Effects of Thermosonication on the Antioxidant Capacity and Physicochemical, Bioactive, Microbiological, and Sensory Qualities of Blackcurrant Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blackcurrant Juice Preparation and Treatments
2.2. Physicochemical Analysis
2.2.1. pH, Total Soluble Solids (TSS), and Titratable Acidity (TA)
2.2.2. Cloudiness and Browning Index (BI)
2.2.3. Viscosity
2.2.4. Color Parameters
2.3. Bioactive Compounds
2.3.1. Total Phenolic Content (TPC)
2.3.2. Total Flavonoid Content (TFC)
2.3.3. Total Anthocyanin Content (TAC)
2.3.4. Ascorbic Acid Content (AAC)
2.4. Antioxidant Capacity
2.4.1. DPPH Radical Scavenging Ability
2.4.2. Hydroxyl Radical (·OH) Scavenging Ability
2.5. Microbiological Analysis
2.6. Sensory Evaluation
2.7. Statistical Analyses
3. Results and Discussion
3.1. Physicochemical Analysis
3.1.1. pH, TSS, and TA
3.1.2. Cloudiness and Browning Index (BI)
3.1.3. Viscosity
3.1.4. Color Parameters
3.2. Bioactive Compounds
3.2.1. Total Phenolic Content
3.2.2. Total Flavonoid Content
3.2.3. Total Anthocyanin Content
3.2.4. Ascorbic Acid Content
3.3. Antioxidant Capacity
3.3.1. DPPH Radical Scavenging Ability
3.3.2. Hydroxyl Radical (·OH) Scavenging Capacity
3.4. Microbiological Analysis
3.5. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, L.; Park, Y.; Lee, S.; Kim, D.O. Extraction, identification, and health benefits of anthocyanins in blackcurrants (Ribes nigrum L.). Appl. Sci. 2021, 11, 1863. [Google Scholar] [CrossRef]
- Tian, Y.; Karhu, S.; Virtanen, M.; Linderborg, K.M.; Yang, B.; Laaksonen, O. Variation of chemical and sensory profiles of blackcurrant (Ribes nigrum) juices produced from different cultivars of European origins. LWT 2023, 173, 114353. [Google Scholar] [CrossRef]
- Mieszczakowska-Frąc, M.; Markowski, J.; Zbrzeźniak, M.; Płocharski, W. Impact of enzyme on quality of blackcurrant and plum juices. LWT-Food Sci. Technol. 2012, 49, 251–256. [Google Scholar] [CrossRef]
- Xue, B.; Hui, X.; Chen, X.; Luo, S.; Dilrukshi, H.N.; Wu, G.; Chen, C. Application, emerging health benefits, and dosage effects of blackcurrant food formats. J. Funct. 2022, 95, 105147. [Google Scholar] [CrossRef]
- Pott, D.M.; Durán-Soria, S.; Allwood, J.W.; Pont, S.; Gordon, S.L.; Jennings, N.; Austin, C.; Stewart, D.; Brennan, R.M.; Masny, A. Dissecting the impact of environment, season, and genotype on blackcurrant fruit quality traits. Food Chem. 2023, 402, 134360. [Google Scholar] [CrossRef] [PubMed]
- Anaya-Esparza, L.M.; Velázquez-Estrada, R.M.; Roig, A.X.; García-Galindo, H.S.; Sayago-Ayerdi, S.G.; Montalvo-González, E. Thermosonication: An alternative processing for fruit and vegetable juices. Trends Food Sci. Technol. 2017, 61, 26–37. [Google Scholar] [CrossRef]
- Cheng, C.X.; Jia, M.; Gui, Y.; Ma, Y. Comparison of the effects of novel processing technologies and conventional thermal pasteurization on the nutritional quality and aroma of Mandarin (Citrus unshiu) juice. Innov. Food Sci. Emerg. Technol. 2020, 64, 102425. [Google Scholar] [CrossRef]
- Ordóñez-Santos, L.E.; Martínez-Girón, J.; Arias-Jaramillo, M.E. Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chem. 2017, 233, 96–100. [Google Scholar] [CrossRef]
- Mandha, J.; Shumoy, H.; Matemu, A.O.; Raes, K. Characterization of fruit juices and effect of pasteurization and storage conditions on their microbial, physicochemical, and nutritional quality. Food Biosci. 2023, 51, 102335. [Google Scholar] [CrossRef]
- Putnik, P.; Kresoja, Ž.; Bosiljkov, T.; Jambrak, A.R.; Barba, F.J.; Lorenzo, J.M.; Roohinejad, S.; Granato, D.; Žuntar, I.; Kovačević, D.B. Comparing the effects of thermal and non-thermal technologies on pomegranate juice quality: A review. Food Chem. 2019, 279, 150–161. [Google Scholar] [CrossRef]
- Mäkilä, L.; Laaksonen, O.; Kallio, H.; Yang, B. Effect of processing technologies and storage conditions on stability of blackcurrant juices with special focus on phenolic compounds and sensory properties. Food Chem. 2017, 221, 422–430. [Google Scholar] [CrossRef]
- de Medeiros, J.K.; Sarkis, J.R.; Jaeschke, D.P.; Mercali, G.D. Thermosonication for peroxidase inactivation in sugarcane juice. LWT 2021, 140, 110730. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Deli, M.G.; Kirit, B.D.; Ağçam, E.; Akyıldız, A. The effects of thermosonication on quality parameters of cashew apple nectar: An optimization study for processing conditions. Appl. Food Res. 2022, 2, 100217. [Google Scholar] [CrossRef]
- Fatima, P.; Nadeem, M.; Hussain, A.; Kausar, T.; Rehman, A.; Siddique, T.; Kabir, K.; Noreen, S.; Nisar, R.; Fatima, H. Synergistic effect of microwave heating and thermosonication on the physicochemical and nutritional quality of muskmelon and sugarcane juice blend. Food Chem. 2023, 30, 136489. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Feng, M.; Chitrakar, B.; Cheng, J.; Wei, B.; Wang, B.; Zhou, C.; Ma, H. Multi-frequency power thermosonication treatments of clear strawberry juice: Impact on color, bioactive compounds, flavor volatiles, microbial and polyphenol oxidase inactivation. Innov. Food Sci. Emerg. Technol. 2023, 84, 103295. [Google Scholar] [CrossRef]
- del Socorro Cruz-Cansino, N.; Ramírez-Moreno, E.; León-Rivera, J.E.; Delgado-Olivares, L.; Alanís-García, E.; Ariza-Ortega, J.A.; de Jesús Manríquez-Torres, J.; Jaramillo-Bustos, D.P. Shelf life, physicochemical, microbiological and antioxidant properties of purple cactus pear (Opuntia ficus indica) juice after thermoultrasound treatment. Ultrason. Sonochem. 2015, 27, 277–286. [Google Scholar] [CrossRef]
- Aadil, R.M.; Zeng, X.A.; Zhang, Z.H.; Wang, M.S.; Han, Z.; Jing, H.; Jabbar, S. Thermosonication: A potential technique that influences the quality of grapefruit juice. Int. J. Food Sci. Technol. 2015, 50, 1275–1282. [Google Scholar] [CrossRef]
- Dinçer, C.; Topuz, A. Inactivation of Escherichia coli and quality changes in black mulberry juice under pulsed sonication and continuous thermosonication treatments. J. Food Process. Preserv. 2015, 39, 1744–1753. [Google Scholar] [CrossRef]
- Wu, J.; Gamage, T.V.; Vilkhu, K.S.; Simons, L.K.; Mawson, R. Effect of thermosonication on quality improvement of tomato juice. Innov. Food Sci. Emerg. Technol. 2008, 9, 186–195. [Google Scholar] [CrossRef]
- Abid, M.; Jabbar, S.; Hu, B.; Hashim, M.M.; Wu, T.; Lei, S.; Khan, M.A.; Zeng, X. Thermosonication as a potential quality enhancement technique of apple juice. Ultrason. Sonochem. 2014, 21, 984–990. [Google Scholar] [CrossRef]
- Sánchez-Rubio, M.; Taboada-Rodríguez, A.; Cava-Roda, R.; López-Gómez, A.; Marín-Iniesta, F. Combined use of thermo-ultrasound and cinnamon leaf essential oil to inactivate Saccharomyces cerevisiae in natural orange and pomegranate juices. LWT 2016, 73, 140–146. [Google Scholar] [CrossRef]
- Nayak, P.K.; Chandrasekar, C.M.; Gogoi, S.; Kesavan, R.K. Impact of thermal and thermosonication treatments of amora (Spondius pinnata) juice and prediction of quality changes using artificial neural networks. Biosyst. Eng. 2022, 223, 169–181. [Google Scholar] [CrossRef]
- Kidoń, M.; Narasimhan, G. Effect of ultrasound and enzymatic mash treatment on bioactive compounds and antioxidant capacity of black, red and white currant juices. Molecules 2022, 27, 318. [Google Scholar] [CrossRef] [PubMed]
- Cervantes-Elizarrarás, A.; Piloni-Martini, J.; Ramírez-Moreno, E.; Alanís-García, E.; Güemes-Vera, N.; Gómez-Aldapa, C.A.; Zafra-Rojas, Q.Y.; del Socorro Cruz-Cansino, N. Enzymatic inactivation and antioxidant properties of blackberry juice after thermoultrasound: Optimization using response surface methodology. Ultrason. Sonochem. 2017, 34, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.V.; Singh, R.; Verma, K.; Kamble, M.G.; Tarafdar, A.; Chinchkar, A.V.; Pandey, A.K.; Sharma, M.; Gupta, V.K.; Sridhar, K. Effect of microfluidization on quality characteristics of sapodilla (Manilkara achras L.) juice. Food Res. Int. 2022, 162, 112089. [Google Scholar] [CrossRef] [PubMed]
- Suo, G.; Zhou, C.; Su, W.; Hu, X. Effects of ultrasonic treatment on color, carotenoid content, enzyme activity, rheological properties, and microstructure of pumpkin juice during storage. Ultrason. Sonochem. 2022, 84, 105974. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Lin, X.; Xu, Y.; Xu, B. The fate of phenolic acids, flavonoids, vitamin C, antioxidant capacities of Cili (Rosa roxburghii) fruits upon processing and sensory properties of the processed products. Food Biosci. 2023, 53, 102729. [Google Scholar] [CrossRef]
- Li, B.; Li, H.; Song, B.; Tian, J.; Gao, N.; Zhang, Y.; Shu, C. Protective effects of fermented blueberry juice with probiotics on alcohol-induced stomach mucosa injury in rats. Food Biosci. 2023, 55, 102974. [Google Scholar] [CrossRef]
- Li, F.; Yang, S.; Liu, L.; Fu, H.; Ming, J. Variations of bioactive compounds, physicochemical and sensory properties of Rosa roxburghii Tratt juice after high pressure processing. LWT 2023, 5, 114932. [Google Scholar] [CrossRef]
- Chen, W.; Xie, C.; He, Q.; Sun, J.; Bai, W. Improvement in color expression and antioxidant activity of strawberry juice fermented with lactic acid bacteria: A phenolic-based research. Food Chem. X 2023, 17, 100535. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Huang, Y.; Wang, Y.; Shi, T.; Zhang, L.; Chen, Y.; Xie, M. Comparison of (poly) phenolic compounds and antioxidant properties of pomace extracts from kiwi and grape juice. Food Chem. 2019, 271, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Bhukya, J.; Naik, R.; Mohapatra, D.; Sinha, L.K.; Rao, K.V. Orifice based hydrodynamic cavitation of sugarcane juice: Changes in Physico-chemical parameters and Microbiological load. LWT 2021, 150, 111909. [Google Scholar] [CrossRef]
- Martínez-Flores, H.E.; Garnica-Romo, M.G.; Bermúdez-Aguirre, D.; Pokhrel, P.R.; Barbosa-Cánovas, G.V. Physico-chemical parameters, bioactive compounds and microbial quality of thermo-sonicated carrot juice during storage. Food Chem. 2015, 172, 650–656. [Google Scholar] [CrossRef]
- Oladunjoye, A.O.; Awani-Aguma, E.U. Effect of thermosonication on physicochemical, bioactive, sensory and microbiological qualities of African mango fruit (Irvingia gabonensis) juice. Meas. Food. 2023, 11, 100103. [Google Scholar] [CrossRef]
- Oladunjoye, A.O.; Adeboyejo, F.O.; Okekunbi, T.A.; Aderibigbe, O.R. Effect of thermosonication on quality attributes of hog plum (Spondias mombin L.) juice. Ultraso. Sonochem. 2021, 70, 105316. [Google Scholar] [CrossRef]
- Guerrouj, K.; Sánchez-Rubio, M.; Taboada-Rodríguez, A.; Cava-Roda, R.M.; Marín-Iniesta, F. Sonication at mild temperatures enhances bioactive compounds and microbiological quality of orange juice. Food Bioprod. Process. 2016, 99, 20–28. [Google Scholar] [CrossRef]
- Santhirasegaram, V.; Razali, Z.; Somasundram, C. Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indica L.) juice. Ultrason. Sonochem. 2013, 20, 1276–1282. [Google Scholar] [CrossRef]
- Cömert, E.D.; Mogol, B.A.; Gökmen, V. Relationship between color and antioxidant capacity of fruits and vegetables. Curr. Res. Food Sci. 2020, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef] [PubMed]
- Burin, V.M.; Falcão, L.D.; Gonzaga, L.V.; Fett, R.; Rosier, J.P.; Bordignon-Luiz, M.T. Colour, phenolic content and antioxidant activity of grape juice. Food Sci. Technol. 2010, 30, 1027–1032. [Google Scholar] [CrossRef]
- Dranca, F.; Oroian, M. Optimization of ultrasound-assisted extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant (Solanum melongena L.) peel. Ultrason. Sonochem. 2016, 31, 637–646. [Google Scholar] [CrossRef]
- Sharmila, G.; Nikitha, V.S.; Ilaiyarasi, S.; Dhivya, K.; Rajasekar, V.; Kumar, N.M.; Muthukumaran, K.; Muthukumaran, C. Ultrasound assisted extraction of total phenolics from Cassia auriculata leaves and evaluation of its antioxidant activities. Ind. Crop. Prod. 2016, 84, 13–21. [Google Scholar] [CrossRef]
- Margean, A.; Lupu, M.I.; Alexa, E.; Padureanu, V.; Canja, C.M.; Cocan, I.; Negrea, M.; Calefariu, G.; Poiana, M.A. An overview of effects induced by pasteurization and high-power ultrasound treatment on the quality of red grape juice. Molecules 2020, 25, 1669. [Google Scholar] [CrossRef]
- Shraim, A.M.; Ahmed, T.A.; Rahman, M.M.; Hijji, Y.M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT 2021, 150, 111932. [Google Scholar] [CrossRef]
- Hoque, M.; Talukdar, S.; Roy, K.R.; Hossain, M.A.; Zzaman, W. Sonication and thermal treatment of pineapple juice: Comparative assessment of the physicochemical properties, antioxidant activities and microbial inactivation. Food Sci. Technol. Int. 2024, 30, 37–48. [Google Scholar] [CrossRef]
- Yıkmış, S.; Demirok, N.T.; Levent, O.; Apaydın, D. Impact of thermal pasteurization and thermosonication treatments on black grape juice (Vitis vinifera L.): ICP-OES, GC–MS/MS and HPLC analyses. Heliyon 2023, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- Nayak, P.K.; Basumatary, B.; Chandrasekar, C.M.; Seth, D.; Kesavan, R.k. Impact of thermosonication and pasteurization on total phenolic contents, total flavonoid contents, antioxidant activity, and vitamin C levels of elephant apple (Dillenia indica) juice. J. Food Process Eng. 2020, 43, e13447. [Google Scholar] [CrossRef]
- Shi, J.; Simal-Gandara, J.; Mei, J.; Ma, W.; Peng, Q.; Shi, Y.; Xu, Q.; Lin, Z.; Lv, H. Insight into the pigmented anthocyanins and the major potential co-pigmented flavonoids in purple-coloured leaf teas. Food Chem. 2021, 363, 130278. [Google Scholar] [CrossRef]
- González, M.J.; Carrera, C.; Barbero, G.F.; Palma, M. A comparison study between ultrasound–assisted and enzyme–assisted extraction of anthocyanins from blackcurrant (Ribes nigrum L.). Food Chem. X 2022, 13, 100192. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, J.; Ye, J.; Vanga, S.K.; Raghavan, V. Influence of high-intensity ultrasound on bioactive compounds of strawberry juice: Profiles of ascorbic acid, phenolics, antioxidant activity, and microstructure. Food Control 2019, 96, 128–136. [Google Scholar] [CrossRef]
- Manzoor, M.F.; Xu, B.; Khan, S.; Shukat, R.; Ahmad, N.; Imran, M.; Rehman, A.; Karrar, E.; Aadil, R.M.; Korma, S.A. Impact of high-intensity thermosonication treatment on spinach juice: Bioactive compounds, rheological, microbial, and enzymatic activities. Ultrason. Sonochem. 2021, 78, 105740. [Google Scholar] [CrossRef]
- Aguilar, K.; Garvín, A.; Ibarz, A.; Augusto, P.E. Ascorbic acid stability in fruit juices during thermosonication. Ultrason. Sonochem. 2017, 37, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Rawson, A.; Tiwari, B.K.; Patras, A.; Brunton, N.; Brennan, C.; Cullen, P.J.; O’donnell, C. Effect of thermosonication on bioactive compounds in watermelon juice. Food Res. Int. 2011, 44, 1168–1173. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Q.; Xie, B.; Sun, Z. Effect of ultrasound combined with ultraviolet treatment on microbial inactivation and quality properties of mango juice. Ultrason. Sonochem. 2020, 64, 105000. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Manzoor, M.F.; Goksen, G.; Aadil, R.M.; Zeng, X.A.; Iqbal, M.W.; Lorenzo, J.M. High-intensity ultrasonication impact on the chlorothalonil fungicide and its reduction pathway in spinach juice. Ultrason. Sonochem. 2023, 94, 106303. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, X.; Lan, Z.; Tang, J.; Zhao, P.; Kan, H. Ultrasonic-assisted extraction and antioxidant capacities of flavonoids from Camellia fascicularis leaves. CyTA J. Food 2018, 16, 105–112. [Google Scholar] [CrossRef]
- Zou, Y.; Hou, X. Sonication enhances quality and antioxidant activity of blueberry juice. Food Sci. Technol. 2017, 37, 599–603. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, L.; Liu, X.; Hasan, K.F.; Li, H.; Zhou, S.; Zhang, Q.; Zhou, Y. Effect of thermosonication treatment on blueberry juice quality: Total phenolics, flavonoids, anthocyanin, and antioxidant activity. LWT 2021, 150, 112021. [Google Scholar] [CrossRef]
- Khalil, A.A.; Khan, A.A.; Khalid, A.; Abid, Z.; Proestos, C.; Bhat, Z.F.; Shahbaz, M.U.; Aadil, R.M. Comparing the antioxidant properties and volatile compounds of carrot-orange juice blend processed through varied chemical, pasteurization and ultrasound conditions. Ultrason. Sonochem. 2023, 98, 106534. [Google Scholar] [CrossRef]
- Kalsi, B.S.; Singh, S.; Alam, M.S.; Bhatia, S. Application of thermosonication for guava juice processing: Impacts on bioactive, microbial, enzymatic and quality attributes. Ultrason. Sonochem. 2023, 99, 106595. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.V. High pressure processing pretreatment enhanced the thermosonication inactivation of Alicyclobacillus acidoterrestris spores in orange juice. Food Control 2016, 62, 365–372. [Google Scholar]
- Ağçam, E.; Akyıldız, A.; Dündar, B. Thermal Pasteurization and Microbial Inactivation of Fruit Juices. In Fruit Juices, Extraction, Composition, Quality and Analysis; Rajauria, G., Tiwari, B.K., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 309–339. [Google Scholar]
- Mieszczakowska-Frąc, M.; Celejewska, K.; Płocharski, W. Impact of innovative technologies on the content of vitamin C and its bioavailability from processed fruit and vegetable products. Antioxidants 2021, 10, 54. [Google Scholar] [CrossRef] [PubMed]
- Yıkmış, S.; Aksu, H.; Çöl, B.G.; Alpaslan, M. Thermosonication processing of quince (Cydonia oblonga) juice: Effects on total phenolics, ascorbic acid, antioxidant capacity, color and sensory properties. Ciência Agrotecnol. 2019, 43, 1–15. [Google Scholar] [CrossRef]
- Sulaiman, A.; Farid, M.; Silva, F.V. Quality stability and sensory attributes of apple juice processed by thermosonication, pulsed electric field and thermal processing. Food Sci. Technol. Int. 2017, 23, 265–276. [Google Scholar] [CrossRef]
Volume | Treatment | Temperature | Time | Power | Frequency |
---|---|---|---|---|---|
200 mL juice | RJ | - | - | - | - |
PJ | 90 °C | 1 min | - | - | |
TS 40-10 | 40 °C | 10 min | 480 W | 40 kHz | |
TS 40-20 | 20 min | ||||
TS 40-30 | 30 min | ||||
TS 40-40 | 40 min | ||||
TS 50-10 | 50 °C | 10 min | |||
TS 50-20 | 20 min | ||||
TS 50-30 | 30 min | ||||
TS 50-40 | 40 min | ||||
TS 60-10 | 60 °C | 10 min | |||
TS 60-20 | 20 min | ||||
TS 60-30 | 30 min | ||||
TS 60-40 | 40 min |
Treatment | Appearance | L* | a* | b* | ΔE | RGB | HEX |
---|---|---|---|---|---|---|---|
RJ | 23.81 ± 0.23 d | 1.58 ± 0.07 a | −2.46 ± 0.12 cd | - | 57, 56, 60 | # 39383C | |
PJ | 25.83 ± 0.29 a | 1.31 ± 0.04 cde | −2.11 ± 0.09 a | 2.07 ± 0.06 ab | 62, 61, 64 | # 3E3D40 | |
TS 40-10 | 25.06 ± 0.22 c | 1.45 ± 0.07 b | −2.41 ± 0.10 cd | 1.26 ± 0.23 d | 60, 59, 63 | # 3C3B3F | |
TS 40-20 | 25.24 ± 0.33 bc | 1.42 ± 0.13 bc | −2.38 ± 0.09 bcd | 1.45 ± 0.51 cd | 60, 59, 63 | # 3C3B3F | |
TS 40-30 | 25.61 ± 0.49 ab | 1.37 ± 0.04 bcd | −2.31 ± 0.05 bc | 1.82 ± 0.27 abc | 60, 59, 63 | # 3C3B3F | |
TS 40-40 | 25.70 ± 0.35 ab | 1.10 ± 0.09 fg | −2.37 ± 0.13 bcd | 2.04 ± 0.12 ab | 61, 60, 64 | # 3D3C40 | |
TS 50-10 | 25.31 ± 0.90 abc | 1.28 ± 0.14 de | −2.42 ± 0.09 cd | 1.95 ± 0.90 ab | 60, 60, 64 | # 3D3C40 | |
TS 50-20 | 25.79 ± 0.33 ab | 1.24 ± 0.02 e | −2.45 ± 0.11 cd | 2.01 ± 0.11 ab | 61, 61, 65 | # 3D3D41 | |
TS 50-30 | 25.67 ± 0.12 ab | 1.32 ± 0.05 cde | −2.51 ± 0.05 d | 1.89 ± 0.30 abc | 61, 60, 65 | # 3D3C41 | |
TS 50-40 | 25.74 ± 0.39 ab | 1.20 ± 0.04 ef | −2.41 ± 0.11 cd | 1.96 ± 0.45 ab | 61, 61, 65 | # 3D3D41 | |
TS 60-10 | 25.73 ± 0.30 ab | 1.03 ± 0.06 gh | −2.37 ± 0.06 bcd | 1.61 ± 0.29 bcd | 61, 61, 65 | # 3D3D41 | |
TS 60-20 | 25.76 ± 0.28 ab | 0.92 ± 0.04 hi | −2.36 ± 0.03 bcd | 2.06 ± 0.09 ab | 61, 61, 65 | # 3D3D41 | |
TS 60-30 | 25.71 ± 0.11 ab | 0.82 ± 0.04 i | −2.35 ± 0.11 bcd | 2.06 ± 0.16 ab | 61, 61, 64 | # 3D3D40 | |
TS 60-40 | 25.77 ± 0.22 ab | 0.83 ± 0.03 i | −2.21 ± 0.09 ab | 2.12 ± 0.17 a | 61, 61, 64 | # 3D3D40 |
Treatment | Total Microbial Count (log CFU/mL) | Yeast and Mold Count (log CFU/mL) |
---|---|---|
RJ | 4.48 ± 0.01 a | 4.38 ± 0.01 a |
PJ | ND | ND |
TS 40-10 | 3.93 ± 0.03 b | 3.59 ± 0.01 b |
TS 40-20 | 3.43 ± 0.05 c | 3.22 ± 0.10 c |
TS 40-30 | 2.32 ± 0.07 d | 1.85 ± 0.05 e |
TS 40-40 | 1.21 ± 0.09 e | 1.31 ± 0.03 f |
TS 50-10 | ND | 2.31 ± 0.05 d |
TS 50-20 | ND | 1.25 ± 0.07 f |
TS 50-30 | ND | ND |
TS 50-40 | ND | ND |
TS 60-10 | ND | ND |
TS 60-20 | ND | ND |
TS 60-30 | ND | ND |
TS 60-40 | ND | ND |
Treatment | Color | Taste | Flavor | Mouthfeel | Overall Acceptability |
---|---|---|---|---|---|
RJ | 6.00 ± 0.20 a | 5.08 ± 0.08 ab | 4.90 ± 0.10 b | 5.13 ± 0.06 a | 5.73 ± 0.16 ab |
PJ | 5.95 ± 0.05 a | 5.03 ± 0.06 b | 4.90 ± 0.18 b | 5.00 ± 0.13 a | 5.70 ± 0.15 b |
TS 40-10 | 6.10 ± 0.05 a | 5.07 ± 0.06 ab | 5.13 ± 0.06 a | 5.03 ± 0.06 a | 5.82 ± 0.20 ab |
TS 40-20 | 5.93 ± 0.06 a | 5.08 ± 0.08 ab | 5.07 ± 0.06 ab | 5.08 ± 0.12 a | 5.80 ± 0.10 ab |
TS 40-30 | 6.02 ± 0.03 a | 5.11 ± 0.03 ab | 4.97 ± 0.06 ab | 5.07 ± 0.06 a | 5.90 ± 0.20 ab |
TS 40-40 | 5.97 ± 0.08 a | 5.11 ± 0.03 ab | 5.03 ± 0.12 ab | 5.10 ± 0.30 a | 5.85 ± 0.05 ab |
TS 50-10 | 6.02 ± 0.08 a | 5.11 ± 0.03 ab | 4.95 ± 0.05 ab | 5.13 ± 0.03 a | 5.75 ± 0.15 ab |
TS 50-20 | 6.07 ± 0.08 a | 5.12 ± 0.03 ab | 5.08 ± 0.08 ab | 5.13 ± 0.03 a | 6.03 ± 0.16 a |
TS 50-30 | 6.00 ± 0.09 a | 5.15 ± 0.05 a | 5.07 ± 0.08 ab | 5.07 ± 0.03 a | 5.92 ± 0.20 ab |
TS 50-40 | 6.08 ± 0.03 a | 5.11 ± 0.03 ab | 5.07 ± 0.12 ab | 5.07 ± 0.03 a | 5.82 ± 0.10 ab |
TS 60-10 | 5.95 ± 0.10 a | 5.07 ± 0.06 ab | 5.02 ± 0.13 ab | 5.08 ± 0.06 a | 5.80 ± 0.20 ab |
TS 60-20 | 6.03 ± 0.10 a | 5.11 ± 0.03 ab | 4.98 ± 0.10 ab | 5.02 ± 0.12 a | 5.88 ± 0.08 ab |
TS 60-30 | 6.05 ± 0.05 a | 5.07 ± 0.06 ab | 5.02 ± 0.12 ab | 5.03 ± 0.12 a | 5.87 ± 0.23 ab |
TS 60-40 | 5.93 ± 0.10 a | 5.11 ± 0.03 ab | 4.97 ± 0.06 ab | 5.07 ± 0.08 a | 5.73 ± 0.12 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, X.; Su, J.; Nie, J.; Zhang, Z.; Ren, J.; Wang, S.; Pei, Y.; Li, X. Effects of Thermosonication on the Antioxidant Capacity and Physicochemical, Bioactive, Microbiological, and Sensory Qualities of Blackcurrant Juice. Foods 2024, 13, 809. https://doi.org/10.3390/foods13050809
Qiu X, Su J, Nie J, Zhang Z, Ren J, Wang S, Pei Y, Li X. Effects of Thermosonication on the Antioxidant Capacity and Physicochemical, Bioactive, Microbiological, and Sensory Qualities of Blackcurrant Juice. Foods. 2024; 13(5):809. https://doi.org/10.3390/foods13050809
Chicago/Turabian StyleQiu, Xiaokun, Jiajia Su, Jiangli Nie, Zhuo Zhang, Junhan Ren, Shiyi Wang, Yi Pei, and Xihong Li. 2024. "Effects of Thermosonication on the Antioxidant Capacity and Physicochemical, Bioactive, Microbiological, and Sensory Qualities of Blackcurrant Juice" Foods 13, no. 5: 809. https://doi.org/10.3390/foods13050809
APA StyleQiu, X., Su, J., Nie, J., Zhang, Z., Ren, J., Wang, S., Pei, Y., & Li, X. (2024). Effects of Thermosonication on the Antioxidant Capacity and Physicochemical, Bioactive, Microbiological, and Sensory Qualities of Blackcurrant Juice. Foods, 13(5), 809. https://doi.org/10.3390/foods13050809