothy, cabbage, cardboard, animal, soapy, bitter, astringent | Drake et al., 2003; Karagul-yuceer et al., 2003; Carunchia et al., 2005; Wright et al., 2006 [113,117,118,119] |
Caseins | Rehydrated proteins | Cooked/milky, sweet aromatic, potato/brothy, animal, cardboard, metallic, vitamin, sweet, bitter, astringent | Drake et al., 2003; Karagul-yuceer et al., 2003 [117,118] |
Wheat | Whole wheat bread | Beany, grain, yeasty, bitter, sweet aromatic, sweet taste | Shogren et al., 2003 [120] |
Rehydrated proteins | Sweet aromatic, cereal/grain, cardboard, malty, sulfur, green/grassy, nutty, painty, cooked cereal/grain, bitter, sour, astringent | Chen et al., 1991 [121] | |
Corn | Corn meal extrudates | Raw flour, boiled corn, toasted corn, sweet aromatic, sweet taste, bitter | Chen et al., 1991 [121] |
Barley | Barley pasta | Semolina, cooked, barley, sweet taste, bitter, astringent | Sinesio et al., 2008 [122] |
Oats | Germinated, dried oats | Cereal, roasted, moist, musty, earthy, nutty, germ-like, rancid, sweet, bitter | Heinio et al., 2001 [123] |
Rice | Enzymatic hydrolyzed rice bran protein concentrate | Rice bran, cereal, nut, milk powder, sweet aromatic, cocoa, feed, seafood, soy sauce | Arsa and Theerakulkait, 2018 [124] |
Rehydrated proteins | Sweet aromatic, cereal/grain, cardboard, fecal, nutty, painty, cooked cereal/grain, oxidized, bitter, sandy, astringent | Nishku, 2020 [125] | |
Quinoa | Ground native and malted quinoa | Butter, boiled vegetable, green, malty, musty | Almaguer et al., 2022 [126] |
Buckwheat | Buckwheat-enriched pasta | Cereal, wheat, buckwheat, bitter | Škrobot et al., 2022 [127] |
Chia | Rehydrated proteins | Sweet aromatic, green/grassy, painty, fruity, sandy, astringent | Nishku, 2020 [125] |
Soybean | Rehydrated proteins | Sweet aromatic, cereal/grain, cardboard, doughy, nutty, beany, fruity, oxidized, salty, bitter, umami, astringent | Nishku, 2020 [125] |
Rehydrated protein isolates | Sweet aromatic, cereal, cardboard, brothy, roasted, malty, flour paste, sweet, fecal, bitter, astringent | Russell et al., 2006 [128] | |
Peas | Rehydrated proteins | Sweet aromatic, malty, pyrazine, sulfur, cereal/grain, cardboard, fecal, green pea, cheesy, doughy, nutty, beany/yellow pea, green/grassy, burnt, salty, bitter, umami, sandy, astringent | Nishku, 2020; Liu et al., 2023 [125,129] |
Faba bean | Rehydrated proteins | Sweet aromatic, cereal/grain, pyrazine, sulfur, green/grassy, beany, metallic, fruity, bitter, astringent | Nishku, 2020 [125] |
Extrudates | Pea, oxidized, cereal, cooked pea, grass, yeast, veggie stock, umami, sweet, bitter | Tuccillo et al., 2022 [130] | |
Lupins | Protein isolates | Green/grassy, legume, solvent, cardboard, bitter, astringent | Bader et al., 2011 [131] |
Mung bean | Rehydrated proteins | Green/grassy, woody, beany, seaweed, bitter, astringent | Nishku, 2020 [125] |
Potato | Rehydrated proteins | Cereal/grain, cardboard, malty, green/grassy, doughy, seaweed, potato, bitter, sour, sandy, astringent | Nishku, 2020 [125] |
Rapeseed | Protein isolates | Sweet aromatic, fruity, green, waxy, floral, woody, fatty, herbal, fresh, nutty | Chen et al., 2024 [132] |
Peanut | Raw peanut, roasted peanut | Acidic, grain, nutty, burnt, fruity, grassy | Liu et al., 2022 [133] |
Hemp seed | Rehydrated proteins | Sweet aromatic, cardboard, green pea, green/grassy, beany, earthy/soil, bitter, umami, sandy, astringent | Nishku, 2020 [125] |
Sacha Inchi | Rehydrated proteins | Sweet aromatic, cereal/grain, cardboard, malty, green pea, pyrazine, green/grassy, nutty, beany, bitter, umami, sandy, astringent | Nishku, 2020 [125] |
Pumpkin | Rehydrated proteins | Cardboard, fecal, woody, nutty, tortilla, umami, sandy, astringent | Nishku, 2020 [125] |
Microalgae | Alga paste | grassy/vegetable/cucumber, cooked shrimp/seafood, fresh marine/fishy, rancid/fatty, fruity | Durme et al., 2013 [134] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Aimutis, W.R.; Drake, M. Dairy, Plant, and Novel Proteins: Scientific and Technological Aspects. Foods 2024, 13, 1010. https://doi.org/10.3390/foods13071010
Liu Y, Aimutis WR, Drake M. Dairy, Plant, and Novel Proteins: Scientific and Technological Aspects. Foods. 2024; 13(7):1010. https://doi.org/10.3390/foods13071010
Chicago/Turabian StyleLiu, Yaozheng, William R. Aimutis, and MaryAnne Drake. 2024. "Dairy, Plant, and Novel Proteins: Scientific and Technological Aspects" Foods 13, no. 7: 1010. https://doi.org/10.3390/foods13071010
APA StyleLiu, Y., Aimutis, W. R., & Drake, M. (2024). Dairy, Plant, and Novel Proteins: Scientific and Technological Aspects. Foods, 13(7), 1010. https://doi.org/10.3390/foods13071010