Distinct Changes in Metabolic Profile and Sensory Quality with Different Varieties of Chrysanthemum (Juhua) Tea Measured by LC-MS-Based Untargeted Metabolomics and Electronic Tongue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chrysanthemum Tea Samples
2.2. Sensory Evaluation for Chrysanthemum Tea Samples
2.3. Electronic Tongue Analysis for Chrysanthemum Tea Samples
2.4. HPLC Analysis for Chrysanthemum Tea Samples
2.5. Measurement of Total Polyphenols and Total Flavonoids in Chrysanthemum Tea
2.6. LC-MS/MS-Based Untargeted Metabolomics Analysis
2.7. Metabolomics Data Acquisition and Analysis
2.8. Bioinformatics Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Sensory Quality of the Five Different Varieties of Chrysanthemum Tea
3.2. Comparison of the Contents of Main Active Compounds
3.3. Untargeted Metabolomics Analysis
3.4. Identifying the Core Metabolites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Li, Y.; Quan, H.; Liang, L.; Yang, T.; Feng, L.; Mao, X.; Wang, Y. Nontargeted metabolomics reveals the discrimination of Cyclocarya paliurus leaves brewed by different methods. Food Res. Int. 2021, 142, 110221. [Google Scholar] [CrossRef]
- Yuan, H.; Jiang, S.; Liu, Y.; Daniyal, M.; Jian, Y.; Peng, C.; Shen, J.; Liu, S.; Wang, W. The flower head of Chrysanthemum morifolium Ramat. (Juhua): A paradigm of flowers serving as Chinese dietary herbal medicine. J. Ethnopharmacol. 2020, 261, 113043. [Google Scholar] [CrossRef]
- Han, A.R.; Nam, B.; Kim, B.R.; Lee, K.C.; Song, B.S.; Kim, S.H.; Kim, J.B.; Jin, C.H. Phytochemical Composition and Antioxidant Activities of Two Different Color Chrysanthemum Flower Teas. Molecules 2019, 24, 329. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Wang, M.; Jiang, Z.; Zafar, S.; Xie, Q.; Yang, Y.; Liu, Y.; Yuan, H.; Jian, Y.; Wang, W. Chemistry and Pharmacological Activity of Sesquiterpenoids from the Chrysanthemum Genus. Molecules 2021, 26, 3038. [Google Scholar] [CrossRef] [PubMed]
- Xiang-Wei, C.; Dan-Dan, W.; Dong-Jie, C.; Hui, Y.; Xiao-Dong, S.; Wen-Bin, Z.; Jin-Ao, D. Historical Origin and Development of Medicinal and Tea Chrysanthemum morifolium Resources. Mod. Chin. Med. 2019, 1, 116–123. [Google Scholar] [CrossRef]
- Liao, Y.; Zhou, X.; Zeng, L. How does tea (Camellia sinensis) produce specialized metabolites which determine its unique quality and function: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 3751–3767. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Cheng, P.; Wang, J.H.; Li, H. Analysis of Floral Volatile Components and Antioxidant Activity of Different Varieties of Chrysanthemum morifolium. Molecules 2017, 22, 1790. [Google Scholar] [CrossRef]
- Choi, H.; Kim, G. Volatile flavor composition of gamguk (Chrysanthemum indicum) flower essential oils. Food Sci. Biotechnol. 2011, 20, 319–325. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, Y.; Hong, B.; Zhao, X.; Gu, Z. Characteristic Volatile Fingerprints of Four Chrysanthemum Teas Determined by HS-GC-IMS. Molecules 2021, 26, 7113. [Google Scholar] [CrossRef]
- Kaneko, S.; Chen, J.; Wu, J.; Suzuki, Y.; Ma, L.; Kumazawa, K. Potent Odorants of Characteristic Floral/Sweet Odor in Chinese Chrysanthemum Flower Tea Infusion. J. Agric. Food Chem. 2017, 65, 10058–10063. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Liu, Z.; Wang, S.; Huang, B.; Hu, Z.; Liu, Y. Comparative transcriptome analysis of three chrysanthemums provides insights into flavonoid and terpenoid biosynthesis. J. Plant Biol. 2021, 64, 389–401. [Google Scholar] [CrossRef]
- Sumner, L.W.; Mendes, P.; Dixon, R.A. Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry 2003, 62, 817–836. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liu, W.; Chen, Y.; Zhang, X.; Wang, X.; Wang, F.; Qian, Y.; Qiu, J. Identification of markers for tea authenticity assessment: Non-targeted metabolomics of highly similar oolong tea cultivars (Camellia sinensis var. sinensis). Food Control 2022, 142, 109223. [Google Scholar] [CrossRef]
- Phat, C.; Moon, B.; Lee, C. Evaluation of umami taste in mushroom extracts by chemical analysis, sensory evaluation, and an electronic tongue system. Food Chem. 2016, 192, 1068–1077. [Google Scholar] [CrossRef] [PubMed]
- Xing, T.; Hui-jie, Y.E.; Shi-feng, L.; Yao-li, O. Study on the interaction between the astringent constituents of different varieties of Chrysanthemum and saliva. Food Mach. 2022, 4, 42–46. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, Q.; Granato, D.; Xu, Y.; Ho, C. Association between chemistry and taste of tea: A review. Trends Food Sci. Technol. 2020, 101, 139–149. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Yao, Y.; Hua, J.; Zhou, Q.; Jiang, Y.; Deng, Y.; Yang, Y.; Wang, J.; Yuan, H.; et al. Phytochemical comparison of different tea (Camellia sinensis) cultivars and its association with sensory quality of finished tea. LWT 2020, 117, 108595. [Google Scholar] [CrossRef]
- GB/T 23776-2018; Methodology for Sensory Evaluation of Tea. Standardization Administration of China: Beijing, China, 2018. Available online: http://down.foodmate.net/standard/sort/3/52614.html (accessed on 2 February 2024).
- Cheng, L.; Yang, Q.; Chen, Z.; Zhang, J.; Chen, Q.; Wang, Y.; Wei, X. Distinct Changes of Metabolic Profile and Sensory Quality during Qingzhuan Tea Processing Revealed by LC-MS-Based Metabolomics. J. Agric. Food Chem. 2020, 68, 4955–4965. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Yang, Q.; Peng, L.; Xu, L.; Chen, C.J.; Zhu, Y.; Wei, X. Exploring core functional fungi driving the metabolic conversion in the industrial pile fermentation of Qingzhuan tea. Food Res. Int. 2024, 178, 113979. [Google Scholar] [CrossRef]
- Granato, D.; Grevink, R.; Zielinski, A.A.F.; Nunes, D.S.; van Ruth, S.M. Analytical Strategy Coupled with Response Surface Methodology to Maximize the Extraction of Antioxidants from Ternary Mixtures of Green, Yellow, and Red Teas (Camellia sinensis var. sinensis). J. Agric. Food Chem. 2014, 62, 10283–10296. [Google Scholar] [CrossRef]
- Rudge, R.E.D.; Fuhrmann, P.L.; Scheermeijer, R.; van der Zanden, E.M.; Dijksman, J.A.; Scholten, E. A tribological approach to astringency perception and astringency prevention. Food Hydrocoll. 2021, 121, 106951. [Google Scholar] [CrossRef]
- Yuan, H.; Luo, J.; Lyu, M.; Jiang, S.; Qiu, Y.; Tian, X.; Liu, L.; Liu, S.; Ouyang, Y.; Wang, W. An integrated approach to Q-marker discovery and quality assessment of edible Chrysanthemum flowers based on chromatogram–effect relationship and bioinformatics analyses. Ind. Crop. Prod. 2022, 188, 115745. [Google Scholar] [CrossRef]
- Gibbins, H.L.; Carpenter, G.H. Alternative Mechanisms of Astringency—What is the Role of Saliva. J. Texture Stud. 2013, 44, 364–375. [Google Scholar] [CrossRef]
- Ma, S.; Lee, H.; Liang, Y.; Zhou, F. Astringent Mouthfeel as a Consequence of Lubrication Failure. Angew. Chem. (Int. Ed. Engl.) 2016, 55, 5793–5797. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Deng, T.; Yuan, W.; Deng, H.; Jin, M. Plasma metabolomic study in Chinese patients with wet age-related macular degeneration. BMC Ophthalmol. 2017, 17, 165. [Google Scholar] [CrossRef] [PubMed]
- Fraser, K.; Lane, G.A.; Otter, D.E.; Hemar, Y.; Quek, S.; Harrison, S.J.; Rasmussen, S. Analysis of metabolic markers of tea origin by UHPLC and high resolution mass spectrometry. Tea—From bushes to mugs: Composition, stability and health aspects. Food Res. Int. 2013, 53, 827–835. [Google Scholar] [CrossRef]
- Yang, C.; Hu, Z.; Lu, M.; Li, P.; Tan, J.; Chen, M.; Lv, H.; Zhu, Y.; Zhang, Y.; Guo, L.; et al. Application of metabolomics profiling in the analysis of metabolites and taste quality in different subtypes of white tea. Food Res. Int. 2018, 106, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.; Liu, X.; Zhu, W.; Cheng, X.; Wang, X.; Wan, X.; Liu, L. Ambient Ultraviolet B Signal Modulates Tea Flavor Characteristics via Shifting a Metabolic Flux in Flavonoid Biosynthesis. J. Agric. Food Chem. 2021, 69, 3401–3414. [Google Scholar] [CrossRef] [PubMed]
- Roland, W.S.U.; van Buren, L.; Gruppen, H.; Driesse, M.; Gouka, R.J.; Smit, G.; Vincken, J. Bitter Taste Receptor Activation by Flavonoids and Isoflavonoids: Modeled Structural Requirements for Activation of hTAS2R14 and hTAS2R39. J. Agric. Food Chem. 2013, 61, 10454–10466. [Google Scholar] [CrossRef]
- Nakaya, A.; Katayama, T.; Itoh, M.; Hiranuka, K.; Kawashima, S.; Moriya, Y.; Okuda, S.; Tanaka, M.; Tokimatsu, T.; Yamanishi, Y.; et al. KEGG OC: A large-scale automatic construction of taxonomy-based ortholog clusters. Nucleic Acids Res. 2013, 41, D353–D357. [Google Scholar] [CrossRef]
- Hodaei, M.; Rahimmalek, M.; Arzani, A.; Talebi, M. The effect of water stress on phytochemical accumulation, bioactive compounds and expression of key genes involved in flavonoid biosynthesis in Chrysanthemum morifolium L. Ind. Crop. Prod. 2018, 120, 295–304. [Google Scholar] [CrossRef]
- Li, Q.; Jin, Y.; Jiang, R.; Xu, Y.; Zhang, Y.; Luo, Y.; Huang, J.; Wang, K.; Liu, Z. Dynamic changes in the metabolite profile and taste characteristics of Fu brick tea during the manufacturing process. Food Chem. 2021, 344, 128576. [Google Scholar] [CrossRef]
- Falcone Ferreyra, M.L.; Rius, S.P.; Casati, P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci. 2012, 3, 222. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.Q.; Zou, C.; Zhang, Y.H.; Du, Q.Z.; Yin, J.F.; Shi, J.; Xue, S.; Xu, Y.Q. Improving the taste of autumn green tea with tannase. Food Chem. 2019, 277, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Feng, Y.; Yu, S.; Fan, Z.; Li, X.; Li, J.; Yin, H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021, 22, 12824. [Google Scholar] [CrossRef] [PubMed]
- Malgorzata, R.; Magdalena, B. Decomposition of Flavonols in the Presence of Saliva. Appl. Sci. 2020, 10, 7511. [Google Scholar] [CrossRef]
- Yuan, J.; Huang, J.; Wu, G.; Tong, J.; Xie, G.; Duan, J.; Qin, M. Multiple responses optimization of ultrasonic-assisted extraction by response surface methodology (RSM) for rapid analysis of bioactive compounds in the flower head of Chrysanthemum morifolium Ramat. Industrial Crops and Products. Ind. Crop. Prod. 2015, 74, 192–199. [Google Scholar] [CrossRef]
- Kim, M.; Son, H.; Kim, Y.; Misaka, T.; Rhyu, M. Umami–bitter interactions: The suppression of bitterness by umami peptides via human bitter taste receptor, Biochem. Biophys. Res. Commun. 2015, 456, 586–590. [Google Scholar] [CrossRef]
Chrysanthemum Varieties | |||||
---|---|---|---|---|---|
Taste Characteristics | JinshihuangJu (J) | HuangJu (X) | HanbaiJu (H) | BaoJu (B) | GongJu (G) |
Sourness | −25.02 ± 0.00 d | −21.36 ± 0.09 a | −24.06 ± 0.09 c | −21.38 ± 0.08 a | −23.36 ± 0.05 b |
Bitterness | 11.11 ± 0.00 b | 7.36 ± 0.01 e | 11.34 ± 0.01 a | 9.33 ± 0.01 d | 9.63 ± 0.02 c |
Astringency | 13.60 ± 0.00 d | 15.79 ± 0.07 b | 14.89 ± 0.05 c | 16.79 ± 0.04 a | 14.96 ± 0.03 c |
Bitter Aftertaste | 1.89 ± 0.00 a | 0.58 ± 0.03 e | 0.90 ± 0.05 c | 1.03 ± 0.05 b | 0.69 ± 0.02 d |
Astringency Aftertaste | 2.79 ± 0.00 c | 3.36 ± 0.02 a | 2.03 ± 0.06 e | 3.00 ± 0.07 b | 2.60 ± 0.02 d |
Umami | 11.88 ± 0.00 a | 11.79 ± 0.02 a | 9.55 ± 0.02 e | 10.25 ± 0.01 d | 10.30 ± 0.02 c |
Umami Aftertaste | 2.17 ± 0.00 c | 3.19 ± 0.06 a | 1.54 ± 0.06 e | 2.33 ± 0.09 b | 1.87 ± 0.01 d |
Saltiness | −7.32 ± 0.00 b | −2.97 ± 0.03 a | −13.25 ± 0.01 e | −7.74 ± 0.01 c | −9.82 ± 0.06 d |
Chrysanthemum Varieties | |||||
---|---|---|---|---|---|
Sensory Attributes | JinshihuangJu (J) | HuangJu (X) | HanbaiJu (H) | BaoJu (B) | GongJu (G) |
Bitterness | 2.90 ± 0.72 b | 4.13 ± 0.53 a | 2.70 ± 0.60 bc | 3.13 ± 0.67 b | 2.23 ± 0.65 c |
Astringent | 2.47 ± 0.69 b | 3.37 ± 0.95 a | 2.33 ± 0.50 b | 2.50 ± 0.45 b | 2.27 ± 0.68 b |
Umami | 1.93 ± 0.75 a | 1.47 ± 0.85 a | 2.06 ± 0.93 a | 1.57 ± 0.39 a | 2.10 ± 0.75 a |
Sweetness | 1.60 ± 0.54 ab | 1.07 ± 0.14 c | 1.77 ± 0.57 a | 1.23 ± 0.42 bc | 1.93 ± 0.66 a |
Aroma | 2.17 ± 0.57 c | 3.43 ± 0.83 a | 3.07 ± 0.72 ab | 2.23 ± 0.72 c | 2.43 ± 0.97 bc |
Chrysanthemum Varieties | Detection Index | ||||
---|---|---|---|---|---|
Chlorogenic Acid (%) | Galuteolin (%) | Isochlorogenic Acid (%) | Total Flavonoid Content (mg GAE/g) | Total Polyphenol (mg RE/g) | |
JinshihuangJu (J) | 1.23 ± 0.03 c | 1.82 ± 0.01 b | 2.13 ± 0.04 d | 116.95 ± 0.59 a | 53.88 ± 0.08 b |
HuangJu (X) | 2.11 ± 0.01 a | 2.62 ± 0.01 a | 0.18 ± 0.01 e | 201.07 ± 0.05 c | 58.91 ± 0.02 a |
HanbaiJu (H) | 1.55 ± 0.02 b | 0.18 ± 0.01 e | 4.01 ± 0.10 b | 106.76 ± 0.42 d | 38.39 ± 0.08 d |
BaoJu (B) | 0.66 ± 0.05 e | 0.67 ± 0.05 d | 5.93 ± 0.02 a | 100.56 ± 0.05 b | 29.69 ± 0.05 a |
GongJu (G) | 1.01 ± 0.01 d | 0.83 ± 0.02 c | 4.01 ± 0.10 b | 106.49 ± 0.18 d | 44.37 ± 0.03 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, X.; Wang, H.; Chen, L.; Yuan, H.; Peng, C.; Wang, W. Distinct Changes in Metabolic Profile and Sensory Quality with Different Varieties of Chrysanthemum (Juhua) Tea Measured by LC-MS-Based Untargeted Metabolomics and Electronic Tongue. Foods 2024, 13, 1080. https://doi.org/10.3390/foods13071080
Tian X, Wang H, Chen L, Yuan H, Peng C, Wang W. Distinct Changes in Metabolic Profile and Sensory Quality with Different Varieties of Chrysanthemum (Juhua) Tea Measured by LC-MS-Based Untargeted Metabolomics and Electronic Tongue. Foods. 2024; 13(7):1080. https://doi.org/10.3390/foods13071080
Chicago/Turabian StyleTian, Xing, Haodong Wang, Liang Chen, Hanwen Yuan, Caiyun Peng, and Wei Wang. 2024. "Distinct Changes in Metabolic Profile and Sensory Quality with Different Varieties of Chrysanthemum (Juhua) Tea Measured by LC-MS-Based Untargeted Metabolomics and Electronic Tongue" Foods 13, no. 7: 1080. https://doi.org/10.3390/foods13071080
APA StyleTian, X., Wang, H., Chen, L., Yuan, H., Peng, C., & Wang, W. (2024). Distinct Changes in Metabolic Profile and Sensory Quality with Different Varieties of Chrysanthemum (Juhua) Tea Measured by LC-MS-Based Untargeted Metabolomics and Electronic Tongue. Foods, 13(7), 1080. https://doi.org/10.3390/foods13071080