Production and Characterization of Red Fruit Spirits Made from Red Raspberries, Blueberries, and Strawberries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast and Yeast Preparation
2.2. Preparation of Red Berry Juices for Fermentation
2.3. Alcoholic Fermentation
2.4. Characterization of Juices and Red Berry Wines
2.4.1. Reducing Sugar Determination
2.4.2. Ethanol Content Determination
2.5. Red Fruit Sprit Production and Characterization of Major Volatile Compounds
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Red Fruit Juices and Fermentation
3.2. Red Fruit Wine Distillation and Chemical Characterization of the Major Congeners in the Spirits
Red Raspberry | Blueberry | Strawberry | Wine | ODT | Descriptor(s) | |
---|---|---|---|---|---|---|
Ethanol (% v/v) | 37.9 ± 0.1 c | 40.2 ± 0.1 a | 39.0 ± 0.1 b | 77.0 ± 0.0 | ||
Methanol | 343.9 ± 0.7 b | 22.8 ± 0.0 c | 877.9 ± 1.7 a | 48.0 ± 9.7 | 100 [67] | Sweet [67] |
Acetaldehyde | 94.5 ± 0.2 b | 5.5 ± 0.0 c | 109.5 ± 0.2 a | 1.2 ± 0.5 | 25 [53] | Nutty, sherry-like; green leaves [53] |
Ethyl Acetate | 153.9 ± 0.3 b | 6.0 ± 0.0 c | 180.9 ± 0.3 a | 16.3 ± 6.7 | 7.5 [48] | Fruity, sweet [48] |
Propanol | 53.7 ± 0.1 b | 8.7 ± 0.0 c | 121.1 ± 0.2 a | 13.3 ± 3.3 | 0.3 [68] | Alcohol, pungent [68] |
Isobutanol | 45.4 ± 0.1 b | 9.6 ± 0.0 c | 107.8 ± 0.2 a | 22.8 ± 5.8 | 0.2 [48] | Bitter, green, harsh [48] |
3-Methyl-butanol | 80.2 ± 0.1 b | 26.7 ± 1.1 c | 261.9 ± 0.0 a | 67.6 ± 15.2 | 30 [48] | Alcohol, floral [48] |
Total Alcohols | 179.3 ± 1.0 b | 45.0 ± 0.1 c | 490.8 ± 2.1 a | 103.7 ± 31.9 | ||
Total Volatiles | 771.5 ± 1.4 b | 79.4 ± 0.1c | 1659.1 ± 2.6 a | 169.2 ± 36.0 |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baby, B.; Antony, P.; Vijayan, R. Antioxidant and anticancer properties of berries. Crit. Rev. Food Sci. 2018, 58, 2491–2507. [Google Scholar] [CrossRef] [PubMed]
- Kristo, A.S.; Klimis-Zacas, D.; Sikalidis, A.K. Protective Role of Dietary Berries in Cancer. Antioxidants 2016, 5, 37. [Google Scholar] [CrossRef] [PubMed]
- Burton-Freeman, B.M.; Sandhu, A.K.; Edirisinghe, I. Red Raspberries and Their Bioactive Polyphenols: Cardiometabolic and Neuronal Health Links. Adv. Nutr. 2016, 7, 44–65. [Google Scholar] [CrossRef] [PubMed]
- Paredes-López, O.; Cervantes-Ceja, M.L.; Vigna-Pérez, M.; Hernández-Pérez, T. Berries: Improving Human Health and Healthy Aging, and Promoting Quality Life-A Review. Plant Food Hum. Nutr. 2010, 65, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Sójka, M.; Macierzynski, J.; Zaweracz, W.; Buczek, M. Transfer and Mass Balance of Ellagitannins, Anthocyanins, Flavan-3-ols, and Flavonols during the Processing of Red Raspberries (Rubus idaeus L.) to Juice. J. Agr. Food Chem. 2016, 64, 5549–5563. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sandhu, A.; Edirisinghe, I.; Burton-Freeman, B. An exploratory study of red raspberry (Rubus idaeus L.) (poly)phenols/metabolites in human biological samples. Food Funct. 2018, 9, 806–818. [Google Scholar] [CrossRef]
- FAOSTAT. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#home (accessed on 15 November 2023).
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; Van Otterdijk, R.; Meybeck, A. Global Food Losses and Food Waste; Food and Agriculture Organization: Rome, Italy, 2011. [Google Scholar]
- Mourad, M. Recycling, recovering and preventing “food waste”: Competing solutions for food systems sustainability in the United States and France. J. Clean. Prod. 2016, 126, 461–477. [Google Scholar] [CrossRef]
- Schanes, K.; Giljum, S.; Hertwich, E. Low carbon lifestyles: A framework to structure consumption strategies and options to reduce carbon footprints. J. Clean. Prod. 2016, 139, 1033–1043. [Google Scholar] [CrossRef]
- Rutten, M.; Nowicki, P.; Bogaardt, M.-J.; Aramyan, L. Reducing Food Waste by Households and in Retail in the EU; A prioritisation using economic, land use and food security impacts; LEI: Washington, DC, USA, 2013. [Google Scholar]
- Edjabou, M.E.; Petersen, C.; Scheutz, C.; Astrup, T.F. Food waste from Danish households: Generation and composition. Waste Manag. 2016, 52, 256–268. [Google Scholar] [CrossRef]
- Beretta, C.; Stoessel, F.; Baier, U.; Hellweg, S. Quantifying food losses and the potential for reduction in Switzerland. Waste Manag. 2013, 33, 764–773. [Google Scholar] [CrossRef]
- BIOIS. Preparatory Study on Food Waste across EU 27. European Commission (DG ENV) Directorate C-Industry; Publications Office of the EU: Luxembourg, 2010. [Google Scholar]
- AgroAguiar—Agroindústria SA. Vila Pouca de Aguiar, Portugal. Personal Communication; APA: Washington, DC, USA, 2024. [Google Scholar]
- Vulić, T.; Nikićević, N.; Stanković, L.; Veličković, M.; Todosijević, M.; Popović, B.; Urošević, I.; Stanković, M.; Beraha, I.; Tešević, V.V. Chemical and sensorial characteristics of fruit spirits produced from different black currant (Ribes nigrum L.) and red currant (Ribes rubrum L.) cultivars. Maced. J. Chem. Chem. Eng. 2012, 31, 217–227. [Google Scholar] [CrossRef]
- Arrieta-Garay, Y.; García-Llobodanin, L.; Pérez-Correa, J.R.; López-Vázquez, C.; Orriols, I.; López, F. Aromatically Enhanced Pear Distillates from Blanquilla and Conference Varieties Using a Packed Column. J. Agr. Food Chem. 2013, 61, 4936–4942. [Google Scholar] [CrossRef] [PubMed]
- Aubert, C.; Bony, P.; Chalot, G.; Hero, V. Changes in physicochemical characteristics and volatile compounds of apricot (Prunus armeniaca L. cv. Bergeron) during storage and post-harvest maturation. Food Chem. 2010, 119, 1386–1398. [Google Scholar] [CrossRef]
- Bajer, T.; Bajerová, P.; Surmová, S.; Kremr, D.; Ventura, K.; Eisner, A. Chemical profiling of volatile compounds of various home-made fruit spirits using headspace solid-phase microextraction. J. Inst. Brew. 2017, 123, 105–112. [Google Scholar] [CrossRef]
- Coldea, T.E.; Socaciu, C.; Mudura, E.; Socaci, S.A.; Ranga, F.; Pop, C.R.; Vriesekoop, F.; Pasqualone, A. Volatile and phenolic profiles of traditional Romanian apple brandy after rapid ageing with different wood chips. Food Chem. 2020, 320, 126643. [Google Scholar] [CrossRef] [PubMed]
- Filatova, M.; Bechynska, K.; Hajslova, J.; Stupak, M. A comprehensive characterization of volatile profiles of plum brandies using gas chromatography coupled to high resolution mass spectrometry. Lwt-Food Sci. Technol. 2022, 167, 113864. [Google Scholar] [CrossRef]
- Ledauphin, J.; Guichard, H.; Saint-Clair, J.F.; Picoche, B.; Barillier, D. Chemical and sensorial aroma characterization of freshly distilled Calvados. 2. Identification of volatile compounds and key odorants. J. Agr. Food Chem. 2003, 51, 433–442. [Google Scholar] [CrossRef]
- Spaho, N.; Dürr, P.; Grba, S.; Velagic-Habul, E.; Blesic, M. Effects of distillation cut on the distribution of higher alcohols and esters in brandy produced from three plum varieties. J. Inst. Brew. 2013, 119, 48–56. [Google Scholar] [CrossRef]
- Tesevic, V.; Nikicevic, N.; Jovanovic, A.; Djokovic, D.; Vujisic, L.; Vuckovic, I.; Bonic, M. Volatile components from old plum brandies. Food Technol. Biotech. 2005, 43, 367–372. [Google Scholar]
- Bajer, T.; Hill, M.; Ventura, K.; Bajerová, P. Authentification of fruit spirits using HS-SPME/GC-FID and OPLS methods. Sci. Rep. 2020, 10, 18965. [Google Scholar] [CrossRef]
- Alonso, E.; Torrado, A.; Guerra, N.P. Major Volatile Composition of Four Distilled Alcoholic Beverages Obtained from Fruits of the Forest. Chem. Eng. Trans. 2015, 44, 253–258. [Google Scholar] [CrossRef]
- González, E.A.; Fernández, I.O.; Castro, L.P.; Guerra, N.P. Production and characterization of a novel distilled alcoholic beverage produced from blueberry (Vaccinium corymbosum L.). Fruits 2016, 71, 215–220. [Google Scholar] [CrossRef]
- Loyola López, N.E.; Urra Leiva, V.; Acuña Carrasco, C.J.A.A. Elaboración de una bebida alcohólica tipo destilado de arándano (Vaccinium corymbosum) cv. Brigitta, y su análisis sensorial. 2016, 65, 1–8. [Google Scholar]
- Aerny, J. Composés azotés des moûts et des vins. Rev. Suisse Vitic. Hortic. 1996, 28, 161–165. [Google Scholar]
- Vilela, A.; Sobreira, C.; Abraao, A.S.; Lemos, A.M.; Nunes, F.M. Texture Quality of Candied Fruits as Influenced by Osmotic Dehydration Agents. J. Texture Stud. 2016, 47, 239–252. [Google Scholar] [CrossRef]
- Regulamento n.° 84/2010, Regulamento da Aguardente Para as Denominações de Origem Douro (Moscatel Do Douro) e Porto; Diário da República: País, Portugal, 2.a série—N.° 26; 2010.
- Viljakainen, S.; Visti, A.; Laakso, S. Concentrations of organic acids and soluble sugars in juices from Nordic berries. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2002, 52, 101–109. [Google Scholar] [CrossRef]
- Li, J.X.; Zhang, C.L.; Liu, H.; Liu, J.C.; Jiao, Z.G. Profiles of Sugar and Organic Acid of Fruit Juices: A Comparative Study and Implication for Authentication. J. Food Qual. 2020, 2020, 7236534. [Google Scholar] [CrossRef]
- Mendes-Ferreira, A.; Coelho, E.; Barbosa, C.; Oliveira, J.M.; Mendes-Faia, A. Production of blueberry wine and volatile characterization of young and bottle-aging beverages. Food Sci. Nutr. 2019, 7, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.C.A.; Eda, S.H.; Andrade, R.P.; Amorim, J.C.; Duarte, W.F. New alcoholic fermented beverages—Potentials and challenges. Fermented Beverages 2019, 5, 577–603. [Google Scholar] [CrossRef]
- IWSR. Seven Key Trends that Will Shape the Global Wine Industry in 2024. Available online: https://www.theiwsr.com/seven-key-trends-that-will-shape-the-global-wine-industry-in-2024/#:~:text=5%3A%20Low%2Dalcohol%20dominates,primarily%20driven%20by%20the%20US (accessed on 10 March 2024).
- Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud, A. Handbook of Enology; Volume 1: The microbiology of wine and vinifications; John Wiley & Sons: Hoboken, NJ, USA, 2006; Volume 1. [Google Scholar]
- Spaho, N. Distillation techniques in the fruit spirits production. In Distillation—Innovative Applications and Modeling; IntechOpen: London, UK, 2017; pp. 129–152. [Google Scholar]
- Zanghelini, G.; Giampaoli, P.; Athès, V.; Vitu, S.; Wilhelm, V.; Esteban-Decloux, M. Charentaise distillation of cognac. Part I: Behavior of aroma compounds. Food Res. Int. 2024, 178, 113977. [Google Scholar] [CrossRef]
- Anjos, O.; Santos, R.; Estevinho, L.M.; Caldeira, I. FT-RAMAN methodology for the monitoring of honeys’ spirit distillation process. Food Chem. 2020, 305, 125511. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.L.; Malcata, F.X. Effects of time of grape pomace fermentation and distillation cuts on the chemical composition of grape marcs. Z. Für Leb. Und -Forsch. A 1999, 208, 134–143. [Google Scholar] [CrossRef]
- Douady, A.; Puentes, C.; Awad, P.; Esteban-Decloux, M. Batch distillation of spirits: Experimental study and simulation of the behaviour of volatile aroma compounds. J. Inst. Brew. 2019, 125, 268–283. [Google Scholar] [CrossRef]
- Mahida, B.; Medjahdi, M.; Khelifa, I.; Mazouzi, S.; Maghdouri, H. Separation of acetic acid and ethanol from wastewater by distillation process with addition of side draw stream. Chem. Pap. 2023, 77, 837–846. [Google Scholar] [CrossRef]
- European Parliament and Council Regulation (EU) 2019/787 of the European Parliament and of the Council of 17 April 2019 on the Definition, Description, Presentation and Labelling of Spirit Drinks, the Use of the Names of Spirit Drinks in the Presentation and Labelling of Other Foodstuffs, the Protection of Geographical Indications for Spirit Drinks, the Use of Ethyl alcohol and Distillates of Agricultural Origin in Alcoholic Beverages, and Repealing Regulation (EC) No 110/2008. Off. J. Eur. Union 2019, L130, 131–154.
- Boulton, R.B.; Singleton, V.L.; Bisson, L.F.; Kunkee, R.E. Principles and Practices of Winemaking; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Kana, K.; Kanellaki, M.; Kouinis, J.; Koutinas, A.A. Alcohol Production from Raisin Extracts—Volatile by-Products. J. Food Sci. 1988, 53, 1723–1724. [Google Scholar] [CrossRef]
- De Rosa, T.; Castagner, R. Tecnologia delle Grappe e dei Distillati d’uva; Edagricole: Milan, Italy, 1994. [Google Scholar]
- Filipe-Ribeiro, L.; Milheiro, J.; Matos, C.C.; Cosme, F.; Nunes, F.M. Data on changes in red wine phenolic compounds, headspace aroma compounds and sensory profile after treatment of red wines with activated carbons with different physicochemical characteristics. Data Brief. 2017, 12, 188–202. [Google Scholar] [CrossRef] [PubMed]
- Diéguez, S.C.; De la Peña, M.L.G.; Gómez, E.F. Volatile composition and sensory characters of commercial Galician orujo spirits. J. Agr. Food Chem. 2005, 53, 6759–6765. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.L.; Malcata, F.X.; De Revel, G. Volatile contents of grape marcs in Portugal. J. Food Compos. Anal. 1996, 9, 72–80. [Google Scholar] [CrossRef]
- González, E.A.; Agrasar, A.T.; Castro, L.M.P.; Fernández, I.O.; Guerra, N.P. Solid-state fermentation of red raspberry (Rubus ideaus L.) and arbutus berry (Arbutus unedo L.) and characterization of their distillates. Food Res. Int. 2011, 44, 1419–1426. [Google Scholar] [CrossRef]
- Apostolopoulou, A.A.; Flouros, A.I.; Demertzis, P.G.; Akrida-Demertzi, K. Differences in concentration of principal volatile constituents in traditional Greek distillates. Food Control 2005, 16, 157–164. [Google Scholar] [CrossRef]
- Dragone, G.; Mussatto, S.I.; Oliveira, J.M.; Teixeira, J.A. Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation. Food Chem. 2009, 112, 929–935. [Google Scholar] [CrossRef]
- Silva, M.L.; Malcata, F.X. Relationships between storage conditions of grape pomace and volatile composition of spirits obtained therefrom. Am. J. Enol. Viticult 1998, 49, 56–64. [Google Scholar] [CrossRef]
- Geroyiannaki, M.; Komaitis, M.E.; Stavrakas, D.E.; Polysiou, M.; Athanasopoulos, P.E.; Spanos, M. Evaluation of acetaldehyde and methanol in greek traditional alcoholic beverages from varietal fermented grape pomaces (Vitis vinifera L.). Food Control 2007, 18, 988–995. [Google Scholar] [CrossRef]
- Miyake, T.; Shibamoto, T. Quantitative-Analysis of Acetaldehyde in Foods and Beverages. J. Agr. Food Chem. 1993, 41, 1968–1970. [Google Scholar] [CrossRef]
- Pronk, J.T.; Steensma, H.Y.; vanDijken, J.P. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 1996, 12, 1607–1633. [Google Scholar] [CrossRef]
- Pieper, H.J.; Rau, T.; Eller, T.; Volz, A. A Speedy Method to Determine Acetaldehyde, with Particular Consideration Being Given to Quality Inspection in the Manufacture of Fruit Brandies. Deut Leb. -Rundsch. 1987, 83, 35–41. [Google Scholar]
- Lachenmeier, D.W.; Sohnius, E.M. The role of acetaldehyde outside ethanol metabolism in the carcinogenicity of alcoholic beverages: Evidence from a large chemical survey. Food Chem. Toxicol. 2008, 46, 2903–2911. [Google Scholar] [CrossRef] [PubMed]
- Boffetta, P.; Kaihovaara, P.; Rudnai, P.; Znaor, A.; Lissowska, J.; Swiatkowska, B.; Mates, D.; Pandics, T.; Salaspuro, M. Acetaldehyde level in spirits from Central European countries. Eur. J. Cancer Prev. 2011, 20, 526–529. [Google Scholar] [CrossRef]
- Soufleros, E.H.; Mygdalia, A.S.; Natskoulis, P. Characterization and safety evaluation of the traditional Greek fruit distillate “Mouro” by flavor compounds and mineral analysis. Food Chem. 2004, 86, 625–636. [Google Scholar] [CrossRef]
- Bindler, F.; Voges, E.; Laugel, P. The Problem of Methanol Concentration Admissible in Distilled Fruit Spirits. Food Addit. Contam. 1988, 5, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Dreher, M.L. Whole Fruits and Fruit Fiber Emerging Health Effects. Nutrients 2018, 10, 1833. [Google Scholar] [CrossRef] [PubMed]
- Pinto, T.; Vilela, A.; Cosme, F. Chemical and Sensory Characteristics of Fruit Juice and Fruit Fermented Beverages and Their Consumer Acceptance. Beverages 2022, 8, 33. [Google Scholar] [CrossRef]
- Padayachee, A.; Day, L.; Howell, K.; Gidley, M.J. Complexity and health functionality of plant cell wall fibers from fruits and vegetables. Crit. Rev. Food Sci. 2017, 57, 59–81. [Google Scholar] [CrossRef] [PubMed]
- Pham, M.T. Production and Quality Analysis of Some Spirits from Fruits; Magyar Agrár-és Élettudományi Egyetem: Gödöllő, Hungary, 2022. [Google Scholar]
- Leonardos, G.; Kendall, D.; Barnard, N. Odor threshold determination of 53 odorant chemicals. J. Environ. Conserv. Eng. 1969, 3, 579–585. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, Z.W. Volatile Compounds of Young Wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay Varieties Grown in the Loess Plateau Region of China. Molecules 2010, 15, 9184–9196. [Google Scholar] [CrossRef]
- Lin, M.W.; Yang, B.Y.; Dai, M.Q.; Xu, Y.Q.; Li, X.T.; Sun, B.G. East meets west in alcoholic beverages: Flavor comparison, microbial metabolism and health effects. Food Biosci. 2023, 56, 103385. [Google Scholar] [CrossRef]
- Kang, Q.; Sun, J.Y.; Wang, B.W.; Sun, B.G. Wine, beer and Chinese Baijiu in relation to cardiovascular health: The impact of moderate drinking. Food Sci. Hum. Well 2023, 12, 1–13. [Google Scholar] [CrossRef]
- Li, H.H.; Qin, D.; Wu, Z.Y.; Sun, B.G.; Sun, X.T.; Huang, M.Q.; Sun, J.Y.; Zheng, F.P. Characterization of key aroma compounds in Chinese Guojing sesame-flavor Baijiu by means of molecular sensory science. Food Chem. 2019, 284, 100–107. [Google Scholar] [CrossRef]
- Aoshima, H.; Takeda, K.; Okita, Y.; Hossain, S.J.; Koda, H.; Kiso, Y. Effects of beer and hop on ionotropic γ-aminobutyric acid receptors. J. Agric. Food Chem. 2006, 54, 2514–2519. [Google Scholar] [CrossRef]
- Hossain, S.J.; Aoshima, H.; Koda, H.; Kiso, Y. Potentiation of the ionotropic GABA receptor response by whiskey fragrance. J. Agr. Food Chem. 2002, 50, 6828–6834. [Google Scholar] [CrossRef] [PubMed]
- Hartley, N.; McLachlan, C.S. Aromas Influencing the GABAergic System. Molecules 2022, 27, 2414. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.L.; Liu, S.P.; Mao, J.Q.; Yu, Z.W.; Lin, Z.J.; Mao, J. New insights into the impacts of huangjiu compontents on intoxication. Food Chem. 2020, 317, 126420. [Google Scholar] [CrossRef] [PubMed]
- Sträuli, B.; Davies, T.; Jan, S.P.; Booth, L.; Laznik, N.; Taylor, F.; Pettigrew, S. Uptake of mandated pregnancy warnings in the Australian alcoholic ready-to-drink beverage market. Drug Alcohol. Rev. 2024, 43, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Hori, H.; Fujii, W.; Hatanaka, Y.; Suwa, Y. Effects of fusel oil on animal hangover models. Alcohol. Clin. Exp. Res. 2003, 27, 37s–41s. [Google Scholar] [CrossRef] [PubMed]
- Rohsenow, D.; Howland, J. The role of beverage congeners in hangover and other residual effects of alcohol intoxication: A review. Curr. Drug Abus. Rev. 2010, 3, 76–79. [Google Scholar] [CrossRef]
- Cortés, S.; Rodríguez, R.; Salgado, J.M.; Domínguez, J.M. Comparative study between Italian and Spanish grape marc spirits in terms of major volatile compounds. Food Control 2011, 22, 673–680. [Google Scholar] [CrossRef]
Parameter | Juice | Fruit Wine Obtained from Unfiltered Juice | Fruit Wine Obtained from Filtered Juice |
---|---|---|---|
Red Raspberry | |||
pH | 3.22 ± 0.01 | 2.82 ± 0.02 a | 2.86 ± 0.02 a |
Brix° | 9.50 ± 0.22 | 5.27 ± 0.10 a | 5.07 ± 0.00 a |
Titratable acidity (g/L citric acid) | 16.3 ± 0.1 | 18.1 ± 0.0 a | 18.2 ± 0.0 a |
Yeast assimilable nitrogen (mg/L) | 184.33 ± 3.30 | - | - |
Total reducing sugars (g/L) | 108.63 ± 0.04 | 0.39 ± 0.01 a | 0.38 ± 0.01 a |
Glucose (g/L) | 47.88 ± 0.17 | 0.34 ± 0.01 a | 0.33 ± 0.01 a |
Fructose (g/L) | 60.75 ± 0.21 | 0.05 ± 0.00 a | 0.05 ± 0.01 a |
Ethanol content (% v/v) | - | 3.3 ± 0.1 b | 3.5 ± 0.2 a |
Ethanol yield (%) | - | 46.33 ± 0.14 b | 49.52 ± 0.07 a |
Fermentation time (h) | - | 30 ± 0.00 a | 30 ± 0.00 a |
Blueberry | |||
pH | 3.43 ± 0.01 | 2.17 ± 0.01 a | 2.18 ± 0.01 a |
Brix° | 12.30 ± 0.14 | 4.25 ± 0.02 a | 4.27 ± 0.00 a |
Titratable acidity (g/L citric acid) | 12.1 ± 0.1 | 13.3 ± 0.1 b | 13.7 ± 0.2 a |
Yeast assimilable nitrogen (mg/L) | 86.33 ± 3.30 | - | - |
Reducing sugars (g/L) | 138.32 ± 0.05 | 0.16 ± 0.00 a | 0.14 ± 0.01 a |
Glucose (g/L) | 104.56 ± 0.14 | 0.13 ± 0.00 a | 0.10 ± 0.02 a |
Fructose (g/L) | 33.76 ± 0.09 | 0.03 ± 0.00 a | 0.04 ± 0.00 a |
Ethanol content (% v/v) | - | 5.4 ± 0.0 b | 5.8 ± 0.1 a |
Ethanol yield (%) | - | 59.86 ± 0.28 b | 64.84 ± 0.11 a |
Fermentation time (h) | - | 30 ± 0.00 b | 69 ± 0.00 a |
Strawberry | |||
pH | 3.15 ± 0.02 | 2.72 ± 0.01 a | 2.70 ± 0.03 a |
Brix° | 8.67 ± 0.25 | 3.83 ± 0.03 a | 3.92 ± 0.05 a |
Titratable acidity (g/L citric acid) | 10.3 ± 0.1 | 10.8 ± 0.0 a | 10.8 ± 0.0 a |
Yeast assimilable nitrogen (mg/L) | 305.67 ± 6.60 | - | - |
Reducing sugars (g/L) | 102.90 ± 0.06 | 0.41 ± 0.06 a | 0.39 ± 0.02 a |
Glucose | 64.22 ± 0.33 | 0.32 ± 0.12 a | 0.27 ± 0.09 a |
Fructose | 38.68 ± 0.27 | 0.09 ± 0.01 a | 0.12 ± 0.00 a |
Ethanol content (% v/v) | - | 3.7 ± 0.1 b | 4.4 ± 0.1 a |
Ethanol yield (%) | - | 54.98 ± 0.23 b | 66.31 ± 0.30 a |
Fermentation time (h) | - | 30 ± 0.00 a | 26 ± 0.00 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezerra, M.; Cosme, F.; Nunes, F.M. Production and Characterization of Red Fruit Spirits Made from Red Raspberries, Blueberries, and Strawberries. Foods 2024, 13, 1187. https://doi.org/10.3390/foods13081187
Bezerra M, Cosme F, Nunes FM. Production and Characterization of Red Fruit Spirits Made from Red Raspberries, Blueberries, and Strawberries. Foods. 2024; 13(8):1187. https://doi.org/10.3390/foods13081187
Chicago/Turabian StyleBezerra, Mário, Fernanda Cosme, and Fernando M. Nunes. 2024. "Production and Characterization of Red Fruit Spirits Made from Red Raspberries, Blueberries, and Strawberries" Foods 13, no. 8: 1187. https://doi.org/10.3390/foods13081187
APA StyleBezerra, M., Cosme, F., & Nunes, F. M. (2024). Production and Characterization of Red Fruit Spirits Made from Red Raspberries, Blueberries, and Strawberries. Foods, 13(8), 1187. https://doi.org/10.3390/foods13081187