Plant-Based Fermented Beverages: Nutritional Composition, Sensory Properties, and Health Benefits
Abstract
:1. Introduction
2. Plant-Based Beverages: Types and Characteristics
- Legume beverages: soy, peanut, pea, lupin, and cowpea;
- Nut beverages: almond, coconut, hazelnut, pistachio, walnut, and cashew;
- Cereal beverages: oat, rice, corn, and spelt;
- Pseudo-cereal beverages: quinoa, teff, and amaranth;
- Seed beverages: sesame, flaxseed, hemp, sunflower.
3. Impact of Fermentation on Nutritional Composition, Sensory Properties, and Bioactive Profile of Plant-Based Beverages
3.1. Impact on Nutritional Composition
3.2. Impact on Sensory Properties
3.3. Impact on Bioactive Profile
Fermented Plant-Based Beverage | Microorganisms | Bioactive Compounds | Bioactivity | References |
---|---|---|---|---|
Soy (Glycine max) | Lactobacillus delbrueckii subs. Bulgaricus and Streptococcus thermophilus | Polyphenols, tocopherol, and peptides | Antioxidant activity | [99] |
Soy (Glycine max) | Lactobacillus rhamnosus CRL981 | Isoflavone aglycon | Antioxidant activity | [115] |
Soy (Glycine max) | Bacillus subtilis MTCC5480 and Bacillus subtilis MTCC1747 | Peptides and polyphenols | Antioxidant activity | [111] |
Soy (Glycine max) | Bacillus subtilis 10160 | Polyphenols and flavonoids | Antioxidant activity and ACE inhibition | [116] |
Soy (Glycine max) | Lactobacillus sp. FTDC 2113, Lactobacillus acidophilus FTDC 8033, Lactobacillus acidophilus ATCC 4356, Lactobacillus casei ATCC 393, Bifidobacterium FTDC 8943, and Bifidobacterium longum FTDC 8643 | Isoflavone aglycones (genistein) | ACE inhibition | [117] |
Soy (Glycine max) | Lactobacillus fermentum M2 and Lactobacillus casei NK9 | Peptides | ACE inhibition | [100] |
Soy (Glycine max) | Bifidobacterium animalis ssp. lactis BLC 1, Lactobacillus acidophilus LA 3, Streptococcus thermophilus ST 066, Lactobacillus casei MB151 (ATCC 334), Lactobacillus delbrueckii ssp. bulgaricus MB153 (ATCC 9649), Lactobacillus rhamnosus MB154 (ATCC 7469), and Lactobacillus kefiri CBMAI21 | Total polyphenols as well as isoflavone aglycones (daidzein, genistein, and glycitein) | Antioxidant activity | [101] |
Soy (Glycine max) | Lactobacillus curieae CCTCC M2011381 | Flavonoids | Antioxidant activity, ACE inhibition, and HMGR inhibition | [118] |
Oat (Avena sativa) | Lactobacillus plantarum 22158, Lactobacillus acidophilus 6089, Lactobacillus casei 6117, Lactobacillus delbrueckii subsp. bulgaricus 57004, and Streptococcus thermophilus 58013 | Polyphenols and flavonoids | N.D. | [119] |
Flaxseed (Linum usitatissimum) | Commercial Kefir grains (Yoghurt-Tek®, Lactoferm Kefir Series, Kefir-31) and Biochem S.R.L. (Rome, Italy) | Polyphenols, flavonoids, and ascorbic acid | Antioxidant activity | [104] |
Flaxseed (Linum usitatissimum) | Lactobacillus plantarum (NCDC374) | Peptides | Antioxidant activity, ACE inhibition | [112] |
Sweet blue lupin (Lupinus angustifolius L. cv. “Boregine”) | Commercial Kefir grains (Yoghurt-Tek®, Lactoferm Kefir Series, Kefir-31) and Biochem S.R.L. (Rome, Italy) | Polyphenols, flavonoids, and ascorbic acid | Antioxidant activity | [105] |
Rice (Oryza sativa)–Lentil (Lens culinaris)–Chickpea (Cicer arietinum L.) | Lactobacillus plantarum DSM33326, Lactobacillus brevis DSM33325, and Lactobacillus rhamnosus SP1 | GABA | Antioxidant activity | [73] |
Camelina (Camelina sativa L.) seed | Commercial yogurt starter culture YO 122 | Polyphenols | Antioxidant activity | [120] |
Baru (Dipteryx alata Vog.) almond | Commercial yogurt starter culture YF-L811, Christian Hansen® Probiotic culture (Lactobacillus casei 01, Christian Hansen® | Polyphenols | Antioxidant activity, α-amylase inhibition, and α-glucosidase inhibition | [121] |
Almond (Prunus dulcis) | Kefir grains | N.D. | Antimicrobial activity | [122] |
Soy (Glycine max)–Almond (Prunus dulcis) | Bifidobacterium longum DSM 20219 and Bifidobacterium animalis subsp. lactis DSM 10140 | Polyphenols and flavonoids | Antioxidant activity | [106] |
Cashew nut (Anacardium occidentale)–Soy (Glycine max L.) | Weissella paramesenteroides TC6 and Enterococcus faecalis A4 | N.D. | Antioxidant and anti-inflammatory activities | [92] |
Coconut (Cocos nucifera L.) | Kefir grains | Peptides | Antimicrobial and antioxidant activities | [113] |
Coconut (Cocos nucifera L.) | Lactiplantibacillus plantarum ngue16 | GABA, lactic acid, alanine, and arginine | Antimicrobial and antioxidant activities | [110] |
Hemp (Cannabis sativa) | Commercial Kefir grains (Yoghurt-Tek®, Lactoferm Kefir Series, Kefir-31) and Biochem S.R.L. (Rome, Italy)Commercial yogurt starter culture YO 122 | Polyphenols and flavonoids | Antioxidant activity | [107] |
Hemp (Cannabis sativa) | Bifidobacterium longum B 379M | Flavonoids and curcumin (added) | Antioxidant activity | [123] |
Apricot seed (Prunus armeniaca) | Commercial Kefir culture (KF2 100 MU), Maysa Company (Istanbul, Turkey) | GABA | Antioxidant activity and ACE inhibition | [109] |
Cashew (Anacardium occidentale) | Lactobacillus acidophilus TISTR 1338, Lactobacillus casei TISTR 390, and Lactobacillus plantarum TISTR 543 | Polyphenols and ascorbic acid | Antioxidant activity | [124] |
Oat (Avena sativa) | Commercial yogurt starter culture (CSL, Italy)Probiotic culture (Lactobacillus casei 01, Christian Hansen® | Peptides | ACE inhibition | [114] |
Brown rice (Oryza sativa) | Lactobacillus pentosus 9D3 | Polyphenols and GABA | Antioxidant activity, lipase inhibition, α-amylase inhibition, and α-glucosidase inhibition | [108] |
4. Health Benefits of Plant-Based Fermented Beverages
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef] [PubMed]
- Penha, C.B.; Santos, V.D.P.; Speranza, P.; Kurozawa, L.E. Plant-based beverages: Ecofriendly technologies in the production process. Innov. Food Sci. Emerg. Technol. 2021, 72, 102760. [Google Scholar] [CrossRef]
- Mongi, R.J.; Gomezulu, A.D. Descriptive sensory analysis, consumer acceptability, and conjoint analysis of beef sausages prepared from a pigeon pea protein binder. Heliyon 2022, 8, e10703. [Google Scholar] [CrossRef] [PubMed]
- Polyak, E.; Breitenbach, Z.; Frank, E.; Mate, O.; Figler, M.; Zsalig, D.; Simon, K.; Szijarto, M.; Szabo, Z. Food and sustainability: Is it a matter of choice? Sustainability 2023, 15, 7191. [Google Scholar] [CrossRef]
- Willits-Smith, A.; Aranda, R.; Heller, M.C.; Rose, D. Addressing the carbon footprint, healthfulness, and costs of self-selected diets in the USA: A population-based cross-sectional study. Lancet Planet. Health 2020, 4, e98–e106. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Sharma, P.; Shu, S.; Lin, T.-S.; Ciais, P.; Tubiello, F.N.; Smith, P.; Campbell, N.; Jain, A.K. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nat. Food 2021, 2, 724–732. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- STATISTA. Which (Plant) Milk Is the Most Sustainable? 2023. Available online: https://www.statista.com/chart/22659/cows-milk-plant-milk-sustainability/ (accessed on 27 February 2024).
- STATISTA. Milk Substitutes—Worldwide. 2023. Available online: https://es.statista.com/outlook/cmo/food/dairy-products-eggs/milk-substitutes/worldwide (accessed on 1 June 2023).
- USDA. Estimated Fluid Milk Products Sales Report. United States Department of Agriculture. EFMS-0423. 2023. Available online: https://www.ams.usda.gov/sites/default/files/media/EstimatedFluidProductsMilkSales.pdf (accessed on 20 June 2023).
- Deep, Y.N.; Sangita, B.; Arvind, J.K.; Ranjeet, S. Plant based dairy analogues: An emerging food. Agric. Res. Technol. 2017, 10, 555781. [Google Scholar] [CrossRef]
- Silva, A.R.A.; Silva, M.M.N.; Ribeiro, B.D. Health issues and technological aspects of plant-based alternative milk. Food Res. Int. 2020, 131, 108972. [Google Scholar] [CrossRef]
- Mäkinen, O.E.; Wanhalinna, V.; Zannini, E.; Arendt, E.K. Foods for special dietary needs: Non-dairy plant-based milk substitutes and fermented dairy-type products. Crit. Rev. Food Sci. Nutr. 2016, 56, 339–349. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Singh, T.K.; Jegasothy, H.; Buckow, R. UHT treatment on the stability of faba bean protein emulsion. Proceedings 2021, 70, 29. [Google Scholar] [CrossRef]
- McClements, D.J. Development of next-generation nutritionally fortified plant-based milk substitutes: Structural design principles. Foods 2020, 9, 421. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Tan, M.; Øiseth, S.; Buckow, R. An emerging segment of functional legume-based beverages: A review. Food Rev. Int. 2022, 38, 1064–1102. [Google Scholar] [CrossRef]
- Grau-Fuentes, E.; Rodrigo, D.; Garzón, R.; Rosell, C.M. Understanding the marketed plant-based beverages: From ingredients technological function to their nutritional value. J. Funct. Foods 2023, 106, 105609. [Google Scholar] [CrossRef]
- Braun, K.; Hanewald, A.; Vilgis, T.A. Milk emulsions: Structure and stability. Foods 2019, 8, 483. [Google Scholar] [CrossRef] [PubMed]
- Patra, T.; Rinnan, Å.; Olsen, K. The physical stability of plant-based drinks and the analysis methods thereof. Food Hydrocoll. 2021, 118, 106770. [Google Scholar] [CrossRef]
- FDA. Title 21—Food and Drugs Chapter I-Food and Drug Administration Department of Health and HUMAN Services Subchapter B—Food for Human Consumption. Part 131—Milk and Cream. Subpart B—Requirements for Specific Standardized Milk and Cream. 2023. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=131.110&SearchTerm=milk (accessed on 15 June 2023).
- FDA. Labeling of Plant-Based Milk Alternatives and Voluntary Nutrient Statements; Draft Guidance for Industry (FDA-2023-D-0451); Food and Drug Administration: Silver Spring, MD, USA, 2023.
- NOM-155-SCFI-2012; Leche-Denominaciones, Especificaciones Fisicoquímicas, Información Comercial y Métodos de Prueba. Diario Oficial de la Federación: Mexico City, México, 2012.
- Ji, G.-Z.; Li, X.-M.; Dong, Y.; Shi, Y.-D. Composition, formation mechanism, and removal method of off-odor in soymilk products. J. Food Sci. 2022, 87, 5175–5190. [Google Scholar] [CrossRef] [PubMed]
- Gani, A.; Wani, S.M.; Masoodi, F.A.; Salim, R. Characterization of rice starches extracted from Indian cultivars. Food Sci. Technol. Int. Cienc. Y Tecnol. De Los Aliment. Int. 2013, 19, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Tomar, M.; Punia, S.; Dhakane-Lad, J.; Dhumal, S.; Changan, S.; Senapathy, M.; Berwal, M.K.; Sampathrajan, V.; Sayed, A.A.S.; et al. Plant-based proteins and their multifaceted industrial applications. LWT Food Sci. Technol. 2022, 154, 112620. [Google Scholar] [CrossRef]
- Tangyu, M.; Muller, J.; Bolten, C.J.; Wittmann, C. Fermentation of plant-based milk alternatives for improved flavour and nutritional value. Appl. Microbiol. Biotechnol. 2019, 103, 9263–9275. [Google Scholar] [CrossRef]
- Pontonio, E.; Rizzello, C.G. Milk alternatives and non-dairy fermented products: Trends and challenges. Foods 2021, 10, 222. [Google Scholar] [CrossRef] [PubMed]
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Basinskiene, L.; Cizeikiene, D. Chapter 3—Cereal-Based Nonalcoholic Beverages. In Trends in Non-Alcoholic Beverages; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 63–99. [Google Scholar]
- Jonas da Rocha Esperança, V.; Corrêa de Souza Coelho, C.; Tonon, R.; Torrezan, R.; Freitas-Silva, O. A review on plant-based tree nuts beverages: Technological, sensory, nutritional, health and microbiological aspects. Int. J. Food Prop. 2022, 25, 2396–2408. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Alvi, T.; Sameen, A.; Khan, S.; Blinov, A.V.; Nagdalian, A.A.; Mehdizadeh, M.; Adli, D.N.; Onwezen, M. Consumer acceptance of alternative proteins: A systematic review of current alternative protein sources and interventions adapted to increase their acceptability. Sustainability 2022, 14, 15370. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Buckow, R.; Katopo, L.; Stockmann, R. Chapter 6—Plant-based beverages. In Engineering Plant-Based Food Systems; Prakash, S., Bhandari, B.R., Gaiani, C., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 99–129. [Google Scholar]
- Montemurro, M.; Pontonio, E.; Coda, R.; Rizzello, C.G. Plant-based alternatives to Yogurt: State-of-the-art and perspectives of new biotechnological challenges. Foods 2021, 10, 316. [Google Scholar] [CrossRef]
- Silva, J.G.S.; Rebellato, A.P.; Caramês, E.T.d.S.; Greiner, R.; Pallone, J.A.L. In vitro digestion effect on mineral bioaccessibility and antioxidant bioactive compounds of plant-based beverages. Food Res. Int. 2020, 130, 108993. [Google Scholar] [CrossRef]
- Cichońska, P.; Ziarno, M. Legumes and legume-based beverages fermented with lactic acid bacteria as a potential carrier of probiotics and prebiotics. Microorganisms 2022, 10, 91. [Google Scholar] [CrossRef]
- Sithole, T.R.; Ma, Y.-X.; Qin, Z.; Liu, H.-M.; Wang, X.-D. Influence of peanut varieties on the sensory quality of peanut butter. Foods 2022, 11, 3499. [Google Scholar] [CrossRef]
- Chalupa-Krebzdak, S.; Long, C.J.; Bohrer, B.M. Nutrient density and nutritional value of milk and plant-based milk alternatives. Int. Dairy J. 2018, 87, 84–92. [Google Scholar] [CrossRef]
- Fructuoso, I.; Romão, B.; Han, H.; Raposo, A.; Ariza-Montes, A.; Araya-Castillo, L.; Zandonadi, R.P. An overview on nutritional aspects of plant-based beverages used as substitutes for mow’s milk. Nutrients 2021, 13, 2650. [Google Scholar] [CrossRef]
- Nimbkar, S.; Negi, A.; Thirukumaran, R.; Moses, J.A.; Sinija, V.R. Effect of thermal and nonthermal techniques on the physicochemical quality of high-fat coconut cream. J. Food Process Eng. 2023, 46, e14462. [Google Scholar] [CrossRef]
- Bagheri, H. Application of infrared heating for roasting nuts. J. Food Qual. 2020, 2020, 8813047. [Google Scholar] [CrossRef]
- Zhang, K.; Dong, R.; Hu, X.; Ren, C.; Li, Y. Oat-based foods: Chemical constituents, glycemic index, and the effect of processing. Foods 2021, 10, 1304. [Google Scholar] [CrossRef]
- Cichońska, P.; Ziębicka, A.; Ziarno, M. Properties of rice-based beverages fermented with lactic acid bacteria and propionibacterium. Molecules 2022, 27, 2558. [Google Scholar] [CrossRef] [PubMed]
- Patra, M.; Bashir, O.; Amin, T.; Wani, A.W.; Shams, R.; Chaudhary, K.S.; Mirza, A.A.; Manzoor, S. A comprehensive review on functional beverages from cereal grains-characterization of nutraceutical potential, processing technologies and product types. Heliyon 2023, 9, e16804. [Google Scholar] [CrossRef] [PubMed]
- Paucar-Menacho, L.M.; Simpalo-López, W.D.; Castillo-Martínez, W.E.; Esquivel-Paredes, L.J.; Martínez-Villaluenga, C. Reformulating bread using sprouted pseudo-cereal grains to enhance its nutritional value and sensorial attributes. Foods 2022, 11, 1541. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S. Plant-Based India: Nourishing Recipes Rooted in Tradition; Hachette UK: London, UK, 2022. [Google Scholar]
- Adams, A. The Dairy-Free Kitchen: 100 Recipes for All the Creamy Foods You Love—Without Lactose, Casein, or Dairy; Fair Winds Press: Beverly, MA, USA, 2014. [Google Scholar]
- Mridula, D.; Sharma, M. Development of non-dairy probiotic drink utilizing sprouted cereals, legume and soymilk. LWT Food Sci. Technol. 2015, 62, 482–487. [Google Scholar] [CrossRef]
- Bridges, M. Moo-ove over, cow’s milk: The rise of plant-based dairy alternatives. Pract. Gastroenterol. 2018, 42, 20–27. [Google Scholar]
- Röös, E.; Garnett, T.; Watz, V.; Sjörs, C. The role of dairy and plant based dairy alternatives in sustainable diets. In SLU Future Food Reports 3; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2018; Available online: https://pub.epsilon.slu.se/16016/1/roos_e_et_al_190304.pdf (accessed on 15 December 2023).
- Singhal, S.; Baker, R.D.; Baker, S.S. A comparison of the nutritional value of cow’s milk and nondairy beverages. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 799–805. [Google Scholar] [CrossRef]
- Vaikma, H.; Kaleda, A.; Rosend, J.; Rosenvald, S. Market mapping of plant-based milk alternatives by using sensory (RATA) and GC analysis. Future Foods 2021, 4, 100049. [Google Scholar] [CrossRef]
- Pérez-González, M.; Gallardo-Chacón, J.J.; Valencia-Flores, D.; Ferragut, V. Optimization of a headspace SPME GC-MS methodology for the analysis of processed almond beverages. Food Anal. Methods 2015, 8, 612–623. [Google Scholar] [CrossRef]
- Bhatla, S.C. Secondary Metabolites. In Plant Physiology, Development and Metabolism; Bhatla, S.C., A. Lal, M., Eds.; Springer: Singapore, 2018; pp. 1099–1166. [Google Scholar]
- Jeske, S.; Bez, J.; Arendt, E.K.; Zannini, E. Formation, stability, and sensory characteristics of a lentil-based milk substitute as affected by homogenisation and pasteurisation. Eur. Food Res. Technol. 2019, 245, 1519–1531. [Google Scholar] [CrossRef]
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial fermentation and its role in quality improvement of fermented foods. Fermentation 2020, 6, 106. [Google Scholar] [CrossRef]
- Maicas, S. The role of yeasts in fermentation processes. Microorganisms 2020, 8, 1142. [Google Scholar] [CrossRef] [PubMed]
- Harper, A.R.; Dobson, R.C.J.; Morris, V.K.; Moggré, G.-J. Fermentation of plant-based dairy alternatives by lactic acid bacteria. Microb. Biotechnol. 2022, 15, 1404–1421. [Google Scholar] [CrossRef]
- Paul, A.A.; Kumar, S.; Kumar, V.; Sharma, R. Milk analog: Plant based alternatives to conventional milk, production, potential and health concerns. Crit. Rev. Food Sci. Nutr. 2020, 60, 3005–3023. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Zhang, P.; Warner, R.D.; Shen, S.; Fang, Z. Cereal grain-based functional beverages: From cereal grain bioactive phytochemicals to beverage processing technologies, health benefits and product features. Crit. Rev. Food Sci. Nutr. 2022, 62, 2404–2431. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xu, X.; Cui, H.; Xu, J.; Yuan, Z.; Liu, J.; Li, C.; Li, J.; Zhu, D. Plant-based fermented beverages and key emerging processing technologies. Food Rev. Int. 2022, 39, 5844–5863. [Google Scholar] [CrossRef]
- Ewe, J.-A.; Yeo, S.-K. Fermented soymilk as a nutraceutical. In Beneficial Microorganisms in Food and Nutraceuticals; Liong, M.-T., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 133–159. [Google Scholar]
- Alexandre, E.M.C.; Aguiar, N.F.B.; Voss, G.B.; Pintado, M.E. Properties of fermented beverages from food wastes/by-products. Beverages 2023, 9, 45. [Google Scholar] [CrossRef]
- Gil-Serna, J.; Vázquez, C.; Patiño, B. Mycotoxins in functional beverages: A review. Beverages 2020, 6, 52. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Erol, Z.; Rugji, J.; Taşçı, F.; Kahraman, H.A.; Toppi, V.; Musa, L.; Di Giacinto, G.; Bahmid, N.A.; Mehdizadeh, M.; et al. An overview of fermentation in the food industry—Looking back from a new perspective. Bioresour. Bioprocess. 2023, 10, 85. [Google Scholar] [CrossRef]
- Solanki, P.; Putatunda, C.; Kumar, A.; Bhatia, R.; Walia, A. Microbial proteases: Ubiquitous enzymes with innumerable uses. 3 Biotech 2021, 11, 428. [Google Scholar] [CrossRef]
- Santiago-López, L.; Aguilar-Toalá, J.E.; Hernández-Mendoza, A.; Vallejo-Cordoba, B.; Liceaga, A.M.; González-Córdova, A.F. Invited review: Bioactive compounds produced during cheese ripening and health effects associated with aged cheese consumption. J. Dairy Sci. 2018, 101, 3742–3757. [Google Scholar] [CrossRef]
- Jeyakumar, E.; Lawrence, R. 10—Microbial fermentation for reduction of antinutritional factors. In Current Developments in Biotechnology and Bioengineering; Rai, A.K., Singh, S.P., Pandey, A., Larroche, C., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 239–260. [Google Scholar]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod. Process. Nutr. 2020, 2, 6. [Google Scholar] [CrossRef]
- Licandro, H.; Ho, P.H.; Nguyen, T.K.C.; Petchkongkaew, A.; Nguyen, H.V.; Chu-Ky, S.; Nguyen, T.V.A.; Lorn, D.; Waché, Y. How fermentation by lactic acid bacteria can address safety issues in legumes food products? Food Control 2020, 110, 106957. [Google Scholar] [CrossRef]
- Madeira, J.V.; Macedo, J.A.; Macedo, G.A. Detoxification of castor bean residues and the simultaneous production of tannase and phytase by solid-state fermentation using Paecilomyces variotii. Bioresour. Technol. 2011, 102, 7343–7348. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, S.; Mukherjee, G.; Singh, A.K. Recent trends and advancements in microbial tannase-catalyzed biotransformation of tannins: A review. Int. Microbiol. 2018, 21, 175–195. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.W.; Dearing, D. The metabolic and ecological interactions of oxalate-degrading bacteria in the mammalian gut. Pathogens 2013, 2, 636–652. [Google Scholar] [CrossRef] [PubMed]
- Pontonio, E.; Raho, S.; Dingeo, C.; Centrone, D.; Carofiglio, V.E.; Rizzello, C.G. Nutritional, functional, and technological characterization of a novel gluten- and lactose-free yogurt-style snack produced with selected lactic acid bacteria and leguminosae flours. Front. Microbiol. 2020, 11, 1664. [Google Scholar] [CrossRef] [PubMed]
- Vila-Real, C.; Pimenta-Martins, A.; Mbugua, S.; Hagrétou, S.-L.; Katina, K.; Maina, N.H.; Pinto, E.; Gomes, A.M.P. Novel synbiotic fermented finger millet-based yoghurt-like beverage: Nutritional, physicochemical, and sensory characterization. J. Funct. Foods 2022, 99, 105324. [Google Scholar] [CrossRef]
- Sanni, A.I.; Onilude, A.A.; Adeleke, E.O. Preparation and characteristics of lactic acid fermented cowpea milk. Z. Für Leb. Und-Forsch. A 1999, 208, 225–229. [Google Scholar] [CrossRef]
- Rekha, C.R.; Vijayalakshmi, G. Bioconversion of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk by probiotic bacteria and yeast. J. Appl. Microbiol. 2010, 109, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.-R.; Hsieh, S.-C.; Huang, H.-Y.; Chou, C.-C. Effect of lactic fermentation on the total phenolic, saponin and phytic acid contents as well as anti-colon cancer cell proliferation activity of soymilk. J. Biosci. Bioeng. 2013, 115, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.-W.; Yu, R.-C.; Chou, C.-C. Changes in some components of soymilk during fermentation with bifidobacteria. Food Res. Int. 2000, 33, 393–397. [Google Scholar] [CrossRef]
- Bernat, N.; Cháfer, M.; Chiralt, A.; Laparra, L.M.; González-Martínez, C. Almond milk fermented with different potentially probiotic bacteria improves iron uptake by intestinal epithelial (Caco-2) cells. Int. J. Food Stud. 2015, 4, 49–60. [Google Scholar] [CrossRef]
- Santos, C.C.A.d.A.; Libeck, B.d.S.; Schwan, R.F. Co-culture fermentation of peanut-soy milk for the development of a novel functional beverage. Int. J. Food Microbiol. 2014, 186, 32–41. [Google Scholar] [CrossRef]
- Orts, A.; Revilla, E.; Rodriguez-Morgado, B.; Castaño, A.; Tejada, M.; Parrado, J.; García-Quintanilla, A. Protease technology for obtaining a soy pulp extract enriched in bioactive compounds: Isoflavones and peptides. Heliyon 2019, 5, e01958. [Google Scholar] [CrossRef]
- Karovičová, J.; Kohajdová, Z.; Minarovičová, L.; Lauková, M.; Greifová, M.; Greif, G.; Greif, J. Utilisation of quinoa for development of fermented beverages. Slovak J. Food Sci. 2020, 14, 465–472. [Google Scholar] [CrossRef]
- Jeske, S.; Zannini, E.; Cronin, M.F.; Arendt, E.K. Impact of protease and amylase treatment on proteins and the product quality of a quinoa-based milk substitute. Food Funct. 2018, 9, 3500–3508. [Google Scholar] [CrossRef]
- Zheng, Y.; Fei, Y.; Yang, Y.; Jin, Z.; Yu, B.; Li, L. A potential flavor culture: Lactobacillus harbinensis M1 improves the organoleptic quality of fermented soymilk by high production of 2,3-butanedione and acetoin. Food Microbiol. 2020, 91, 103540. [Google Scholar] [CrossRef]
- de Moraes Filho, M.L.; Busanello, M.; Prudencio, S.H.; Garcia, S. Soymilk with okara flour fermented by Lactobacillus acidophilus: Simplex-centroid mixture design applied in the elaboration of probiotic creamy sauce and storage stability. LWT Food Sci. Technol. 2018, 93, 339–345. [Google Scholar] [CrossRef]
- Nissen, L.; Demircan, B.; Taneyo-Saa, D.L.; Gianotti, A. Shift of aromatic profile in probiotic hemp drink formulations: A metabolomic approach. Microorganisms 2019, 7, 509. [Google Scholar] [CrossRef]
- Menezes, A.G.T.; Ramos, C.L.; Dias, D.R.; Schwan, R.F. Combination of probiotic yeast and lactic acid bacteria as starter culture to produce maize-based beverages. Food Res. Int. 2018, 111, 187–197. [Google Scholar] [CrossRef]
- Horáčková, S.; Mühlhansová, A.; Sluková, M.; Schulzová, V.; Plocková, M. Fermentation of soymilk by yoghurt and bifidobacteria strains. Czech J. Food Sci. 2015, 33, 313–319. [Google Scholar] [CrossRef]
- Demarinis, C.; Verni, M.; Pinto, L.; Rizzello, C.G.; Baruzzi, F. Use of selected lactic acid bacteria for the fermentation of legume-based water extracts. Foods 2022, 11, 3346. [Google Scholar] [CrossRef]
- Salmerón, I.; Thomas, K.; Pandiella, S.S. Effect of potentially probiotic lactic acid bacteria on the physicochemical composition and acceptance of fermented cereal beverages. J. Funct. Foods 2015, 15, 106–115. [Google Scholar] [CrossRef]
- Kundu, P.; Dhankhar, J.; Sharma, A. Development of non dairy milk alternative using soymilk and almond milk. Curr. Res. Nutr. Food Sci. 2018, 6, 203–210. [Google Scholar] [CrossRef]
- Antoine, A.A.; Koua, A.; Djeneba, O.H.; Ruth D’Avila, G.T. Primary characterization of a novel soymilk-cashew fermented with an improving of its antioxidant and anti-Inflammatory contents. Food Nutr. Sci. 2023, 14, 421–435. [Google Scholar] [CrossRef]
- El-Sayed, H.; Ramadan, M.F. Production of probiotic-fermented rice milk beverage fortified with cactus pear and physalis pulp. Zagazig J. Agric. Res. 2020, 47, 165–177. [Google Scholar] [CrossRef]
- Świąder, K.; Wegner, K.; Piotrowska, A.; Tan, F.J.; Sadowska, A. Plants as a source of natural high-intensity sweeteners: A review. J. Appl. Bot. Food Qual. 2019, 92, 160–171. [Google Scholar]
- Pinto, T.; Vilela, A.; Cosme, F. Chemical and sensory characteristics of fruit juice and fruit fermented beverages and their consumer acceptance. Beverages 2022, 8, 33. [Google Scholar] [CrossRef]
- Ruiz Rodríguez, L.G.; Zamora Gasga, V.M.; Pescuma, M.; Van Nieuwenhove, C.; Mozzi, F.; Sánchez Burgos, J.A. Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Res. Int. 2021, 140, 109854. [Google Scholar] [CrossRef]
- Battistini, C.; Gullón, B.; Ichimura, E.S.; Gomes, A.M.P.; Ribeiro, E.P.; Kunigk, L.; Moreira, J.U.V.; Jurkiewicz, C. Development and characterization of an innovative synbiotic fermented beverage based on vegetable soybean. Braz. J. Microbiol. 2018, 49, 303–309. [Google Scholar] [CrossRef]
- Vanga, S.K.; Raghavan, V. How well do plant based alternatives fare nutritionally compared to cow’s milk? J. Food Sci. Technol. 2018, 55, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Tonolo, F.; Moretto, L.; Folda, A.; Scalcon, V.; Bindoli, A.; Bellamio, M.; Feller, E.; Rigobello, M.P. Antioxidant properties of fermented soy during shelf life. Plant Foods Hum. Nutr. 2019, 74, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Undhad Trupti, J.; Das, S.; Solanki, D.; Kinariwala, D.; Hati, S. Bioactivities and ACE-inhibitory peptides releasing potential of lactic acid bacteria in fermented soy milk. Food Prod. Process. Nutr. 2021, 3, 10. [Google Scholar] [CrossRef]
- de Queirós, L.D.; de Ávila, A.R.A.; Botaro, A.V.; Chirotto, D.B.L.; Macedo, J.A.; Macedo, G.A. Combined isoflavones biotransformation increases the bioactive and antioxidant capacity of soymilk. Appl. Microbiol. Biotechnol. 2020, 104, 10019–10031. [Google Scholar] [CrossRef] [PubMed]
- Gaya, P.; Peirotén, Á.; Medina, M.; Landete, J.M. Isoflavone metabolism by a collection of lactic acid bacteria and bifidobacteria with biotechnological interest. Int. J. Food Sci. Nutr. 2016, 67, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Villares, A.; Rostagno, M.A.; García-Lafuente, A.; Guillamón, E.; Martínez, J.A. Content and `profile of isoflavones in soy-based foods as a function of the production process. Food Bioprocess Technol. 2011, 4, 27–38. [Google Scholar] [CrossRef]
- Łopusiewicz, Ł.; Drozłowska, E.; Siedlecka, P.; Mężyńska, M.; Bartkowiak, A.; Sienkiewicz, M.; Zielińska-Bliźniewska, H.; Kwiatkowski, P. Development, characterization, and bioactivity of non-dairy kefir-like fermented beverage based on flaxseed oil cake. Foods 2019, 8, 544. [Google Scholar] [CrossRef] [PubMed]
- Łopusiewicz, Ł.; Drozłowska, E.; Trocer, P.; Kwiatkowski, P.; Bartkowiak, A.; Gefrom, A.; Sienkiewicz, M. The effect of fermentation with kefir grains on the physicochemical and antioxidant properties of beverages from blue lupin (Lupinus angustifolius L.) seeds. Molecules 2020, 25, 5791. [Google Scholar] [CrossRef] [PubMed]
- Zahrani, A.J.A.; Shori, A.B. Improve the antioxidant activity and viability of B. longum and B. animalis subsp lactis in fermented soy and almond milk. Food Sci. Technol. 2023, 43, e118122. [Google Scholar] [CrossRef]
- Łopusiewicz, Ł.; Waszkowiak, K.; Polanowska, K.; Mikołajczak, B.; Śmietana, N.; Hrebień-Filisińska, A.; Sadowska, J.; Mazurkiewicz-Zapałowicz, K.; Drozłowska, E. The effect of yogurt and kefir starter cultures on bioactivity of fermented industrial by-roduct from Cannabis sativa production-Hemp press cake. Fermentation 2022, 8, 490. [Google Scholar] [CrossRef]
- Kittibunchakul, S.; Yuthaworawit, N.; Whanmek, K.; Suttisansanee, U.; Santivarangkna, C. Health beneficial properties of a novel plant-based probiotic drink produced by fermentation of brown rice milk with GABA-producing Lactobacillus pentosus isolated from Thai pickled weed. J. Funct. Foods 2021, 86, 104710. [Google Scholar] [CrossRef]
- Uruc, K.; Tekin, A.; Sahingil, D.; Hayaloglu, A.A. An alternative plant-based fermented milk with kefir culture using apricot (Prunus armeniaca L.) seed extract: Changes in texture, volatiles and bioactivity during storage. Innov. Food Sci. Emerg. Technol. 2022, 82, 103189. [Google Scholar] [CrossRef]
- Qadi, W.S.M.; Mediani, A.; Benchoula, K.; Wong, E.H.; Misnan, N.M.; Sani, N.A. Characterization of physicochemical, biological, and chemical changes associated with coconut milk fermentation and correlation revealed by 1H NMR-mased metabolomics. Foods 2023, 12, 1971. [Google Scholar] [CrossRef]
- Sanjukta, S.; Rai, A.K.; Muhammed, A.; Jeyaram, K.; Talukdar, N.C. Enhancement of antioxidant properties of two soybean varieties of Sikkim Himalayan region by proteolytic Bacillus subtilis fermentation. J. Funct. Foods 2015, 14, 650–658. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, D.; Kaur, S.; Borah, A. Optimization of flaxseed milk fermentation for the production of functional peptides and estimation of their bioactivities. Food Sci. Technol. Int. Cienc. Y Tecnol. De Los Aliment. Int. 2021, 27, 585–597. [Google Scholar] [CrossRef]
- Abadl, M.M.T.; Mohsin, A.Z.; Sulaiman, R.; Abas, F.; Muhialdin, B.J.; Meor Hussin, A.S. Biological activities and physiochemical properties of low-fat and high-fat coconut-based kefir. Int. J. Gastron. Food Sci. 2022, 30, 100624. [Google Scholar] [CrossRef]
- Akan, E.; Karakaya, S.; Eda Eker Özkacar, M.; Kinik, Ö. Effect of food matrix and fermentation on angiotensin-converting enzyme inhibitory activity and β-glucan release after in vitro digestion in oat-based products. Food Res. Int. 2023, 165, 112508. [Google Scholar] [CrossRef]
- Marazza, J.A.; Nazareno, M.A.; de Giori, G.S.; Garro, M.S. Enhancement of the antioxidant capacity of soymilk by fermentation with Lactobacillus rhamnosus. J. Funct. Foods 2012, 4, 594–601. [Google Scholar] [CrossRef]
- Dai, C.; Ma, H.; He, R.; Huang, L.; Zhu, S.; Ding, Q.; Luo, L. Improvement of nutritional value and bioactivity of soybean meal by solid-state fermentation with Bacillus subtilis. LWT Food Sci. Technol. 2017, 86, 1–7. [Google Scholar] [CrossRef]
- Yeo, S.-K.; Liong, M.-T. Angiotensin I-converting enzyme inhibitory activity and bioconversion of isoflavones by probiotics in soymilk supplemented with prebiotics. Int. J. Food Sci. Nutr. 2010, 61, 161–181. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Ro, K.-S.; Li, H.; Wang, L.; Xie, J.; Wei, D. Gastrointestinal survival and potential bioactivities of Lactobacillus curieae CCTCC M2011381 in the fermentation of plant food. Process Biochem. 2020, 88, 222–229. [Google Scholar] [CrossRef]
- He, Z.; Zhang, H.; Wang, T.; Wang, R.; Luo, X. Effects of five different lactic acid bacteria on bioactive components and volatile compounds of oat. Foods 2022, 11, 3230. [Google Scholar] [CrossRef]
- Łopusiewicz, Ł.; Kwiatkowski, P.; Drozłowska, E. Production and characterization of yogurt-like fermented beverage based on camelina (Camelina sativa L.) seed press cake. Appl. Sci. 2022, 12, 1085. [Google Scholar] [CrossRef]
- Costa Fernandes, A.B.; Marcolino, V.A.; Silva, C.; Barão, C.E.; Pimentel, T.C. Potentially synbiotic fermented beverages processed with water-soluble extract of Baru almond. Food Biosci. 2021, 42, 101200. [Google Scholar] [CrossRef]
- Hew, J.H.; Shafie, S.R.; Sulaiman, N. Proximate composition and anti-microbial activity of kefir produced from cow’s and almond milk. J. Trop. Life Sci. 2023, 13, 287–296. [Google Scholar] [CrossRef]
- Merenkova, S.; Zinina, O.; Potoroko, I. Fermented plant beverages stabilized with microemulsion: Confirmation of probiotic properties and antioxidant activity. Fermentation 2022, 8, 723. [Google Scholar] [CrossRef]
- Kaprasob, R.; Kerdchoechuen, O.; Laohakunjit, N.; Sarkar, D.; Shetty, K. Fermentation-based biotransformation of bioactive phenolics and volatile compounds from cashew apple juice by select lactic acid bacteria. Process Biochem. 2017, 59, 141–149. [Google Scholar] [CrossRef]
- Chen, J.; Wu, Y.; Yang, C.; Xu, X.; Meng, Y. Antioxidant and hypolipidemic effects of soymilk fermented via Lactococcus acidophilus MF204. Food Funct. 2017, 8, 4414–4420. [Google Scholar] [CrossRef]
- Miraghajani, M.; Zaghian, N.; Mirlohi, M.; Feizi, A.; Ghiasvand, R. The Impact of probiotic soy milk consumption on oxidative stress among type 2 diabetic kidney disease patients: A randomized controlled clinical trial. J. Ren. Nutr. 2017, 27, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Tiss, M.; Souiy, Z.; Abdeljelil, N.b.; Njima, M.; Achour, L.; Hamden, K. Fermented soy milk prepared using kefir grains prevents and ameliorates obesity, type 2 diabetes, hyperlipidemia and liver-kidney toxicities in HFFD-rats. J. Funct. Foods 2020, 67, 103869. [Google Scholar] [CrossRef]
- Hu, T.; Chen, R.; Qian, Y.; Ye, K.; Long, X.; Park, K.-Y.; Zhao, X. Antioxidant effect of Lactobacillus fermentum HFY02-fermented soy milk on D-galactose-induced aging mouse model. Food Sci. Hum. Wellness 2022, 11, 1362–1372. [Google Scholar] [CrossRef]
- Aparicio-García, N.; Martínez-Villaluenga, C.; Frias, J.; Crespo Perez, L.; Fernández, C.F.; Alba, C.; Rodríguez, J.M.; Peñas, E. A novel sprouted oat fermented beverage: Evaluation of safety and health benefits for celiac individuals. Nutrients 2021, 13, 2522. [Google Scholar] [CrossRef]
- Algonaiman, R.; Alharbi, H.F.; Barakat, H. Antidiabetic and hypolipidemic efficiency of Lactobacillus plantarum fermented oat (Avena sativa) extract in streptozotocin-induced diabetes in rats. Fermentation 2022, 8, 267. [Google Scholar] [CrossRef]
- Deeseenthum, S.; Luang-In, V.; John, S.M.; Chottanom, P.; Chunchom, S. Effects of kefir fermentation on antioxidation activities (in vitro) and antioxidative stress (in vivo) of three thai rice milk varieties prepared by ultrasonication technique. Pharmacogn. J. 2018, 10, 1061–1066. [Google Scholar] [CrossRef]
- Ardiansyah; David, W.; Handoko, D.D.; Kusbiantoro, B.; Budijanto, S.; Shirakawa, H. Fermented rice bran extract improves blood pressure and glucose in stroke-prone spontaneously hypertensive rats. Nutr. Food Sci. 2019, 49, 844–853. [Google Scholar] [CrossRef]
- Chang, V.H.-S.; Chiu, T.-H.; Fu, S.-C. In vitro anti-inflammatory properties of fermented pepino (Solanum muricatum) milk by γ-aminobutyric acid-producing Lactobacillus brevis and an in vivo animal model for evaluating its effects on hypertension. J. Sci. Food Agric. 2016, 96, 192–198. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Han, M.; Liang, J.; Zhang, M.; Bai, X.; Yue, T.; Gao, Z. Evaluating the changes in phytochemical composition, hypoglycemic effect, and influence on mice intestinal microbiota of fermented apple juice. Food Res. Int. 2022, 155, 110998. [Google Scholar] [CrossRef]
Plant-Based Fermented Beverage | Identification of Bioactive Compounds | In Vivo Model | Dose and Duration | Health Benefits | Reference |
---|---|---|---|---|---|
Soy (Glycine max) | Aglycone isoflavones | Rats fed a high-fat diet | 10 mL per kg body weight/daily/6 weeks | Antihyperlipidemic | [125] |
Soy (Glycine max) | N.D. | Type 2 diabetic kidney patients | 200 mL per patient/daily/8 weeks | Antidiabetic | [126] |
Soy (Glycine max) | Aglycone isoflavones and vitamins | Rats fed a hypercaloric high-fat, high-fructose diet | 10 mL per kg body weight/daily/90 days | Antidiabetic and anti-obesity | [127] |
Soy (Glycine max) | Aglycone isoflavones | Murine model of aging induced by D-galactose | 0.2 mL per animal/daily/8 weeks | Antioxidant and anti-aging | [128] |
Oat (Avena sativa) | N.D. | Celiac patients | 200 mL per patient/daily/6 months | Antihyperlipidemic | [129] |
Oat (Avena sativa) | Polyphenols and GABA | Rat model with diabetes induced by streptozotocin | 7 mL per animal/daily/6 weeks | Antidiabetic and hypolipidemic | [130] |
Rice (Oryza sativa) | GABA, α-tocopherol, and polyphenols | Rat colitis model | 150 mg dissolved in PBS per kg body weight/daily/10 days | Antioxidant | [131] |
Rice (Oryza sativa) | Polyphenols | Stroke-prone, spontaneously hypertensive rats | 40 mg beverage per kg body weight/16 h fasting | Antihypertensive | [132] |
Sweet cucumber (Solanum muricatum) | GABA | Spontaneously hypertensive rats | 2.5 mL per animal/daily/8 weeks | Antihypertensive | [133] |
Aksu apple (Rosaceae, Malus, Fuji) | N.D. | C57BL/6J mice | 10 mL beverage per kg body weight/daily/4 weeks | Antidiabetic | [134] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidalgo-Fuentes, B.; de Jesús-José, E.; Cabrera-Hidalgo, A.d.J.; Sandoval-Castilla, O.; Espinosa-Solares, T.; González-Reza, R.M.; Zambrano-Zaragoza, M.L.; Liceaga, A.M.; Aguilar-Toalá, J.E. Plant-Based Fermented Beverages: Nutritional Composition, Sensory Properties, and Health Benefits. Foods 2024, 13, 844. https://doi.org/10.3390/foods13060844
Hidalgo-Fuentes B, de Jesús-José E, Cabrera-Hidalgo AdJ, Sandoval-Castilla O, Espinosa-Solares T, González-Reza RM, Zambrano-Zaragoza ML, Liceaga AM, Aguilar-Toalá JE. Plant-Based Fermented Beverages: Nutritional Composition, Sensory Properties, and Health Benefits. Foods. 2024; 13(6):844. https://doi.org/10.3390/foods13060844
Chicago/Turabian StyleHidalgo-Fuentes, Belén, Edgar de Jesús-José, Anselmo de J. Cabrera-Hidalgo, Ofelia Sandoval-Castilla, Teodoro Espinosa-Solares, Ricardo. M. González-Reza, María L. Zambrano-Zaragoza, Andrea M. Liceaga, and José E. Aguilar-Toalá. 2024. "Plant-Based Fermented Beverages: Nutritional Composition, Sensory Properties, and Health Benefits" Foods 13, no. 6: 844. https://doi.org/10.3390/foods13060844
APA StyleHidalgo-Fuentes, B., de Jesús-José, E., Cabrera-Hidalgo, A. d. J., Sandoval-Castilla, O., Espinosa-Solares, T., González-Reza, R. M., Zambrano-Zaragoza, M. L., Liceaga, A. M., & Aguilar-Toalá, J. E. (2024). Plant-Based Fermented Beverages: Nutritional Composition, Sensory Properties, and Health Benefits. Foods, 13(6), 844. https://doi.org/10.3390/foods13060844