Electronic Prediction of Chemical Contaminants in Aroma of Brewed Roasted Coffee and Quantification of Acrylamide Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Analysis of Volatile Compounds
2.3. Sensory Analysis
2.4. Acrylamide Analysis
2.5. 5-Hydroxymethylfurfural Analysis
2.6. E-Nose Measurements
2.7. Multivariate Data Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effect of Roasted Coffee on Volatile Organic Compounds
3.2. Effect of Roasted Coffee on Sensory Analysis
3.3. Effect of Roasted Coffee on Chemical Contaminants
3.4. Relationship between Chemical Contaminants and Perceived Sensory Defect
3.5. E-Nose Capacity to Discriminate Roasted Coffee Beverage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Othman, N.; Muhammad, E. Drying of instant coffee in a spray dryer. J. Kejuruter. 2019, 31, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Rianto, B. An Al-powered e-nose system using a density-based clustering methods for identifying adulteration in specialty coffees. Microchem. J. 2024, 197, 109884. [Google Scholar] [CrossRef]
- Wintgens, J.N. Coffee: Growing, processing, sustainable production. In Botany and Genetics of Coffee; Wiley-Vch Verlag GmbH & Co., KGaA: Darmstadt, Germany, 2004; pp. 25–26. [Google Scholar]
- Sunarharum, W.B.; Williams, D.J.; Smyth, E. Complexity of coffee flavor: A compositional and sensory perspective. Food Res. Int. 2014, 62, 315–325. [Google Scholar] [CrossRef]
- Bona, E.; da Silva, R.S.S. Coffee and the Electronic Nose. In Electronic Noses and Tongues in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; Chapter 4. [Google Scholar]
- Owczarek-Fendor, A.; de Meulanaer, B.; Scholl, G.; Adams, A.; Van Lancker, F.; Eppe, G.; De Pauw, E.; Scippo, M.L.; de Kimpe, N. Furan formation from lipids in starch-based model systems, as influenced by interactions with antioxidants and proteins. J. Agric. Food Chem. 2011, 59, 2368–2376. [Google Scholar] [CrossRef] [PubMed]
- Stokes, C.N.; O’Sullivan, M.G.; Kerry, J.P. Hedonic and descriptive sensory evaluation of instant and fresh coffee products European. Food Res. Technol. 2017, 243, 331–340. [Google Scholar] [CrossRef]
- Gómez-Narváez, F.; Pérez-Martínez, L.; Contreras-Calderón, J. Usefulness of some Maillard reaction indicators for monitoring the heat damage of whey powder under conditions applicable to spray drying. Int. Dairy J. 2019, 99, 104553. [Google Scholar] [CrossRef]
- Kowalski, S.; Lukasiewicz, M.; Duda-Chodak, A.; Ziec, G. 5-Hydroxymethyl-2- Furfural (HMF)-heat-induced formation, occurrence in food and biotransformation—A Review. Pol. J. Food Nutr. Sci. 2013, 63, 207–225. [Google Scholar] [CrossRef]
- Murkovic, M.; Pichler, N. Analysis of 5-hydroxymethylfurfual in coffee dried fruits and urine. Mol. Nutr. Food Res. 2006, 50, 842–846. [Google Scholar] [CrossRef]
- Rahn, A.; Yeretzian, C. Impact of consumer behavior on furan and furan-derivative exposure during coffee consumption. A comparison between brewing methods and drinking preferences. Food Chem. 2019, 272, 514–522. [Google Scholar] [CrossRef]
- Didaba, T.; Tilahun, L.; Satheesh, N.; Geremu, M. Acrylamide occurrence in Keribo: Ethiopian traditional fermented beverage. Food Control 2018, 86, 77–82. [Google Scholar] [CrossRef]
- Gan, Y.M.; Li, K.X.; Zhang, N.; Xu, X.; Chen, D. Current sample preparation strategies for the chromatographic and mass spectrometric determination of furfural compounds. Microchem. J. 2023, 191, 108797. [Google Scholar] [CrossRef]
- IARC. Coke Production. A review of human carcinogens: Chemical agents and related occupations. In IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans; IARC: Lyon, France, 2012; Volume 100F, pp. 167–178. [Google Scholar]
- Mayerhofer, U.; Czerwenka, C.; Marchart, K.; Steinwider, J.; Hofstaedter, D. Dietary exposure to furan of the Austrian population. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019, 36, 1637–1647. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EU) 2017/2158 of 20 November 2017 Establishing Mitigation Measures and Benchmark Levels for the Reduction of the Presence of Acrylamide in Food; European Commission: Maastricht, The Netherlands, 2017. [Google Scholar]
- Mogol, B.A.; Gokmen, V. Thermal process contaminants: Acrylamide, chloropropanols and furan. Curr. Opin. Food Sci. 2016, 7, 86–92. [Google Scholar] [CrossRef]
- Hamzahoglu, A.; Gökmen, V. 5-Hydroxymethylfurfural accumulation plays a critical role on acrylamide formation in coffee during roasting as confirmed by multiresponse kinetic modelling. Food Chem. 2020, 318, 126467. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Miao, S.; Yuan, F.; Gao, Y. Study on the textural and volatile characteristics of emulsion filled protein gels as influenced by different fat substitutes. Food Res. Int. 2018, 103, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, R.; Martín-Tornero, E.; Lozano, J.; Arroyo, P.; Meléndez, F.; Martín-Vertedor, D. Evaluation of the olfactory pattern of black olives stuffed with flavored hydrocolloids. LWT-Food Sci. Technol. 2022, 163, 113556. [Google Scholar] [CrossRef]
- Stone, H.; Bleibaum, R.; Thomas, H.A. Sensory Evaluation Practices; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Anwar, H.; Anwar, T.; Murtaza, S. Review on food quality assessment using machine learning and electronic nose system. Biosens. Bioelectron. X 2023, 14, 100365. [Google Scholar] [CrossRef]
- Barea-Ramos, J.D.; Cascos, G.; Mesías, M.; Lozano, J.; Martín-Vertedor, D. Evaluation of the Olfactory Quality of Roasted Coffee Beans Using a Digital Nose. Sensors 2022, 22, 8654. [Google Scholar] [CrossRef]
- Ali, M.M.; Hashim, N.; Aziz, S.A.; Lasekan, O. Principles and recent advances in electronic nose for quality inspection of agricultural and food product. Trends Food Sci. Technol. 2020, 99, 1. [Google Scholar]
- Peris, M.; Escuder-Gilabert, A. A 21st century technique for food control: Electronic noses. Anal. Chim. Acta 2009, 638, 1–15. [Google Scholar] [CrossRef]
- Sánchez, R.; Pérez-Nevado, F.; Martillanes, S.; Montero-Fernández, I.; Lozano, J.; Martín-Vertedor, D. Machine olfaction discrimination of Spanish-style green olives inoculated with spoilage mold species. Food Control 2023, 147, 109600. [Google Scholar] [CrossRef]
- Montero-Fernández, I.; Marcía-Fuentes, J.A.; Cascos, G.; Saravia-Maldonado, S.A.; Lozano, J.; Martín-Vertedor, D. Masking Effect of Cassia grandis Sensory Defect with Flavoured Stuffed Olives. Foods 2022, 11, 2305. [Google Scholar] [CrossRef] [PubMed]
- Barea-Ramos, J.D.; Santos, J.P.; Lozano, J.; Rodríguez, M.J.; Montero-Fernández, I.; Martín-Vertedor, D. Detection of Aroma Profile in Spanish Rice Paella during Socarrat Formation by Electronic Nose and Sensory Panel. Chemosensors 2023, 11, 342. [Google Scholar] [CrossRef]
- Sánchez, R.; Martín-Tornero, E.; Lozano, J.; Boselli, E.; Arroyo, P.; Meléndez, F.; Martín-Vertedor, D. E-Nose discrimination of abnormal fermentations in Spanish-Style Green Olives. Molecules 2021, 26, 5353. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Nevado, F.; Cabrera-Bañegil, M.; Repilado, E.; Martillanes, S.; Martín-Vertedor, D. Effect of different baking treatments on the acrylamide formation and phenolic compounds in Californian-style black olives. Food Control 2018, 94, 22–29. [Google Scholar] [CrossRef]
- Long, Y.; Zhu, M.; Ma, Y.; Huang, Y.; Gan, B.; Yu, Q.; Xie, J.; Chen, Y. Variation of bioactive compounds and 5-hydroxumethyl furfural in coffee beans during the roasting process using kinetics approach. Food Chem. Adv. 2023, 2, 100242. [Google Scholar] [CrossRef]
- Celdrán, A.C.; Oates, M.J.; Molina Cabrera, C.; Pangua, C.; Tardaguila, J.; Ruiz-Canales, A. Low-Cost Electronic Nose for Wine Variety Identification through Machine Learning Algorithms. Agronomy 2022, 12, 2627. [Google Scholar] [CrossRef]
- Bressani, A.P.P.; Batista, N.N.; Ferreira, G.; Martinez, S.J.; Simao, J.B.P.; Dias, D.R.; Schwan, R.F. Characterization of bioactive, chemical, and sensory compounds from fermented coffees with different yeasts species. Food Res. Int. 2021, 150, 110755. [Google Scholar] [CrossRef]
- da Silva, O.E.C.; da Luz, J.M.R.; de Castro, M.G.; Filgueiras, P.R.; Guarçoni, R.C.; de Castro, E.V.R.; da Silva, M.d.C.S.; Pereira, L.L. Chemical and sensory discrimination of coffee: Impacts of the planting altitude and fermentation. Eur. Food Res. Technol. 2022, 248, 659–669. [Google Scholar] [CrossRef]
- Ribeiro, J.S.; Teófilo, R.F.; Salva, T.d.J.; Augusto, F.; Ferreira, M.M.C. Exploratory and discriminative studies of commercial processed Brazilian coffees with different degrees of roasting and de-caffeinated. Braz. J. Food Technol. Camp. 2023, 16, 198–206. [Google Scholar] [CrossRef]
- Binello, A.; Cravotto, G.; Menzio, J.; Tagliapietra, S. Polycyclic aromatic hydrocarbons in coffee samples: Enquiry into processes and analytical methods. Food Chem. 2021, 344, 128631. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Xia, X.; Deng, S.; Cui, H.; Hayat, K.; Zhang, X.; Ho, C.T. Reduced asynchronism be-tween regenerative cysteine and fragments of deoxyosones promoting formation of sulfur-containing compounds through extra-added xylose and elevated temperature during thermal processing of 2 threityl-thiazolidine-4-carboxylic acid. Food Chem. 2023, 404, 134420. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.M.d.S.; Soares, K.L.; Silveira, L.d.S.; Filho, A.C.V.; Pereira, L.L.; Osorio, V.M.; Fronza, M.; Scherer, R. Influence of maturation and roasting on the quality and chemical composition of new conilon coffee cultivar by chemometrics. Food Res. Int. 2024, 176, 113791. [Google Scholar] [CrossRef] [PubMed]
- García-Lomillo, J.; González-SanJosé, M.L. Pyrazines in Thermally Treated Foods. In Encyclopedia of Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 353–362. [Google Scholar]
- Farah, A.; de Paula Lima, J. Consumption of Chlorogenic Acids through Coffee and Health Implications. Beverages 2019, 5, 11. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, P.; Luo, P.; Wu, P. Occurrence of furfural and its derivatives in coffee products in China and estimation of dietary intake. Foods 2023, 12, 200. [Google Scholar] [CrossRef] [PubMed]
- Seninde, D.R.; Chambers, E., IV. Coffee Flavor: A Review. Beverages 2020, 6, 44. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Cui, C.; Fisk, I.D. Variability of single bean coffee volatile compounds of Arabica and robusta roasted coffees analysed by SPME-GC-MS. Food Res. Int. 2018, 108, 628–640. [Google Scholar] [CrossRef]
- Marin, K.; Pozrl, T.; Zlatic, E.; Plestenjak, A. A new aroma index to determine the aroma quality of roasted and ground coffee during storage. Food Technol. Biotechnol. 2008, 46, 442–447. [Google Scholar]
- Calda-Estada, S.J.; Utrilla-Vázqueza, M.; Vallejo-Cadona, A.; Roblero-Pérez, D.B.; Lu-go-Cervantes, E. Thermal properties and volatile compounds profile of commercial dark-chocolates from different genotypes of cocoa beans (Theobroma cacao L.) from Latin America. Food Res. Int. 2020, 136, 109594. [Google Scholar] [CrossRef]
- Correia, R.M.; Loureiro, L.B.; Rodrigues, R.R.T.; Costa, H.B.; Oliveira, B.G.; Filgueiras, P.R.; Thompson, C.J.; Lacerda, V.; Romao, W. Chemical profiles of Robusta and Arabica coffee by ESI(-)FT-ICR MS and ATR-FTIR: A quantitative approach. Anal. Methods 2016, 8, 7678–7688. [Google Scholar] [CrossRef]
- Cerny, C.; Schlichtherle-Cerny, H.; Gibe, R.; Yuan, Y. Furfuryl alcohol is a precursor for fur-furylthiol in coffee. Food Chem. 2021, 337, 128008. [Google Scholar] [CrossRef] [PubMed]
- Chapko, M.J.; Seo, H.S. Characterizing product temperature-dependent sensory perception of brewed coffee beverages: Descriptive sensory analysis. Food Res. Int. 2019, 121, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Lachenmeier, D.W.; Schwarz, S.; Teipel, J.; Hegmanns, M.; Kuballa, T.; Walch, S.G.; Breitling-Utzmann, C.M. Potential antagonistic effects of acrylamide mitigation during coffee roasting on furfuryl alcohol, furan and 5-hydroxymethylfurfural. Toxics 2019, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Mesías, M.; Morales, F.J. Acrylamide in coffee: Estimation of exposure from vending machines. J. Food Compos. Anal. 2016, 48, 8–12. [Google Scholar] [CrossRef]
- Bagdonaite, K.; Derler, K.; Murkovic, M. Determination of acrylamide during roasting of coffee. J. Agric. Food Chem. 2008, 56, 6081–6086. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Jo, A.; Lee, K.G. Effect of various roasting, extraction and drinking conditions on furan and 5-hydroxymethylfurfural levels in coffee. Food Chem. 2021, 358, 129806. [Google Scholar] [CrossRef] [PubMed]
- Abraham, K.; Gürtler, R.; Berg, K.; Heinemeyer, G.; Lampen, A.; Appel, K.E. Toxicology and risk assessment of 5-hydroxymethylfurfural in food. Mol. Nutr. Food Res. 2011, 55, 667–678. [Google Scholar] [CrossRef]
- Martín-Tornero, E.; Sánchez, R.; Lozano, J.; Martínez, M.; Arroyo, P.; Martín-Vertedor, D. Characterization of polyphenol and volatile fractions of Californian-style black olives and innovative application of e-nose for acrylamide determination. Foods 2021, 10, 2973. [Google Scholar] [CrossRef]
- Mesías, M.; Barea-Ramos, J.D.; Lozano, J.; Morales, F.J.; Martín-Vertedor, D. application of an electronic nose technology for the prediction of chemical process contaminants in roasted almonds. Chemosensors 2023, 11, 287. [Google Scholar] [CrossRef]
- Aghdamifar, E.; Sharabiani, V.R.; Taghinezhab, E.; Szymanek, M.; Dziwulska-Hunek, A. E-nose as a non-destructive and fast method for identification and classification of coffee beans based on soft computing models. Sens. Actuators B Chem. 2023, 393, 134229. [Google Scholar] [CrossRef]
- Adelina, N.M.; Wang, H.; Zhang, L.; Zhao, Y. Comparative analysis of volatile profiles in two grafted pine nuts by headspace-SPME/GC-MS and electronic nose as responses to different roasting conditions. Food Res. Int. 2021, 140, 110026. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Hu, R.; Long, Y.; Li, H.; Zhang, Y.; Zhu, K.; Chu, Z. Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue and HS-SPME-GC-MS. Food Chem. 2019, 272, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.; Durán, C.; Reyes, A. Electronic nose for quality control of Colombian coffee through the detection of defects in “Cup Tests”. Sensors 2009, 10, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Cheng, J.; Hong, Q.; Dong, W.; Chen, X.; Wu, G.; Zhang, Z. Identification of changes in the volatile compounds of robusta coffee beans during drying based on HS-SPME/GC-MS and E-nose analyses with the aid of chemometrics. LWT 2022, 161, 113317. [Google Scholar] [CrossRef]
Furanone | Furans | Pyrazines | |||||||||||||
Treatments (min) | Dihydro-5-methyl-2(3H)-furanone | Dihydro-2-methyl-2(3H)-furanone | 2(5H)-Furanone | Furfural | 2-Methyl-furan | 5-Methyl-furan | Furan | Pyrazines | 2-Methyl-pyrazine | 2-Ethylpyrazine | 2,3-Dimethylpyrazine | 2,3,5-Trimethylpyrazine | 2-Ethyl-6-methylpyrazine | ||
t8 | 0.5 | 0.5 | 0.7 | 1.5 | 2.5 | 2.0 | 2.3 | 1.6 | 1.5 | 2.0 | 2.0 | 1.5 | 1.6 | ||
t9 | 0.5 | 0.0 | 0.6 | 2.1 | 2.4 | 2.6 | 2.5 | 1.5 | 1.5 | 1.9 | 2.4 | 1.6 | 2.6 | ||
t10 | 0.6 | 0.0 | 0.5 | 2.6 | 5.5 | 3.0 | 2.3 | 2.0 | 2.2 | 3.5 | 2.0 | 1.4 | 2.8 | ||
t11 | 0.3 | 0.0 | 0.6 | 3.5 | 7.8 | 0.0 | 2.3 | 1.5 | 2.5 | 3.6 | 1.6 | 1.5 | 3.2 | ||
Pyridines | Pyrroles | Aldehydes | |||||||||||||
Treatments (min) | Pyridine | 2-Methoxypyridine | 3-Ethylpyridine | Pyridine, 4-ethenyl- | 2,5-Dimethyl-pyridine | 1-Methyl pyrrole | 1-Furfuryl pyrrole | 1H-Pyrrole | 1H-Indole | Butanal | 2-Butenal | 2-Methyl-butanal | Hexanal | Benzaldehyde | Nonanal |
t8 | 2.5 | 0.6 | 1.5 | 0.5 | 2.6 | 0.6 | 0.5 | 1.2 | 0.6 | 1.2 | 0.5 | 2.3 | 2.0 | 0.5 | 7.2 |
t9 | 5.4 | 0.5 | 1.2 | 0.5 | 3.8 | 0.5 | 0.5 | 1.0 | 1.0 | 1.0 | 0.6 | 3.0 | 2.8 | 0.8 | 6.0 |
t10 | 6.4 | 0.6 | 1.1 | 0.0 | 5.5 | 0.6 | 0.4 | 0.0 | 1.6 | 0.0 | 0.5 | 5.5 | 1.6 | 0.7 | 5.2 |
t11 | 7.0 | 0.5 | 0.0 | 0.0 | 9.8 | 0.7 | 0.6 | 0.0 | 2.1 | 0.0 | 0.5 | 7.2 | 1.2 | 0.8 | 2.2 |
Ketones | Esters | Acids derivates | |||||||||||||
Treatments (min) | 2-Nonanone | 2-Heptanone | Propenone, 1-(4-nitrophenyl)-3-phenylamino | Geraniol | 2-Pentadecanone, 6,10,14-trimethyl | Ethyl acetate | 2-Propenoic acid, butyl ester | Acetic acid, 2-ethylhexyl ester | 2-Methyl-propanoic acid, octyl ester | Hexadecanoic acid, ethyl ester | 3-Methyl-butanoic acid | Hexanoic acid, 2-methyl | 2-Methyl-butanoic acid | 3-Methyl-2-butenoic acid | |
t8 | 0.5 | 0.5 | 2.6 | 1.0 | 0.5 | 0.6 | 0.4 | 1.5 | 2.2 | 1.0 | 2.0 | 1.0 | 0.0 | 1.2 | |
t9 | 0.6 | 0.6 | 1.5 | 1.2 | 0.4 | 0.6 | 0.5 | 1.2 | 1.5 | 1.0 | 2.4 | 0.4 | 1.5 | 1.0 | |
t10 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.5 | 0.4 | 0.0 | 1.2 | |
t11 | 0.0 | 0.0 | 0.0 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.8 | 0.0 | 0.0 | 0.0 | |
Carboxylic acids | Lactones | Aromatics | |||||||||||||
Treatments (min) | Acetic acid | Dentanoic acid | Hexanoic acid | Nonanoic acid | γ-Butyrolactone | 2,3-Pentanedione | Phenol | 3-Methyl-phenol | D-Limonene o 1-Metil-4-(1-metiletenil)-ciclohexeno | 2-methoxy-phenol (Guaiacol) | 2-Methoxy-4-vinylphenol | Benzene, 2,4-diisocyanato-1-methyl- | |||
t8 | 0.0 | 0.5 | 0.6 | 3.0 | 0.4 | 0.5 | 2.5 | 0.8 | 2.0 | 0.5 | 5.0 | 2.0 | |||
t9 | 1.0 | 0.4 | 0.4 | 3.0 | 0.4 | 0.4 | 2.6 | 0.8 | 2.4 | 0.6 | 2.0 | 1.0 | |||
t10 | 1.0 | 0.5 | 1.1 | 1.2 | 0.4 | 0.4 | 2.0 | 0.7 | 2.0 | 0.0 | 2.0 | 0.0 | |||
t11 | 0.0 | 0.0 | 0.0 | 1.0 | 0.4 | 0.4 | 0.0 | 0.5 | 1.4 | 0.0 | 0.0 | 0.0 | |||
Alcohols | Hydrocarbons | ||||||||||||||
Treatments (min) | 1-Butanol, 3-methyl- | 1-Pentanol | 2,3-Butanediol | 1-Hexanol | 1-Octen-3-ol | 1-Propanol | Benzyl alcohol | 2-Phenylethyl alcohol | 1,6-Octadien-3-ol, 3,7-dimethyl- (Linalool) | Toluene | Pentane | Styrene | Pentadecane | Tetradecane | |
t8 | 1.6 | 0.5 | 0.0 | 2.5 | 1.0 | 0.8 | 2.0 | 4.4 | 0.7 | 0.7 | 0.5 | 0.6 | 0.5 | 1.1 | |
t9 | 1.6 | 0.0 | 0.6 | 2.0 | 1.0 | 1.2 | 1.3 | 2.1 | 0.4 | 0.5 | 0.4 | 0.5 | 0.5 | 1.0 | |
t10 | 2.0 | 0.0 | 0.5 | 1.2 | 1.0 | 1.1 | 1.0 | 3.2 | 0.4 | 0.5 | 0.6 | 0.6 | 0.6 | 3.7 | |
t11 | 2.3 | 0.0 | 0.9 | 0.6 | 1.2 | 1.3 | 0.5 | 2.2 | 0.4 | 0.5 | 0.5 | 0.5 | 0.4 | 4.4 | |
Sulfur compounds | |||||||||||||||
Treatments (min) | Dimethyl sulfide | 2-Furfurylthiol | 2-Furanmethanethiol | ||||||||||||
t8 | 1.5 | 1.7 | 2.2 | ||||||||||||
t9 | 1.0 | 2.5 | 3.2 | ||||||||||||
t10 | 1.0 | 3.8 | 5.0 | ||||||||||||
t11 | 1.1 | 8.0 | 7.1 |
t (min) | Aroma | |
---|---|---|
Coffee | Roasted/Burnt | |
t8 | 4.2 ± 0.2 b | n.d. |
t9 | 6.3 ± 0.2 a | 2.5 ± 0.2 c |
t10 | 3.6 ± 0.2 c | 3.5 ± 0.3 b |
t11 | 2.8 ± 0.3 d | 4.7 ± 0.5 a |
t (min) | Acrylamide (µg∙L−1) | 5-Hydroxymethylfurfural (µg∙L−1) |
---|---|---|
t8 | 18.5 ± 0.7 a | 1.1 ± 0.1 d |
t9 | 16.1 ± 1.1 b | 2.6 ± 0.2 c |
t10 | 11.3 ± 0.6 c | 3.4 ± 0.2 b |
t11 | 7.3 ± 0.3 d | 4.5 ± 0.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cascos, G.; Montero-Fernández, I.; Marcía-Fuentes, J.A.; Aleman, R.S.; Ruiz-Canales, A.; Martín-Vertedor, D. Electronic Prediction of Chemical Contaminants in Aroma of Brewed Roasted Coffee and Quantification of Acrylamide Levels. Foods 2024, 13, 768. https://doi.org/10.3390/foods13050768
Cascos G, Montero-Fernández I, Marcía-Fuentes JA, Aleman RS, Ruiz-Canales A, Martín-Vertedor D. Electronic Prediction of Chemical Contaminants in Aroma of Brewed Roasted Coffee and Quantification of Acrylamide Levels. Foods. 2024; 13(5):768. https://doi.org/10.3390/foods13050768
Chicago/Turabian StyleCascos, Gema, Ismael Montero-Fernández, Jhunior Abrahan Marcía-Fuentes, Ricardo S. Aleman, Antonio Ruiz-Canales, and Daniel Martín-Vertedor. 2024. "Electronic Prediction of Chemical Contaminants in Aroma of Brewed Roasted Coffee and Quantification of Acrylamide Levels" Foods 13, no. 5: 768. https://doi.org/10.3390/foods13050768
APA StyleCascos, G., Montero-Fernández, I., Marcía-Fuentes, J. A., Aleman, R. S., Ruiz-Canales, A., & Martín-Vertedor, D. (2024). Electronic Prediction of Chemical Contaminants in Aroma of Brewed Roasted Coffee and Quantification of Acrylamide Levels. Foods, 13(5), 768. https://doi.org/10.3390/foods13050768