Application of Antioxidant Poly-Lactic Acid/Polyhydroxybutyrate (PLA/PHB) Films with Rice Bran Extract for the Preservation of Fresh Pork Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtention of Rice Bran Extract
2.2. Biopolymer Films Formation
2.3. Migration Assay, Antioxidant Capacity, and Antimicrobial Characterization of Films
2.4. Experimental Design and Packaging of Samples
2.5. Instrumental Color Parameters
2.6. Oxidative Status
2.7. Microbiological Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Migrations, Antioxidant Capacity, and Antimicrobial Activity of PLA/PHB Films
3.2. Effects of PLA/PHB Films with Rice Bran Extract on Fresh Pork Preservation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Requena, R.; Vargas, M.; Chiralt, A. Eugenol and Carvacrol Migration from PHBV Films and Antibacterial Action in Different Food Matrices. Food Chem. 2019, 277, 38–45. [Google Scholar] [CrossRef]
- Freitas, P.A.V.; González-Martínez, C.; Chiralt, A. Using Rice Straw Fractions to Develop Reinforced, Active PLA-Starch Bilayers for Meat Preservation. Food Chem. 2023, 405, 134990. [Google Scholar] [CrossRef]
- Shahbazi, Y.; Shavisi, N. A Novel Active Food Packaging Film for Shelf-Life Extension of Minced Beef Meat. J. Food Saf. 2018, 38, e12569. [Google Scholar] [CrossRef]
- Garcia-Garcia, D.; Quiles-Carrillo, L.; Balart, R.; Torres-Giner, S.; Arrieta, M.P. Innovative Solutions and Challenges to Increase the Use of Poly(3-Hydroxybutyrate) in Food Packaging and Disposables. Eur. Polym. J. 2022, 178, 111505. [Google Scholar] [CrossRef]
- Rojas, A.; Velásquez, E.; Vidal, C.P.; Guarda, A.; Galotto, M.J.; de Dicastillo, C.L. Active PLA Packaging Films: Effect of Processing and the Addition of Natural Antimicrobials and Antioxidants on Physical Properties, Release Kinetics, and Compostability. Antioxidants 2021, 10, 1976. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, M.P.; Castro-López, M.D.M.; Rayón, E.; Barral-Losada, L.F.; López-Vilariño, J.M.; López, J.; González-Rodríguez, M.V. Plasticized Poly(Lactic Acid)-Poly(Hydroxybutyrate) (PLA-PHB) Blends Incorporated with Catechin Intended for Active Food-Packaging Applications. J. Agric. Food Chem. 2014, 62, 10170–10180. [Google Scholar] [CrossRef] [PubMed]
- Swetha, T.A.; Ananthi, V.; Bora, A.; Sengottuvelan, N.; Ponnuchamy, K.; Muthusamy, G.; Arun, A. A Review on Biodegradable Polylactic Acid (PLA) Production from Fermentative Food Waste—Its Applications and Degradation. Int. J. Biol. Macromol. 2023, 234, 123703. [Google Scholar] [CrossRef]
- Hasanoglu, Z.; Sivri, N.; Alanalp, M.B.; Durmus, A. Preparation of Polylactic Acid (PLA) Films Plasticized with a Renewable and Natural Liquidambar Orientalis Oil. Int. J. Biol. Macromol. 2024, 257, 128631. [Google Scholar] [CrossRef]
- Freitas, P.A.V.; Bas Gil, N.J.; González-Martínez, C.; Chiralt, A. Antioxidant Poly (Lactic Acid) Films with Rice Straw Extract for Food Packaging Applications. Food Packag. Shelf Life 2022, 34, 101003. [Google Scholar] [CrossRef]
- Requena, R.; Jiménez, A.; Vargas, M.; Chiralt, A. Poly[(3-Hydroxybutyrate)-Co-(3-Hydroxyvalerate)] Active Bilayer Films Obtained by Compression Moulding and Applying Essential Oils at the Interface. Polym. Int. 2016, 65, 883–891. [Google Scholar] [CrossRef]
- Manzanarez-López, F.; Soto-Valdez, H.; Auras, R.; Peralta, E. Release of α-Tocopherol from Poly(Lactic Acid) Films, and Its Effect on the Oxidative Stability of Soybean Oil. J. Food Eng. 2011, 104, 508–517. [Google Scholar] [CrossRef]
- Iñiguez-Franco, F.; Soto-Valdez, H.; Peralta, E.; Ayala-Zavala, J.F.; Auras, R.; Gámez-Meza, N. Antioxidant Activity and Diffusion of Catechin and Epicatechin from Antioxidant Active Films Made of Poly(l-Lactic Acid). J. Agric. Food Chem. 2012, 60, 6515–6523. [Google Scholar] [CrossRef] [PubMed]
- Requena, R.; Vargas, M.; Chiralt, A. Release Kinetics of Carvacrol and Eugenol from Poly(Hydroxybutyrate-Co-Hydroxyvalerate) (PHBV) Films for Food Packaging Applications. Eur. Polym. J. 2017, 92, 185–193. [Google Scholar] [CrossRef]
- Martillanes, S.; Ayuso-Yuste, M.C.; Gil, M.V.; Manzano-Durán, R.; Delgado-Adámez, J. Bioavailability, Composition and Functional Characterization of Extracts from Oryza sativa L. Bran. Food Res. Int. 2018, 111, 299–305. [Google Scholar] [CrossRef]
- Martillanes, S.; Rocha-Pimienta, J.; Gil, M.V.; Ayuso-Yuste, M.C.; Delgado-Adámez, J. Antioxidant and Antimicrobial Evaluation of Rice Bran (Oryza sativa L.) Extracts in a Mayonnaise-Type Emulsion. Food Chem. 2020, 308, 125633. [Google Scholar] [CrossRef] [PubMed]
- Martillanes, S.; Rocha-Pimienta, J.; Ramírez, R.; García-Parra, J.; Delgado-Adámez, J. Effect of an Active Packaging with Rice Bran Extract and High-Pressure Processing on the Preservation of Sliced Dry-Cured Ham from Iberian Pigs. LWT 2021, 151. [Google Scholar] [CrossRef]
- Andrade, M.; Barbosa, C.; Cerqueira, M.; Azevedo, A.G.; Barros, C.; Machado, A.V.; Coelho, A.; Furtado, R.; Correia, C.B.; Saraiva, M.; et al. Pla Films Loaded with Green Tea and Rosemary Polyphenolic Extracts as an Active Packaging for Almond and Beef. SSRN Electron. J. 2022, 36, 101041. [Google Scholar] [CrossRef]
- Jiménez, A.; Sánchez-González, L.; Desobry, S.; Chiralt, A.; Tehrany, E.A. Influence of Nanoliposomes Incorporation on Properties of Film Forming Dispersions and Films Based on Corn Starch and Sodium Caseinate. Food Hydrocoll. 2014, 35, 159–169. [Google Scholar] [CrossRef]
- Martillanes, S.; Ramírez, R.; Amaro-Blanco, G.; Ayuso-Yuste, M.C.; Gil, M.V.; Delgado-Adámez, J. Effect of Rice Bran Extract on the Preservation of Pork Burger Treated with High Pressure Processing. J. Food Process Preserv. 2020, 44, e14313. [Google Scholar] [CrossRef]
- Salih, A.M.; Smith, D.M.; Price, J.F.; Dawson, L.E. Modified Extraction 2-Thiobarbituric Acid Method for Measuring Lipid Oxidation in Poultry. Poult. Sci. 1987, 66, 1483–1488. [Google Scholar] [CrossRef]
- Oliver, C.N.; Ahn, B.W.; Moerman, E.J.; Goldstein, S.; Stadtman, E.R. Age-Related Changes in Oxidized Proteins. J. Biol. Chem. 1987, 262, 5488–5491. [Google Scholar] [CrossRef]
- ISO 6579-1:2017; Microbiology of the food chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 11290-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 1: Detection Method. International Organization for Standardization: Geneva, Switzerland, 2017.
- Freitas, P.A.V.; González-Martínez, C.; Chiralt, A. Application of Ultrasound Pre-Treatment for Enhancing Extraction of Bioactive Compounds from Rice Straw. Foods 2020, 9, 1657. [Google Scholar] [CrossRef]
- Ma, Y.; Li, L.; Wang, Y. Development of PLA-PHB-Based Biodegradable Active Packaging and Its Application to Salmon. Packag. Technol. Sci. 2018, 31, 739–746. [Google Scholar] [CrossRef]
- Gavril, G.L.; Wrona, M.; Bertella, A.; Świeca, M.; Râpă, M.; Salafranca, J.; Nerín, C. Influence of Medicinal and Aromatic Plants into Risk Assessment of a New Bioactive Packaging Based on Polylactic Acid (PLA). Food Chem. Toxicol. 2019, 132, 110662. [Google Scholar] [CrossRef]
- Ulloa, P.A.; Vidal, J.; Lopéz de Dicastillo, C.; Rodriguez, F.; Guarda, A.; Cruz, R.M.S.; Galotto, M.J. Development of Poly(Lactic Acid) Films with Propolis as a Source of Active Compounds: Biodegradability, Physical, and Functional Properties. J. Appl. Polym. Sci. 2019, 136, 47090. [Google Scholar] [CrossRef]
- Chen, J.; Li, Y.; Shi, W.; Zheng, H.; Wang, L.; Li, L. Release of Cinnamaldehyde and Thymol from Pla/Tilapia Fish Gelatin-Sodium Alginate Bilayer Films to Liquid and Solid Food Simulants, and Japanese Sea Bass: A Comparative Study. Molecules 2021, 26, 7140. [Google Scholar] [CrossRef] [PubMed]
- Llana-Ruiz-Cabello, M.; Pichardo, S.; Bermúdez, J.M.; Baños, A.; Núñez, C.; Guillamón, E.; Aucejo, S.; Cameán, A.M. Development of PLA Films Containing Oregano Essential Oil (Origanum vulgare L. Virens) Intended for Use in Food Packaging. Food Addit. Contam. Part A 2016, 33, 1374–1386. [Google Scholar] [CrossRef]
- Llana-Ruiz-Cabello, M.; Pichardo, S.; Bãnos, A.; Núñez, C.; Bermúdez, J.M.; Guillamón, E.; Aucejo, S.; Cameán, A.M. Characterisation and Evaluation of PLA Films Containing an Extract of Allium Spp. to Be Used in the Packaging of Ready-to-Eat Salads under Controlled Atmospheres. LWT 2015, 64, 1354–1361. [Google Scholar] [CrossRef]
- Gao, C.; Chen, P.; Ma, Y.; Sun, L.; Yan, Y.; Ding, Y.; Sun, L. Multifunctional Polylactic Acid Biocomposite Film for Active Food Packaging with UV Resistance, Antioxidant and Antibacterial Properties. Int. J. Biol. Macromol. 2023, 253, 126494. [Google Scholar] [CrossRef] [PubMed]
- Freitas, P.A.V.; González-Martínez, C.; Chiralt, A. Active Poly (Lactic Acid) Films with Rice Straw Aqueous Extracts for Meat Preservation Purposes. Food Bioprocess Technol. 2023, 16, 2635–2650. [Google Scholar] [CrossRef]
- Miao, L.; Walton, W.C.; Wang, L.; Li, L.; Wang, Y. Characterization of Polylactic Acids-Polyhydroxybutyrate Based Packaging Film with Fennel Oil, and Its Application on Oysters. Food Packag. Shelf Life 2019, 22, 100388. [Google Scholar] [CrossRef]
- Ramírez, M.R.; Cava, R. Changes in colour, lipid oxidation and fatty acid composition of pork loin chops as affected by the type of culinary frying fat. LWT-Food Sci. Technol. 2005, 38, 726–734. [Google Scholar] [CrossRef]
- Ramírez, R.; Cava, R. Carcass Composition and Meat Quality of Three Different Iberian × Duroc Genotype Pigs. Meat Sci. 2007, 75, 388–396. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Hwang, S.I.; Hong, G.P. Effects of High Pressure in Combination with the Type of Aging on the Eating Quality and Biochemical Changes in Pork Loin. Meat Sci. 2020, 162, 108028. [Google Scholar] [CrossRef]
- Kim, H.W.; Kim, J.H.; Seo, J.K.; Setyabrata, D.; Kim, Y.H.B. Effects of Aging/Freezing Sequence and Freezing Rate on Meat Quality and Oxidative Stability of Pork Loins. Meat Sci. 2018, 139, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Purslow, P.P.; Warner, R.D.; Clarke, F.M.; Hughes, J.M. Variations in Meat Colour Due to Factors Other than Myoglobin Chemistry; a Synthesis of Recent Findings (Invited Review). Meat Sci. 2020, 159, 107941. [Google Scholar] [CrossRef] [PubMed]
- Faustman, C.; Sun, Q.; Mancini, R.; Suman, S.P. Myoglobin and Lipid Oxidation Interactions: Mechanistic Bases and Control. Meat Sci. 2010, 86, 86–94. [Google Scholar] [CrossRef]
- Hernández-García, E.; Vargas, M.; Chiralt, A. Starch-Polyester Bilayer Films with Phenolic Acids for Pork Meat Preservation. Food Chem. 2022, 385, 132650. [Google Scholar] [CrossRef] [PubMed]
- Park, T.S.; Bae, Y.M.; Seo, H.S.; Park, T.J.; Seol, K.H.; Lim, D.K.; Lee, M.; Cho, S.I. Evaluation of Pork Loin Freshness Using Absorbance Characteristic of Near-Infrared. Biol. Eng. 2008, 1, 173–180. [Google Scholar] [CrossRef]
- Estévez, M.; Díaz-Velasco, S.; Martínez, R. Protein Carbonylation in Food and Nutrition: A Concise Update. Amino Acids 2022, 54, 559–573. [Google Scholar] [CrossRef]
- Khezrian, A.; Shahbazi, Y. Application of Nanocompostie Chitosan and Carboxymethyl Cellulose Films Containing Natural Preservative Compounds in Minced Camel’s Meat. Int. J. Biol. Macromol. 2018, 106, 1146–1158. [Google Scholar] [CrossRef] [PubMed]
- Gallo, M.; Ferracane, R.; Naviglio, D. Antioxidant Addition to Prevent Lipid and Protein Oxidation in Chicken Meat Mixed with Supercritical Extracts of Echinacea Angustifolia. J. Supercrit. Fluids 2012, 72, 198–204. [Google Scholar] [CrossRef]
- Kim, H.W.; Jeong, J.Y.; Seol, K.H.; Seong, P.N.; Ham, J.S. Effects of Edible Films Containing Procyanidin on the Preservation of Pork Meat during Chilled Storage. Korean J. Food Sci. Anim. Resour. 2016, 36, 230–236. [Google Scholar] [CrossRef] [PubMed]
pH | 5.54 ± 0.03 |
Moisture (%) | 73.20 ± 0.4 |
Protein (%) | 24.07 ± 0.84 |
Total fat (%) | 1.61 ± 0.29 |
Fatty acid profile (%): | |
C12:0 | 0.10 ± 0.01 |
C14:0 | 1.38 ± 0.08 |
C16:0 | 23.77 ± 0.2 |
C16:1 | 3.65 ± 0.08 |
C17:0 | 0.38 ± 0.04 |
C17:1 | 0.34 ± 0.02 |
C18:0 | 11.52 ± 0.19 |
C18:1 | 44.85 ± 0.21 |
C18:2 (cis.cis) | 12.94 ± 0.47 |
C18:3 | 0.45 ± 0.01 |
C20:1 | 0.63 ± 0.01 |
Low-RBE | High-RBE | Significance | ||
---|---|---|---|---|
RBE release in D1 | 2 h | 16.54 ± 2.15 c | 13.72 ± 0.64 b | ns |
6 h | 21.26 ± 4.24 bc | 22.84 ± 1.59 ab | ns | |
12 h | 20.20 ± 1.70 bc | 22.46 ± 4.89 ab | ns | |
24 h | 34.23 ± 4.75 a | 27.64 ± 4.75 ab | ns | |
48 h | 29.13 ± 4.06 ab | 32.91 ± 7.15 a | ns | |
72 h | 35.97 ± 6.08 a | 31.15 ± 8.61 a | ns | |
144 h | 31.36 ± 1.88 ab | 34.98 ± 3.20 a | ns | |
240 h | 35.50 ± 5.08 a | 31.30 ± 9.66 a | ns | |
Significance | *** | *** | ||
AAT | 2 h | 10.44 ± 2.28 a | 8.1 ± 2.07 c | ns |
6 h | 16.93 ± 1.42 b | 18.18 ± 4.09 b | ns | |
24 h | 33.32 ± 2.95 c | 32.97 ± 4.01 a | ns | |
Significance | *** | *** |
Film | Time | Film × Time | |
---|---|---|---|
Instrumental color | |||
CIE L* | ** | *** | ns |
CIE a* | ns | ns | ns |
CIE b* | ns | *** | ns |
Chroma | ns | *** | ns |
Hue | ns | * | ns |
ΔE (control_D1) | ns | *** | ns |
ΔE (D1) | ns | *** | ns |
Lipid oxidation | ns | *** | ns |
Protein oxidation | ns | *** | ** |
Mesophiles | ns | *** | ** |
psychrotrophs | * | *** | ns |
Molds and yeasts | *** | *** | ns |
Total coliforms | ns | ns | ns |
E. coli | * | *** | * |
S. aureus | ns | ns | ns |
Storage Time | Control | No RBE | Low-RBE | High-RBE | Significance | |
---|---|---|---|---|---|---|
CIE L* | Day 1 | 52.56 ± 2.13 x | 53.53 ± 2.87 | 53.14 ± 2.32 x | 50.79 ± 0.31 x | ns |
Day 5 | 53.20± 2.12 xy | 54.51 ± 2.93 | 56.05 ± 1.46 y | 52.81 ± 1.58 x | ns | |
Day 9 | 55.98 ± 1.47 y | 56.26 ± 1.67 | 57.79 ± 0.82 y | 56.04 ± 1.75 y | ns | |
Significance | * | ns | ** | *** | ||
CIE a* | Day 1 | 2.46 ± 1.02 | 2.58 ± 1.29 | 2.03 ± 0.94 | 3.28 ± 0.98 | ns |
Day 5 | 2.52 ± 0.33 | 2.67 ± 1.00 | 1.94 ± 0.64 | 2.82 ± 0.55 | ns | |
Day 9 | 2.24 ± 0.82 | 1.91 ± 0.80 | 1.85 ± 0.49 | 2.05 ± 0.77 | ns | |
Significance | ns | ns | ns | ns | ||
CIE b* | Day 1 | 8.18 ± 0.44 bx | 8.87 ± 0.22 ab | 9.18 ± 0.41 a | 8.93 ± 0.47 ax | ** |
Day 5 | 9.13 ± 0.59 y | 9.81 ± 1.04 | 9.75 ± 0.45 | 9.51 ± 0.61 xy | ns | |
Day 9 | 10.05 ± 0.57 z | 9.49 ± 0.43 | 9.67 ± 0.22 | 10.04 ± 0.61 y | ns | |
Significance | ** | ns | ns | * | ||
Chroma | Day 1 | 8.58 ± 0.61 bx | 9.30 ± 0.35 ab | 9.44 ± 0.38 ab | 9.56 ± 0.53 a | * |
Day 5 | 9.48 ± 0.60 xy | 9.98 ± 0.52 | 9.96 ± 0.45 | 9.93 ± 0.59 | ns | |
Day 9 | 10.32 ± 0.67 y | 9.71 ± 0.38 | 9.86 ± 0.28 | 10.27 ± 0.54 | ns | |
p-value | ** | ns | ns | ns | ||
Hue | Day 1 | 73.52 ± 6.25 | 73.99 ± 7.87 | 77.52 ± 5.71 | 69.99 ± 5.79 b | ns |
Day 5 | 74.55 ± 1.93 | 74.63 ± 6.81 | 78.79 ± 3.71 | 73.48 ± 3.23 ab | ns | |
Day 9 | 77.94 ± 4.94 | 78.6 ± 4.87 | 79.24 ± 2.67 | 78.36 ± 4.5 a | ns | |
Significance | ns | ns | ns | * | ||
ΔE (Control_D1) | Day 1 | 0.00 ± 0.00 bx | 2.74 ± 1.54 a | 2.48 ± 0.82 ax | 2.29 ± 0.45 axy | *** |
Day 5 | 2.29 ± 0.23 y | 3.60 ± 1.62 | 3.91 ± 1.49 xy | 1.95 ± 0.92 x | ns | |
Day 9 | 4.01 ± 1.46 z | 4.11 ± 1.47 | 5.49 ± 0.80 y | 4.04 ± 1.82 y | ns | |
Significance | *** | ns | ** | * | ||
ΔE (D1) | Day 1 | 0.00 ± 0.00 x | 0.00 ± 0.00 x | 0.00 ± 0.00 x | 0.00 ± 0.00 x | |
Day 5 | 2.29 ± 0.23 y | 3.00 ± 1.34 y | 3.06 ± 1.42 y | 2.39 ± 1.35 y | ns | |
Day 9 | 4.01 ± 1.46 z | 3.07 ± 1.47y | 4.70 ±0.80 z | 5.54 ± 1.88 z | ns | |
Significance | *** | ** | ** | *** | ||
TBA-RS | Day 1 | 0.08 ± 0.01 x | 0.09 ± 0.02 | 0.08 ± 0.03 x | 0.09 ± 0.04 | ns |
Day 5 | 0.13 ± 0.06 xy | 0.19 ± 0.11 | 0.18 ± 0.06 y | 0.17 ± 0.1 | ns | |
Day 9 | 0.16 ± 0.06 x | 0.17 ± 0.07 | 0.10 ± 0.02 x | 0.12 ± 0.07 | ns | |
Significance | * | ns | ** | ns | ||
Protein Oxidation | Day 1 | 1.06 ± 0.11 a | 0.92 ± 0.08 abx | 0.89 ± 0.1 abx | 0.74 ± 0.07 bx | *** |
Day 5 | 0.83 ± 0.24 b | 1.15 ± 0.12 ay | 1.13 ± 0.15 ay | 1.08 ± 0.05 aby | * | |
Day 9 | 1.15 ± 0.25 | 1.17 ± 0.16 y | 1.21 ± 0.11 y | 1.27 ± 0.26 y | ns | |
Significance | ns | * | ** | ** |
Microorganisms | Storage Time | Control | No RBE | Low-RBE | High-RBE | Significance |
---|---|---|---|---|---|---|
Mesophiles | Day 1 | 5.35 ± 0.25 x | 5.55 ± 0.39 x | 5.35 ± 0.19 x | 5.09 ± 0.30 x | ns |
Day 5 | 5.78 ± 0.15 by | 5.86 ± 0.3 abx | 6.25 ± 0.26 aby | 6.37 ± 0.40 ay | * | |
Day 9 | 6.31 ± 0.22 z | 6.58 ± 0.21 y | 6.34 ± 0.35 y | 6.40 ± 0.37 y | ns | |
Significance | *** | ** | *** | *** | ||
Psychrotrophs | Day 1 | 5.10 ± 0.40 x | 5.20 ± 0.29 x | 5.17 ± 0.40 x | 5.16 ± 0.23 x | ns |
Day 5 | 5.59 ± 0.47 x | 5.56 ± 0.44 x | 6.18 ± 0.46 y | 6.38 ± 0.79 y | ns | |
Day 9 | 7.01 ± 0.15 by | 7.18 ± 0.13 aby | 7.17 ± 0.33 abz | 7.48 ± 0.3 az | * | |
Significance | *** | *** | *** | *** | ||
Molds and yeasts | Day 1 | 3.56 ± 0.38 bx | 4.32 ± 0.14 a | 3.94 ± 0.20 abx | 3.81 ± 0.31 ab | * |
Day 5 | 4.02 ± 0.17 y | 4.35 ± 0.20 | 4.29 ± 0.13 y | 4.20 ± 0.26 | ns | |
Day 9 | 4.13 ± 0.21 y | 4.36 ± 0.29 | 4.04 ± 0.27 xy | 4.11 ± 0.11 | ns | |
Significance | * | ns | * | ns | ||
Total coliforms | Day 1 | 3.02 ± 0.37 | 3.09 ± 0.42 | 2.95 ± 0.5 | 2.74 ± 0.33 | ns |
Day 5 | 2.77 ± 0.46 b | 3.37 ± 0.08 a | 3.26 ± 0.15 ab | 3.17 ± 0.35 ab | * | |
Day 9 | 3.26 ± 0.38 | 2.94 ± 0.8 | 3.06 ± 0.73 | 3.22 ± 0.61 | ns | |
Significance | ns | ns | ns | ns | ||
E. coli | Day 1 | 1.74 ± 0.73 y | 1.43 ± 0.66 y | 1.28 ± 0.74 y | 1.49 ± 0.74 | ns |
Day 5 | 1.32 ± 0.82 ay | nd ± 0 bx | 1.37 ± 0.57 ay | 1.68 ± 0.69 ay | ** | |
Day 9 | nd x | nd x | nd x | nd x | ns | |
Significance | ** | *** | ** | ** | ||
S. aureus | Day 1 | ND | 2.06 ± 0.13 | 2.26 ± 0.29 | 2.06 ± 0.13 | * |
Day 5 | 2.00 ± 0.00 | 2.12 ± 0.27 | ND | 2.06 ± 0.13 | ns | |
Day 9 | ND | 2.1 ± 0.21 | ND | ND | ns | |
Significance | ns | ** | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabeza de Vaca, M.; Ramírez-Bernabé, M.R.; Barrado, D.T.; Pimienta, J.R.; Delgado-Adámez, J. Application of Antioxidant Poly-Lactic Acid/Polyhydroxybutyrate (PLA/PHB) Films with Rice Bran Extract for the Preservation of Fresh Pork Meat. Foods 2024, 13, 972. https://doi.org/10.3390/foods13060972
Cabeza de Vaca M, Ramírez-Bernabé MR, Barrado DT, Pimienta JR, Delgado-Adámez J. Application of Antioxidant Poly-Lactic Acid/Polyhydroxybutyrate (PLA/PHB) Films with Rice Bran Extract for the Preservation of Fresh Pork Meat. Foods. 2024; 13(6):972. https://doi.org/10.3390/foods13060972
Chicago/Turabian StyleCabeza de Vaca, María, María Rosario Ramírez-Bernabé, David Tejerina Barrado, Javier Rocha Pimienta, and Jonathan Delgado-Adámez. 2024. "Application of Antioxidant Poly-Lactic Acid/Polyhydroxybutyrate (PLA/PHB) Films with Rice Bran Extract for the Preservation of Fresh Pork Meat" Foods 13, no. 6: 972. https://doi.org/10.3390/foods13060972
APA StyleCabeza de Vaca, M., Ramírez-Bernabé, M. R., Barrado, D. T., Pimienta, J. R., & Delgado-Adámez, J. (2024). Application of Antioxidant Poly-Lactic Acid/Polyhydroxybutyrate (PLA/PHB) Films with Rice Bran Extract for the Preservation of Fresh Pork Meat. Foods, 13(6), 972. https://doi.org/10.3390/foods13060972