Structural Features, Physicochemical Properties, and In Vitro Digestibility of the Starch-Lipid Complexes Formed between High Amylose Starch and Stearic Acid or Potassium Stearate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Starch-Lipid Dispersions
2.3. Zeta (ζ)-Potential of the Dispersions
2.4. Rheological Properties
2.5. Isolation of Starch-Lipid Complexes
2.6. X-ray Diffraction (XRD) Analysis
2.7. Fourier Transform Infrared (FTIR) Spectroscopy
2.8. Small Angle X-ray Scattering (SAXS)
2.9. Scanning Electron Microscopy (SEM)
2.10. Confocal Laser Scanning Microscopy (CLSM)
2.11. In Vitro Digestibility
2.12. Statistical Analysis
3. Results
3.1. Formation of HAS-SA/PS Dispersions and Rheological Properties
3.2. Crystalline Structures Resolved by XRD
3.3. FTIR Analysis
3.4. SAXS Analysis
3.5. Morphology of Freeze-Dried Starch-Lipid Complexes
3.6. In Vitro Digestion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oyeyinka, S.A.; Singh, S.; Amonsou, E.O. A review on structural, digestibility and physicochemical properties of legume starch-lipid complexes. Food Chem. 2021, 349, 129165. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.R.; Tian, Y.Q.; Zhang, H.H.; Cai, C.X.; Chen, L.; Jin, Z.Y. Interactions between rice amylose and aroma compounds and their effect on rice fragrance release. Food Chem. 2019, 289, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Bie, P.P.; Tong, X.; Zhang, B.; Fu, X.; Huang, Q. Complexation between High-Amylose Starch and Binary Aroma Compounds of Decanal and Thymol: Cooperativity or Competition? J. Agric. Food Chem. 2021, 69, 11665–11675. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, H.; Chen, Z.X.; Zhong, Q.X. Structural basis for the low digestibility of starches recrystallized from side chains of amylopectin modified by amylosucrase to different chain lengths. Carbohydr. Polym. 2020, 241, 116352. [Google Scholar] [CrossRef]
- D’Silva, T.V.; Taylor, J.R.N.; Emmambux, M.N. Enhancement of the pasting properties of teff and maize starches through wet-heat processing with added stearic acid. J. Cereal Sci. 2011, 53, 192–197. [Google Scholar] [CrossRef]
- Obiro, W.C.; Ray, S.S.; Emmambux, M.N. V-amylose Structural Characteristics, Methods of Preparation, Significance, and Potential Applications. Food Rev. Int. 2012, 28, 412–438. [Google Scholar] [CrossRef]
- Panyoo, A.E.; Emmambux, M.N. Amylose-lipid complex production and potential health benefits: A mini-review. Starch-Stärke 2017, 69, 1600203. [Google Scholar] [CrossRef]
- Wang, S.J.; Chao, C.; Cai, J.J.; Niu, B.; Copeland, L.; Wang, S. Starch-lipid and starch-lipid-protein complexes: A comprehensive review. Compr. Rev. Food. Sci. Food Saf. 2020, 19, 1056–1079. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, Q.; Luo, F.-X.; Fu, X. Structural characterizations and digestibility of debranched high-amylose maize starch complexed with lauric acid. Food Hydrocoll. 2012, 28, 174–181. [Google Scholar] [CrossRef]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, S33–S50. [Google Scholar]
- DeMartino, P.; Cockburn, D.W. Resistant starch: Impact on the gut microbiome and health. Curr. Opin. Biotech. 2020, 61, 66–71. [Google Scholar] [CrossRef]
- Guo, J.Y.; Tan, L.B.; Kong, L.Y. Impact of dietary intake of resistant starch on obesity and associated metabolic profiles in human: A systematic review of the literature. Crit. Rev. Food Sci. 2021, 61, 889–905. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, T.J.; Tovar, J. Update of the concept of type 5 resistant starch (RS5): Self-assembled starch V-type complexes. Trends Food Sci. Techol. 2021, 109, 711–724. [Google Scholar] [CrossRef]
- Hasjim, J.; Ai, Y.; Jane, J.-L. Novel Applications of Amylose-Lipid Complex as Resistant Starch Type 5. In Resistant Starch: Sources, Applications and Health Benefits; Shi, Y.C., Maningat, C.C., Eds.; John Wiley and Sons Ltd.: Oxford, UK, 2013; pp. 79–94. [Google Scholar] [CrossRef]
- Marinopoulou, A.; Papastergiadis, E.; Raphaelides, S.N.; Kontominas, M.G. Morphological characteristics, oxidative stability and enzymic hydrolysis of amylose-fatty acid complexes. Carbohydr. Polym. 2016, 141, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Shogren, R.L.; Fanta, G.F.; Felker, F.C. X-ray diffraction study of crystal transformations in spherulitic amylose/lipid complexes from jet-cooked starch. Carbohydr. Polym. 2006, 64, 444–451. [Google Scholar] [CrossRef]
- He, W.-S.; Wang, Q.; Zhao, L.; Li, J.; Li, J.; Wei, N.; Chen, G. Nutritional composition, health-promoting effects, bioavailability, and encapsulation of tree peony seed oil: A review. Food Funct. 2023, 14, 10265–10285. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Jin, Y.; Hong, Y.; Gu, Z.; Cheng, L.; Li, Z.; Li, C. Effects of fatty acids with various chain lengths and degrees of unsaturation on the structure, physicochemical properties and digestibility of maize starch-fatty acid complexes. Food Hydrocoll. 2021, 110, 106224. [Google Scholar] [CrossRef]
- Chao, C.; Yu, J.L.; Wang, S.; Copeland, L.; Wang, S.J. Mechanisms Underlying the Formation of Complexes between Maize Starch and Lipids. J. Agric. Food Chem. 2018, 66, 272–278. [Google Scholar] [CrossRef]
- Niu, B.; Chao, C.; Cai, J.J.; Yan, Y.Z.; Copeland, L.; Wang, S.; Wang, S.J. The effect of NaCl on the formation of starch-lipid complexes. Food Chem. 2019, 299, 125133. [Google Scholar] [CrossRef]
- Wang, R.; Li, Z.S.; Zhang, T.Q.; Zhang, H.; Zhou, X.; Wang, T.; Feng, W.; Yu, P.B. Impact of amylose content on the starch branch chain elongation catalyzed by amylosucrase from Neisseria polysaccharea. Food Hydrocoll. 2021, 111, 106395. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, R.; Chen, Z.X.; Zhong, Q.X. Amylopectin-Sodium Palmitate Complexes as Sustainable Nanohydrogels with Tunable Size and Fractal Dimensions. J. Agric. Food Chem. 2020, 68, 3796–3805. [Google Scholar] [CrossRef]
- Nara, S.; Komiya, T. Studies on the Relationship Between Water-satured State and Crystallinity by the Diffraction Method for Moistened Potato Starch. Starch-Stärke 1983, 35, 407–410. [Google Scholar] [CrossRef]
- Shang, Y.Q.; Chao, C.; Yu, J.L.; Copeland, L.; Wang, S.; Wang, S.J. Starch Spherulites Prepared by a Combination of Enzymatic and Acid Hydrolysis of Normal Corn Starch. J. Agric. Food Chem. 2018, 66, 6357–6363. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, R.; Chen, Z.X.; Zhong, Q.X. Enzymatically modified starch with low digestibility produced from amylopectin by sequential amylosucrase and pullulanase treatments. Food Hydrocoll. 2019, 95, 195–202. [Google Scholar] [CrossRef]
- Zhou, Y.G.; Yang, H.S. Effects of calcium ion on gel properties and gelation of tilapia (Oreochromis niloticus) protein isolates processed with pH shift method. Food Chem. 2019, 277, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.Y.; Cheng, J.J.; Lin, Q.Y.; Wang, Q.Y.; Wang, J.R.; Yu, G.P. Effects of endogenous proteins and lipids on structural, thermal, rheological, and pasting properties and digestibility of adlay seed (Coix lacryma-jobi L.) starch. Food Hydrocoll. 2021, 111, 106254. [Google Scholar] [CrossRef]
- Karlberg, M.; Piculell, L.; Huang, L. Solubility of amylose/ionic surfactant complexes in dilute aqueous solutions: Dependence on surfactant concentration. Carbohydr. Polym. 2007, 70, 350–354. [Google Scholar] [CrossRef]
- Zobel, H.F. Starch Crystal Transformations and Their Industrial Importance. Starch-Stärke 1988, 40, 1–7. [Google Scholar] [CrossRef]
- Li, Q.; Dong, Y.Y.; Gao, Y.; Du, S.K.; Li, W.H.; Yu, X.Z. Functional Properties and Structural Characteristics of Starch-Fatty Acid Complexes Prepared at High Temperature. J. Agric. Food Chem. 2021, 69, 9076–9085. [Google Scholar] [CrossRef] [PubMed]
- Fanta, G.F.; Shogren, R.L.; Salch, J.H. Steam jet cooking of high-amylose starch fatty acid mixtures. An investigation of complex formation. Carbohydr. Polym. 1999, 38, 1–6. [Google Scholar] [CrossRef]
- Ji, N.; Qin, Y.; Li, M.; Xiong, L.; Qiu, L.Z.; Bian, X.L.; Sun, Q.J. Fabrication and Characterization of Starch Nanohydrogels via Reverse Emulsification and Internal Gelation. J. Agric. Food Chem. 2018, 66, 9326–9334. [Google Scholar] [CrossRef] [PubMed]
- Cervantes-Ramirez, J.E.; Cabrera-Ramirez, A.H.; Morales-Sanchez, E.; Rodriguez-Garcia, M.E.; Reyes-Vega, M.D.; Ramirez-Jimenez, A.K.; Contreras-Jimenez, B.L.; Gaytan-Martinez, M. Amylose-lipid complex formation from extruded maize starch mixed with fatty acids. Carbohydr. Polym. 2020, 246, 116555. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Rubio, A.; Flanagan, B.M.; Shrestha, A.K.; Gidley, M.J.; Gilbert, E.P. Molecular rearrangement of starch during in vitro digestion: Toward a better understanding of enzyme resistant starch formation in processed starches. Biomacromolecules 2008, 9, 1951–1958. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Qian, S.; Rao, Z.M.; Chen, Z.X.; Zhong, Q.X.; Wang, R. Supermolecular structures of recrystallized starches with amylopectin side chains modified by amylosucrase to different chain lengths. Food Hydrocoll. 2021, 119, 106830. [Google Scholar] [CrossRef]
- Yang, S.; Zhu, M.P.; Wang, N.; Cui, X.T.; Xu, Q.; Saleh, A.S.M.; Duan, Y.M.; Xiao, Z.G. Influence of Oil Type on Characteristics of -Sitosterol and Stearic Acid Based Oleogel. Food Biophys. 2018, 13, 362–373. [Google Scholar] [CrossRef]
- Zabar, S.; Lesmes, U.; Katz, I.; Shimoni, E.; Bianco-Peled, H. Studying different dimensions of amylose-long chain fatty acid complexes: Molecular, nano and micro level characteristics. Food Hydrocoll. 2009, 23, 1918–1925. [Google Scholar] [CrossRef]
- Schaefer, D.W.; Keefer, K.D. Fractal Geometry of Silica Condensation Polymers. Phys. Rev. Lett. 1984, 53, 1383–1386. [Google Scholar] [CrossRef]
- Suzuki, T.; Chiba, A.; Yano, T. Interpretation of small angle X-ray scattering from starch on the basis of fractals. Carbohydr. Polym. 1997, 34, 357–363. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, X.; He, J.; Wang, T.; Luo, X.H.; Wang, L.; Wang, R.; Chen, Z.X. Impact of amylosucrase modification on the structural and physicochemical properties of native and acid-thinned waxy corn starch. Food Chem. 2017, 220, 413–419. [Google Scholar] [CrossRef]
Sample | XRD | FTIR | SAXS | In Vitro Digestibility | |||
---|---|---|---|---|---|---|---|
Rc (%) # | 1047/1016 Ratio | 995/1016 Ratio | Dm † | RDS (%) ‡ | SDS (%) ‡ | RS (%) ‡ | |
Control | 20.0 ± 0.1 i | 0.38 ± 0.00 b,c | 1.07 ± 0.02 a | 2.96 ± ± 0.01 a | 36.7 ± 0.2 h | 33.0 ± 0.8 f | 30.3 ± 0.6 a |
HAS-SA-0.5 (3.6%) | 22.7 ± 0.4 h | 0.41 ± 0.02 a | 1.09 ± 0.01 a | 2.96 ± 0.02 a | 44.7 ± 0.2 e | 39.2 ± 0.5 d | 16.1 ± 0.3 e |
HAS-SA-1.0 (7.1%) | 25.6 ± 0.5 g | 0.40 ± 0.01 a | 1.08 ± 0.02 a | 2.95 ± 0.01 a | 37.8 ± 0.4 g | 35.9 ± 1.0 e | 26.3 ± 0.6 d |
HAS-SA-1.5 (10.7%) | 28.9 ± 0.2 f | 0.41 ± 0.01 a | 1.07 ± 0.01 a | 2.95 ± 0.00 a | 38.8 ± 0.1 f | 33.1 ± 0.6 f | 28.1 ± 0.4 c |
HAS-SA-2.0 (14.2%) | 33.2 ± 0.1 d | 0.41 ± 0.01 a | 1.08 ± 0.03 a | 2.96 ± 0.02 a | 39.3 ± 0.1 f | 31.5 ± 0.2 g | 29.2 ± 0.3 b |
HAS-PS-0.5 (4.0%) | 30.1 ± 0.0 e | 0.40 ± 0.01 a, b | 1.01 ± 0.01 b | 2.56 ± 0.01 b | 46.5 ± 0.3 d | 53.4 ± 0.3 a | 0.2 ± 0.1 f |
HAS-PS-1.0 (8.1%) | 34.3 ± 0.2 c | 0.36 ± 0.00 c | 0.84 ± 0.02 c | 2.42 ± 0.01 c | 47.6 ± 0.1 c | 52.5 ± 0.2 a, b | 0.1 ± 0.1 f |
HAS-PS-1.5 (12.1%) | 35.5 ± 0.1 b | 0.37 ± 0.01 c | 0.85 ± 0.00 c | 2.30 ± 0.01 d | 48.5 ± 0.7 b | 51.2 ± 0.6 b | 0.1 ± 0.1 f |
HAS-PS-2.0 (16.1%) | 36.1 ± 0.1 a | 0.36 ± 0.01 c | 0.84 ± 0.01 c | 2.15 ± 0.00 e | 50.1 ± 0.3 a | 49.7 ± 0.3 c | 0.1 ± 0.0 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, Y.; Zhang, H.; Sang, S.; Ren, B.; Yuan, Y.; Xing, J.; Luo, X. Structural Features, Physicochemical Properties, and In Vitro Digestibility of the Starch-Lipid Complexes Formed between High Amylose Starch and Stearic Acid or Potassium Stearate. Foods 2024, 13, 859. https://doi.org/10.3390/foods13060859
Zhai Y, Zhang H, Sang S, Ren B, Yuan Y, Xing J, Luo X. Structural Features, Physicochemical Properties, and In Vitro Digestibility of the Starch-Lipid Complexes Formed between High Amylose Starch and Stearic Acid or Potassium Stearate. Foods. 2024; 13(6):859. https://doi.org/10.3390/foods13060859
Chicago/Turabian StyleZhai, Yuheng, Hao Zhang, Shangyuan Sang, Bin Ren, Yongjun Yuan, Jiali Xing, and Xiaohu Luo. 2024. "Structural Features, Physicochemical Properties, and In Vitro Digestibility of the Starch-Lipid Complexes Formed between High Amylose Starch and Stearic Acid or Potassium Stearate" Foods 13, no. 6: 859. https://doi.org/10.3390/foods13060859
APA StyleZhai, Y., Zhang, H., Sang, S., Ren, B., Yuan, Y., Xing, J., & Luo, X. (2024). Structural Features, Physicochemical Properties, and In Vitro Digestibility of the Starch-Lipid Complexes Formed between High Amylose Starch and Stearic Acid or Potassium Stearate. Foods, 13(6), 859. https://doi.org/10.3390/foods13060859