Discrimination among Fresh, Frozen–Stored and Frozen–Thawed Beef Cuts by Hyperspectral Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. HSI System and Image Acquisition
2.2. HSI System Calibration
2.3. Sample Preparation
2.4. Classification Model
2.4.1. HSI Processing
2.4.2. Classification Model
2.4.3. Model Evaluation and Visualization
3. Results
3.1. Spectral Analysis of Fresh, Frozen-Stored and Frozen-Thawed Samples
3.2. Feature Wavelength Selection
3.3. Classification Results
3.4. Visualization of the Deterioration Index
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cabrera, M.C.; Saadoun, A. An Overview of the Nutritional Value of Beef and Lamb Meat from South America. Meat Sci. 2014, 98, 435–444. [Google Scholar] [CrossRef]
- Oh, M.; Kim, E.-K.; Jeon, B.-T.; Tang, Y.; Kim, M.S.; Seong, H.-J.; Moon, S.-H. Chemical Compositions, Free Amino Acid Contents and Antioxidant Activities of Hanwoo (Bos taurus coreanae) Beef by Cut. Meat Sci. 2016, 119, 16–21. [Google Scholar] [CrossRef]
- Pereira, P.M.d.C.C.; Vicente, A.F.d.R.B. Meat Nutritional Composition and Nutritive Role in the Human Diet. Meat Sci. 2013, 93, 586–592. [Google Scholar] [CrossRef]
- Šimoniová, A.; Rohlík, B.-A.; Škorpilová, T.; Petrová, M.; Pipek, P. Differentiation between Fresh and Thawed Chicken Meats. Czech J. Food Sci. 2013, 31, 108–115. [Google Scholar] [CrossRef]
- Cheng, S.; Wang, X.; Li, R.; Yang, H.; Wang, H.; Wang, H.; Tan, M. Influence of Multiple Freeze-Thaw Cycles on Quality Characteristics of Beef Semimembranous Muscle: With Emphasis on Water Status and Distribution by LF-NMR and MRI. Meat Sci. 2019, 147, 44–52. [Google Scholar] [CrossRef]
- Ali, S.; Zhang, W.; Rajput, N.; Khan, M.A.; Li, C.; Zhou, G. Effect of Multiple Freeze–Thaw Cycles on the Quality of Chicken Breast Meat. Food Chem. 2015, 173, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Iammarino, M.; Marino, R.; Albenzio, M. How Meaty? Detection and Quantification of Adulterants, Foreign Proteins and Food Additives in Meat Products. Int. J. Food Sci. Technol. 2016, 52, 851–863. [Google Scholar] [CrossRef]
- Chen, J.; Tao, L.; Zhang, T.; Zhang, J.; Wu, T.; Luan, D.; Ni, L.; Wang, X.; Zhong, J. Effect of Four Types of Thermal Processing Methods on the Aroma Profiles of Acidity Regulator-Treated Tilapia Muscles Using E-Nose, HS-SPME-GC-MS, and HS-GC-IMS. LWT 2021, 147, 111585. [Google Scholar] [CrossRef]
- Liu, D.; Bai, L.; Feng, X.; Chen, Y.P.; Zhang, D.; Yao, W.; Zhang, H.; Chen, G.; Liu, Y. Characterization of Jinhua Ham Aroma Profiles in Specific to Aging Time by Gas Chromatography-Ion Mobility Spectrometry (GC-IMS). Meat Sci. 2020, 168, 108178. [Google Scholar] [CrossRef] [PubMed]
- Stachniuk, A.; Sumara, A.; Montowska, M.; Fornal, E. Liquid Chromatography–Mass Spectrometry Bottom-up Proteomic Methods in Animal Species Analysis of Processed Meat for Food Authentication and the Detection of Adulterations. Mass Spectrom. Rev. 2021, 40, 3–30. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.-H.P.; Ofori, J.A. Detection of Horse Meat Contamination in Raw and Heat-Processed Meat Products. J. Agric. Food Chem. 2014, 62, 12536–12544. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, S.; Meng, F.; Liu, D.; Zhang, Y.; Wang, W.; Zhang, J. Comparative Review and the Recent Progress in Detection Technologies of Meat Product Adulteration. Comp. Rev. Food Sci. Food Safe 2020, 19, 2256–2296. [Google Scholar] [CrossRef]
- Khaled, A.Y.; Parrish, C.A.; Adedeji, A. Emerging Nondestructive Approaches for Meat Quality and Safety Evaluation—A Review. Comp. Rev. Food Sci. Food Safe 2021, 20, 3438–3463. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, J.; Chen, Q.; Zhang, Y. Nondestructive Measurement of Total Volatile Basic Nitrogen (TVB-N) in Pork Meat by Integrating near Infrared Spectroscopy, Computer Vision and Electronic Nose Techniques. Food Chem. 2014, 145, 228–236. [Google Scholar] [CrossRef]
- Romaniello, R.; Perone, C.; Tamborrino, A.; Berardi, A.; Leone, A.; Di Taranto, A.; Iammarino, M. Additives Individuation in Raw Ham Using Image Analysis. Chem. Eng. Trans. 2021, 87, 217–222. [Google Scholar]
- Zhang, J.; Ma, Y.; Liu, G.; Fan, N.; Li, Y.; Sun, Y. Rapid Evaluation of Texture Parameters of Tan Mutton Using Hyperspectral Imaging with Optimization Algorithms. Food Control 2022, 135, 108815. [Google Scholar] [CrossRef]
- Higgs, J.D. The Changing Nature of Red Meat: 20 Years of Improving Nutritional Quality. Trends Food Sci. Technol. 2000, 11, 85–95. [Google Scholar] [CrossRef]
- Li, Y.; Man, S.; Ye, S.; Liu, G.; Ma, L. CRISPR-Cas-based Detection for Food Safety Problems: Current Status, Challenges, and Opportunities. Comp. Rev. Food Sci. Food Safe 2022, 21, 3770–3798. [Google Scholar] [CrossRef]
- Weeranantanaphan, J.; Downey, G.; Allen, P.; Sun, D.-W. A Review of near Infrared Spectroscopy in Muscle Food Analysis: 2005–2010. J. Near Infrared Spectrosc. 2011, 19, 61–104. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, G.; He, J.; Wan, G.; Ban, J.; Yuan, R.; Fan, N. Development of a Novel Quantitative Function between Spectral Value and Metmyoglobin Content in Tan Mutton. Food Chem. 2021, 342, 128351. [Google Scholar] [CrossRef]
- Jayan, H.; Pu, H.; Sun, D.-W. Detection of Bioactive Metabolites in Escherichia Coli Cultures Using Surface-Enhanced Raman Spectroscopy. Appl. Spectrosc. 2022, 76, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Edwards, K.; Manley, M.; Hoffman, L.C.; Williams, P.J. Non-Destructive Spectroscopic and Imaging Techniques for the Detection of Processed Meat Fraud. Foods 2021, 10, 448. [Google Scholar] [CrossRef]
- Thyholt, K.; Isaksson, T. Differentiation of Frozen and Unfrozen Beef Using Near-Infrared Spectroscopy. J. Sci. Food Agric. 1997, 73, 525–532. [Google Scholar] [CrossRef]
- Cáceres-Nevado, J.M.; Garrido-Varo, A.; De Pedro-Sanz, E.; Tejerina-Barrado, D.; Pérez-Marín, D.C. Non-Destructive Near Infrared Spectroscopy for the Labelling of Frozen Iberian Pork Loins. Meat Sci. 2021, 175, 108440. [Google Scholar] [CrossRef]
- Xiong, Z.; Xie, A.; Sun, D.-W.; Zeng, X.-A.; Liu, D. Applications of Hyperspectral Imaging in Chicken Meat Safety and Quality Detection and Evaluation: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1287–1301. [Google Scholar] [CrossRef]
- Wu, X.; Liang, X.; Wang, Y.; Wu, B.; Sun, J. Non-Destructive Techniques for the Analysis and Evaluation of Meat Quality and Safety: A Review. Foods 2022, 11, 3713. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Yao, K.; Xu, M.; Zhou, X. Nondestructive Detection and Visualization of Protein Oxidation Degree of Frozen-Thawed Pork Using Fluorescence Hyperspectral Imaging. Meat Sci. 2022, 194, 108975. [Google Scholar] [CrossRef] [PubMed]
- Pu, H.; Yu, J.; Sun, D.-W.; Wei, Q.; Shen, X.; Wang, Z. Distinguishing Fresh and Frozen-Thawed Beef Using Hyperspectral Imaging Technology Combined with Convolutional Neural Networks. Microchem. J. 2023, 189, 108559. [Google Scholar] [CrossRef]
- Ma, J.; Sun, D.-W.; Pu, H.; Wei, Q.; Wang, X. Protein Content Evaluation of Processed Pork Meats Based on a Novel Single Shot (Snapshot) Hyperspectral Imaging Sensor. J. Food Eng. 2019, 240, 207–213. [Google Scholar] [CrossRef]
- Cheng, W.; Sun, D.-W.; Pu, H.; Wei, Q. Characterization of Myofibrils Cold Structural Deformation Degrees of Frozen Pork Using Hyperspectral Imaging Coupled with Spectral Angle Mapping Algorithm. Food Chem. 2018, 239, 1001–1008. [Google Scholar] [CrossRef]
- Pu, H.; Wei, Q.; Sun, D.-W. Recent Advances in Muscle Food Safety Evaluation: Hyperspectral Imaging Analyses and Applications. Crit. Rev. Food Sci. Nutr. 2023, 63, 1297–1313. [Google Scholar] [CrossRef]
- Yang, Z.; Albrow-Owen, T.; Cai, W.; Hasan, T. Miniaturization of Optical Spectrometers. Science 2021, 371, eabe0722. [Google Scholar] [CrossRef]
- Pu, H.; Yu, J.; Sun, D.-W.; Wei, Q.; Wang, Z. Feature Construction Methods for Processing and Analysing Spectral Images and Their Applications in Food Quality Inspection. Trends Food Sci. Technol. 2023, 138, 726–737. [Google Scholar] [CrossRef]
- Polder, G.; Van Der Heijden, G.W.A.M.; Keizer, L.C.P.; Young, I.T. Calibration and Characterisation of Imaging Spectrographs. J. Near Infrared Spectrosc. 2003, 11, 193–210. [Google Scholar] [CrossRef]
- Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key Wavelengths Screening Using Competitive Adaptive Reweighted Sampling Method for Multivariate Calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef]
- Serrano-Cinca, C.; Gutiérrez-Nieto, B. Partial Least Square Discriminant Analysis for Bankruptcy Prediction. Decis. Support Syst. 2013, 54, 1245–1255. [Google Scholar] [CrossRef]
- Álvarez Antón, J.C.; García Nieto, P.J.; Blanco Viejo, C.; Vilán Vilán, J.A. Support Vector Machines Used to Estimate the Battery State of Charge. IEEE Trans. Power Electron. 2013, 28, 5919–5926. [Google Scholar] [CrossRef]
- Deng, Y.; Zhou, X.; Shen, J.; Xiao, G.; Hong, H.; Lin, H.; Wu, F.; Liao, B.-Q. New Methods Based on Back Propagation (BP) and Radial Basis Function (RBF) Artificial Neural Networks (ANNs) for Predicting the Occurrence of Haloketones in Tap Water. Sci. Total Environ. 2021, 772, 145534. [Google Scholar] [CrossRef] [PubMed]
- Galvao, R.; Araujo, M.; Jose, G.; Pontes, M.; Silva, E.; Saldanha, T. A Method for Calibration and Validation Subset Partitioning. Talanta 2005, 67, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Liu, Q.; Deng, Y.; Mahadevan, S. An Improved Method to Construct Basic Probability Assignment Based on the Confusion Matrix for Classification Problem. Inf. Sci. 2016, 340–341, 250–261. [Google Scholar] [CrossRef]
- Calnan, H.B.; Jacob, R.H.; Pethick, D.W.; Gardner, G.E. Selection for Intramuscular Fat and Lean Meat Yield Will Improve the Bloomed Colour of Australian Lamb Loin Meat. Meat Sci. 2017, 131, 187–195. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, D.-W.; Cheng, J.-H.; Han, Z. Hyperspectral Imaging Sensing of Changes in Moisture Content and Color of Beef During Microwave Heating Process. Food Anal. Methods 2018, 11, 2472–2484. [Google Scholar] [CrossRef]
- Dixit, Y.; Al-Sarayreh, M.; Craigie, C.R.; Reis, M.M. A Global Calibration Model for Prediction of Intramuscular Fat and pH in Red Meat Using Hyperspectral Imaging. Meat Sci. 2021, 181, 108405. [Google Scholar] [CrossRef]
- Jiang, H.; Jiang, X.; Ru, Y.; Wang, J.; Xu, L.; Zhou, H. Application of Hyperspectral Imaging for Detecting and Visualizing Leaf Lard Adulteration in Minced Pork. Infrared Phys. Technol. 2020, 110, 103467. [Google Scholar] [CrossRef]
- Zhao, H.-T.; Feng, Y.-Z.; Chen, W.; Jia, G.-F. Application of Invasive Weed Optimization and Least Square Support Vector Machine for Prediction of Beef Adulteration with Spoiled Beef Based on Visible Near-Infrared (Vis-NIR) Hyperspectral Imaging. Meat Sci. 2019, 151, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Jiang, X.; Ru, Y.; Chen, Q.; Wang, J.; Xu, L.; Zhou, H. Detection and Visualization of Soybean Protein Powder in Ground Beef Using Visible and Near-Infrared Hyperspectral Imaging. Infrared Phys. Technol. 2022, 127, 104401. [Google Scholar] [CrossRef]
- Pan, N.; Dong, C.; Du, X.; Kong, B.; Sun, J.; Xia, X. Effect of Freeze-Thaw Cycles on the Quality of Quick-Frozen Pork Patty with Different Fat Content by Consumer Assessment and Instrument-Based Detection. Meat Sci. 2021, 172, 108313. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Yao, K.; Xu, M.; Dai, C. Multi-Task Convolutional Neural Network for Simultaneous Monitoring of Lipid and Protein Oxidative Damage in Frozen-Thawed Pork Using Hyperspectral Imaging. Meat Sci. 2023, 201, 109196. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, F.; Diao, X.; Kong, B.; Xia, X. Moisture Migration, Microstructure Damage and Protein Structure Changes in Porcine Longissimus Muscle as Influenced by Multiple Freeze-Thaw Cycles. Meat Sci. 2017, 133, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Park, B.; Windham, W.R.; Lawrence, K.C.; Smith, D.P. Contaminant Classification of Poultry Hyperspectral Imagery Using a Spectral Angle Mapper Algorithm. Biosyst. Eng. 2007, 96, 323–333. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, A.; Shi, P.; Cai, L. Rapid Evaluation of Freshness of Largemouth Bass under Different Thawing Methods Using Hyperspectral Imaging. Food Control 2021, 125, 108023. [Google Scholar] [CrossRef]
- Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the Most Common Pre-Processing Techniques for near-Infrared Spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Wan, G.; Liu, G.; He, J.; Luo, R.; Cheng, L.; Ma, C. Feature Wavelength Selection and Model Development for Rapid Determination of Myoglobin Content in Nitrite-Cured Mutton Using Hyperspectral Imaging. J. Food Eng. 2020, 287, 110090. [Google Scholar] [CrossRef]
- Qian, S.; Hu, F.; Mehmood, W.; Li, X.; Zhang, C.; Blecker, C. The Rise of Thawing Drip: Freezing Rate Effects on Ice Crystallization and Myowater Dynamics Changes. Food Chem. 2022, 373, 131461. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Xia, X.; Sun, Q.; Sun, F.; Kong, B. Changes in Protein Oxidation, Structure, and Thermal Stability of Chicken Breast Subjected to Ultrasound-Assisted Immersion Freezing during Frozen Storage. Food Chem. 2023, 398, 133874. [Google Scholar] [CrossRef]
- Li, F.; Wang, B.; Liu, Q.; Chen, Q.; Zhang, H.; Xia, X.; Kong, B. Changes in Myofibrillar Protein Gel Quality of Porcine Longissimus Muscle Induced by Its Stuctural Modification under Different Thawing Methods. Meat Sci. 2019, 147, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Sun, D.-W. Prediction of Monounsaturated and Polyunsaturated Fatty Acids of Various Processed Pork Meats Using Improved Hyperspectral Imaging Technique. Food Chem. 2020, 321, 126695. [Google Scholar] [CrossRef] [PubMed]
- Pu, H.; Sun, D.-W.; Ma, J.; Cheng, J.-H. Classification of Fresh and Frozen-Thawed Pork Muscles Using Visible and near Infrared Hyperspectral Imaging and Textural Analysis. Meat Sci. 2015, 99, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros-Vivas, D.; Socas-Rodríguez, B.; Mendiola, J.A.; Ibáñez, E.; Cifuentes, A. Green Food Analysis: Current Trends and Perspectives. Curr. Opin. Green. Sustain. Chem. 2021, 31, 100522. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J. A New Tool for the Evaluation of the Analytical Procedure: Green Analytical Procedure Index. Talanta 2018, 181, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 Principles of Green Analytical Chemistry and the SIGNIFICANCE Mnemonic of Green Analytical Practices. TrAC Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef] [PubMed]
Input | No. of Wavelength | Accuracy (%) of Prediction | |||
---|---|---|---|---|---|
PLS-DA | SVM | BP-ANN | |||
Overall average | RAW | 251 | 83.75 | 76.25 | 75.00 |
SG+FD | 250 | 90.63 | 94.38 | 91.88 | |
CARS | 21 | 90.35 | 95.63 | 93.13 | |
Differentiated tissue | RAW | 251 | 85.97 | 79.04 | 77.83 |
SG+FD | 250 | 92.11 | 95.63 | 93. 35 | |
CARS | 21 (muscle) 42 (fat) | 92.75 | 97.83 | 95.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Chen, W.; Zhang, H.; Liu, R.; Li, C. Discrimination among Fresh, Frozen–Stored and Frozen–Thawed Beef Cuts by Hyperspectral Imaging. Foods 2024, 13, 973. https://doi.org/10.3390/foods13070973
Yu Y, Chen W, Zhang H, Liu R, Li C. Discrimination among Fresh, Frozen–Stored and Frozen–Thawed Beef Cuts by Hyperspectral Imaging. Foods. 2024; 13(7):973. https://doi.org/10.3390/foods13070973
Chicago/Turabian StyleYu, Yuewen, Wenliang Chen, Hanwen Zhang, Rong Liu, and Chenxi Li. 2024. "Discrimination among Fresh, Frozen–Stored and Frozen–Thawed Beef Cuts by Hyperspectral Imaging" Foods 13, no. 7: 973. https://doi.org/10.3390/foods13070973
APA StyleYu, Y., Chen, W., Zhang, H., Liu, R., & Li, C. (2024). Discrimination among Fresh, Frozen–Stored and Frozen–Thawed Beef Cuts by Hyperspectral Imaging. Foods, 13(7), 973. https://doi.org/10.3390/foods13070973