Metabolic and Bioprocess Engineering of Clostridium tyrobutyricum for Butyl Butyrate Production on Xylose and Shrimp Shell Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Development of the Shrimp Shell Powder Medium (SSP Medium)
2.3. In Situ Catalytic Synthesis of Butyl Butyrate
2.4. Construction of the Recombinant Strain
2.5. Optimization of Carbon Sources in SSP Medium
2.6. Optimization of the pH Values during Fermentation
2.7. The Scale-Up Fermentation in a 5 L Bioreactor
2.8. Analytical Methods
2.9. Statistical Analysis
2.10. Transcriptome Analysis
3. Results
3.1. Establishment of the Biosynthetic Pathway for Butyl Butyrate Production in C. tyrobutyricum
3.2. Efficient Butyl Butyrate Production from Shrimp Shell Waste
3.3. Preliminary Economic Evaluation of Fermentation on SSP Medium
3.4. Balancing the Ratio between Butyrate and Butanol
3.5. Enhanced Butyl Butyrate Production by Using Xylose as the Sole Carbon Source in the SSP Medium
3.6. Impact of Acidic Conditions on the Production of Butyl Butyrate
3.7. Efficient Butyl Butyrate Production in a 5 L Bioreactor
3.8. Transcriptome Analysis Probing Relevant Mechanisms Associated with Xylose and SSP Utilization in the SSP Medium
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sieber, V.; Hofer, M.; Brück, W.M.; Garbe, D.; Brück, T.; Lynch, C.A. Chibio: An integrated bio-refinery for processing chitin-rich bio-waste to specialty chemicals. In Grand Challenges in Marine Biotechnology; Rampelotto, P.H., Trincone, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 555–578. [Google Scholar]
- Nguyen, T.T.; Barber, A.R.; Corbin, K.; Zhang, W. Lobster processing by-products as valuable bioresource of marine functional ingredients, nutraceuticals, and pharmaceuticals. Bioresour. Bioprocess 2017, 4, 27. [Google Scholar] [CrossRef]
- Kandra, P.; Challa, M.M.; Jyothi, H.K. Efficient use of shrimp waste: Present and future trends. Appl. Microbiol. Biotechnol. 2012, 93, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Annamareddy, S.H.K.; Abanti, S.; Kumar Rath, P. Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells. Int. J. Biol. Macromol. 2017, 104 Pt B, 1697–1705. [Google Scholar] [CrossRef]
- Nouri, M.; Khodaiyan, F.; Razavi, S.H.; Mousavi, M. Improvement of chitosan production from persian gulf shrimp waste by response surface methodology. Food Hydrocoll. 2016, 59, 50–58. [Google Scholar] [CrossRef]
- Vazquez, J.A.; Noriega, D.; Ramos, P.; Valcarcel, J.; Novoa-Carballal, R.; Pastrana, L.; Reis, R.L.; Perez-Martin, R.I. Optimization of high purity chitin and chitosan production from illex argentinus pens by a combination of enzymatic and chemical processes. Carbohydr. Polym. 2017, 174, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Synowiecki, J.; Al-Khateeb, N. The recovery of protein hydrolysate during enzymatic isolation of chitin from shrimp crangon crangon processing discards. Food Chem. 2000, 68, 147–152. [Google Scholar] [CrossRef]
- Ghazanfari, N.; Fallah, S.; Vasiee, A.; Tabatabaei Yazdi, F. Optimization of fermentation culture medium containing food waste for L-glutamate production using native lactic acid bacteria and comparison with industrial strain. LWT 2023, 184, 114871. [Google Scholar] [CrossRef]
- Nielsen, J.; Tillegreen, C.B.; Petranovic, D. Innovation trends in industrial biotechnology. Trends Biotechnol. 2022, 40, 1160–1172. [Google Scholar] [CrossRef]
- Yang, Z.; Leero, D.D.; Yin, C.; Yang, L.; Zhu, L.; Zhu, Z.; Jiang, L. Clostridium as microbial cell factory to enable the sustainable utilization of three generations of feedstocks. Bioresour. Technol. 2022, 361, 127656. [Google Scholar] [CrossRef]
- Bao, T.; Feng, J.; Jiang, W.; Fu, H.; Wang, J.; Yang, S.T. Recent advances in n-butanol and butyrate production using engineered Clostridium tyrobutyricum. World J. Microbiol. Biotechnol. 2020, 36, 138. [Google Scholar] [CrossRef]
- Cao, X.; Chen, Z.; Liang, L.; Guo, L.; Jiang, Z.; Tang, F.; Yun, Y.; Wang, Y. Co-valorization of paper mill sludge and corn steep liquor for enhanced n-butanol production with Clostridium tyrobutyricum delta cat1::Adhe2. Bioresour. Technol. 2020, 296, 122347. [Google Scholar] [CrossRef]
- Oh, H.J.; Kim, K.Y.; Lee, K.M.; Lee, S.M.; Gong, G.; Oh, M.K.; Um, Y. Enhanced butyric acid production using mixed biomass of brown algae and rice straw by Clostridium tyrobutyricum atcc25755. Bioresour. Technol. 2019, 273, 446–453. [Google Scholar] [CrossRef]
- Linger, J.G.; Ford, L.R.; Ramnath, K.; Guarnieri, M.T. Development of Clostridium tyrobutyricum as a microbial cell factory for the production of fuel and chemical intermediates from lignocellulosic feedstocks. Front. Energy Res. 2020, 8, 183. [Google Scholar] [CrossRef]
- Fu, H.; Yu, L.; Lin, M.; Wang, J.; Xiu, Z.; Yang, S.T. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from glucose and xylose. Metab. Eng. 2017, 40, 50–58. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, J.; Ma, Y.; Feng, Y.; Wang, S.; Guo, N.; Wang, H.; Wang, P.; Jimenez-Bonilla, P.; Gu, Y.; et al. Renewable fatty acid ester production in Clostridium. Nat. Commun. 2021, 12, 4368. [Google Scholar] [CrossRef]
- Lu, J.; Jiang, W.; Dong, W.; Zhou, J.; Zhang, W.; Jiang, Y.; Xin, F.; Jiang, M. Construction of a microbial consortium for the de novo synthesis of butyl butyrate from renewable resources. J. Agric. Food Chem. 2023, 71, 3350–3361. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, H.; Feng, J.; Yang, L.; Luo, K.; Fu, H.; Wang, J. De novo biosynthesis of butyl butyrate in engineered Clostridium tyrobutyricum. Metab. Eng. 2023, 77, 64–75. [Google Scholar] [CrossRef]
- Guo, X.; Li, X.; Feng, J.; Yue, Z.; Fu, H.; Wang, J. Engineering of Clostridium tyrobutyricum for butyric acid and butyl butyrate production from cassava starch. Bioresour. Technol. 2024, 391 Pt A, 129914. [Google Scholar] [CrossRef]
- McAllister, K.N.; Sorg, J.A. CRISPR genome editing systems in the genus Clostridium: A timely advancement. J. Bacteriol. 2019, 201, e00219-19. [Google Scholar] [CrossRef]
- Noh, H.J.; Lee, S.Y.; Jang, Y.S. Microbial production of butyl butyrate, a flavor and fragrance compound. Appl. Microbiol. Biotechnol. 2019, 103, 2079–2086. [Google Scholar] [CrossRef]
- Noh, H.J.; Woo, J.E.; Lee, S.Y.; Jang, Y.S. Metabolic engineering of Clostridium acetobutylicum for the production of butyl butyrate. Appl. Microbiol. Biotechnol. 2018, 102, 8319–8327. [Google Scholar] [CrossRef]
- Zhang, Z.T.; Taylor, S.; Wang, Y. In situ esterification and extractive fermentation for butyl butyrate production with Clostridium tyrobutyricum. Biotechnol. Bioeng. 2017, 114, 1428–1437. [Google Scholar] [CrossRef]
- Liu, T.; Zhu, L.; Zhu, Z.; Jiang, L. Genome sequence analysis of Clostridium tyrobutyricum, a promising microbial host for human health and industrial applications. Curr. Microbiol. 2020, 77, 3685–3694. [Google Scholar] [CrossRef]
- Williams, D.R.; Young, D.I.; Young, M. Conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum. J. Gen. Microbiol. 1990, 136, 819–826. [Google Scholar] [CrossRef]
- Suo, Y.; Ren, M.; Yang, X.; Liao, Z.; Fu, H.; Wang, J. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production with high butyrate/acetate ratio. Appl. Microbiol. Biotechnol. 2018, 102, 4511–4522. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, Y.; Tang, I.C.; Yang, S.T. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metab. Eng. 2011, 13, 373–382. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Z.; Liu, J.; Liu, Z.; Liu, Y.; Zhu, L.; Zhu, Z.; Jiang, L. Deciphering the contribution of PerR to oxidative stress defense system in Clostridium tyrobutyricum. Food Front. 2023, 4, 343–357. [Google Scholar] [CrossRef]
- Yang, Z.; Amal, F.E.; Yang, L.; Liu, Y.; Zhu, L.; Zhu, Z.; Jiang, L. Functional characterization of Clostridium tyrobutyricum l319: A promising next-generation probiotic for short-chain fatty acid production. Front. Microbiol. 2022, 13, 926710. [Google Scholar] [CrossRef]
- Xiao, Z.; Cheng, C.; Bao, T.; Liu, L.; Wang, B.; Tao, W.; Pei, X.; Yang, S.T.; Wang, M. Production of butyric acid from acid hydrolysate of corn husk in fermentation by Clostridium tyrobutyricum: Kinetics and process economic analysis. Biotechnol. Biofuels 2018, 11, 164. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yang, H.; Yan, N. Shell biorefinery: Dream or reality? Chemistry 2016, 22, 13402–13421. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Kojima, K.; Xu, N.; Mobley, J.; Zhou, L.; Yang, S.T.; Liu, X.M. Comparative proteomics analysis of high n-butanol producing metabolically engineered Clostridium tyrobutyricum. J. Biotechnol. 2015, 193, 108–119. [Google Scholar] [CrossRef]
- Liu, X.G.; Yang, S.T. Kinetics of butyric acid fermentation of glucose and xylose by Clostridium tyrobutyricum wild type and mutant. Process Biochem. 2006, 41, 801–808. [Google Scholar] [CrossRef]
- Yu, L.; Xu, M.; Tang, I.C.; Yang, S.T. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose. Biotechnol. Bioeng. 2015, 112, 2134–2141. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, H.; Guo, X.; Yang, L.; Wang, J. Elimination of carbon catabolite repression in Clostridium tyrobutyricum for enhanced butyric acid production from lignocellulosic hydrolysates. Bioresour. Technol. 2022, 357, 127320. [Google Scholar] [CrossRef]
- Mathew, G.M.; Mathew, D.C.; Sukumaran, R.K.; Sindhu, R.; Huang, C.C.; Binod, P.; Sirohi, R.; Kim, S.H.; Pandey, A. Sustainable and eco-friendly strategies for shrimp shell valorization. Environ. Pollut. 2020, 267, 115656. [Google Scholar] [CrossRef]
- Fu, H.; Yang, S.T.; Wang, M.; Wang, J.; Tang, I.C. Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing xylose catabolism genes for glucose and xylose co-utilization. Bioresour. Technol. 2017, 234, 389–396. [Google Scholar] [CrossRef]
Strain/Plasmid | Description | Reference |
---|---|---|
Plasmids | ||
pMTL82151 | ColE ori, CmR, pBP1 ori, TraJ | [25] |
pMTL-Pthl-adhE2 | pMTL82151 derivate, adhE2 gene under the control of the promoter thl | [27] |
pMTL-Pthl-adhE2::Pcat1-cat1 | pMTL82151 derivate, adhE2 gene under the control of the promoter thl and cat1 gene under the control of the natural promoter | This study |
Strains | ||
C. tyrobutyricum | L319 | [24] |
E. coli JM109 | E. coli, for plasmid construction | Lab stock |
E. coli CA434 | E. coli HB101 with plasmid R702 | [25] |
CtAD | C. tyrobutyricum L319 derivate, harboring the plasmid pMTL-Pthl-adhE2 | This study |
CtADGBC | C. tyrobutyricum L319 derivate, harboring Pthl-adhE2::Pcat1-cat1 | This study |
Medium | Nitrogen Source | Unit Price ($/t) ** | Medium Costs ($/L) ** | Butyl Butyrate Titer (g/L) | Costs of BB Titer ($/g) ** |
---|---|---|---|---|---|
CGM medium | Commercial compounds * | ~6000 | 0.0780 | 1.400 | 0.0560 |
SSP medium | Shrimp shell powder (SSP) | 100–120 | 0.0025–0.0030 | 1.520 | 0.0016–0.0019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Chen, Y.; Yang, Z.; Deng, H.; Liu, Y.; Wei, P.; Zhu, Z.; Jiang, L. Metabolic and Bioprocess Engineering of Clostridium tyrobutyricum for Butyl Butyrate Production on Xylose and Shrimp Shell Waste. Foods 2024, 13, 1009. https://doi.org/10.3390/foods13071009
Wang H, Chen Y, Yang Z, Deng H, Liu Y, Wei P, Zhu Z, Jiang L. Metabolic and Bioprocess Engineering of Clostridium tyrobutyricum for Butyl Butyrate Production on Xylose and Shrimp Shell Waste. Foods. 2024; 13(7):1009. https://doi.org/10.3390/foods13071009
Chicago/Turabian StyleWang, Hao, Yingli Chen, Zhihan Yang, Haijun Deng, Yiran Liu, Ping Wei, Zhengming Zhu, and Ling Jiang. 2024. "Metabolic and Bioprocess Engineering of Clostridium tyrobutyricum for Butyl Butyrate Production on Xylose and Shrimp Shell Waste" Foods 13, no. 7: 1009. https://doi.org/10.3390/foods13071009
APA StyleWang, H., Chen, Y., Yang, Z., Deng, H., Liu, Y., Wei, P., Zhu, Z., & Jiang, L. (2024). Metabolic and Bioprocess Engineering of Clostridium tyrobutyricum for Butyl Butyrate Production on Xylose and Shrimp Shell Waste. Foods, 13(7), 1009. https://doi.org/10.3390/foods13071009