Elimination of Toxic Solvents from Analytical Methods in Food Analysis: Caffeine Determination in Tea as an Example
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Instruments
2.3. Samples
2.4. Methods
2.4.1. Preparation of Sample
2.4.2. Chromatographic Method
2.4.3. Method Validation
2.4.4. Greenness of the Method
3. Results and Discussion
3.1. Method Development and Validation
3.2. Sample Analysis
3.3. Ecological Aspect of the Developed Method
3.3.1. The Greenness of the Sample Preparation Method
3.3.2. The Greenness of the Whole Analytical Procedure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Depaula, J.; Farah, A. Caffeine Consumption through Coffee: Content in the Beverage, Metabolism, Health Benefits and Risks. Beverages 2019, 5, 37. [Google Scholar] [CrossRef]
- Faudone, G.; Arifi, S.; Merk, D. The Medicinal Chemistry of Caffeine. J. Med. Chem. 2021, 64, 7156–7178. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.; Desbrow, B.; Anoopkumar-Dukie, S.; Davey, A.K.; Arora, D.; McDermott, C.; Schubert, M.M.; Perkins, A.V.; Kiefel, M.J.; Grant, G.D. A Review of the Bioactivity of Coffee, Caffeine and Key Coffee Constituents on Inflammatory Responses Linked to Depression. Food Res. Int. 2015, 76, 626–636. [Google Scholar] [CrossRef] [PubMed]
- Patil, P. Caffeine in Various Samples and Their Analysis with HPLC—A Review. Int. J. Pharm. Sci. Rev. Res. 2012, 16, 76–83. [Google Scholar]
- Temple, J.L.; Bernard, C.; Lipshultz, S.E.; Czachor, J.D.; Westphal, J.A.; Mestre, M.A. The Safety of Ingested Caffeine: A Comprehensive Review. Front. Psychiatry 2017, 8, 80. [Google Scholar] [CrossRef] [PubMed]
- Martínez-López, S.; Sarriá, B.; Baeza, G.; Mateos, R.; Bravo-Clemente, L. Pharmacokinetics of Caffeine and Its Metabolites in Plasma and Urine after Consuming a Soluble Green/Roasted Coffee Blend by Healthy Subjects. Food Res. Int. 2014, 64, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Komes, D.; Horžić, D.; Belščak, A.; Ganič, K.K.; Baljak, A. Determination of Caffeine Content in Tea and Maté Tea by Using Different Methods. Czech J. Food Sci. 2009, 27, S213–S216. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Alves, R.C.; Oliveira, M.B.P.P. Caffeine-Based Food Supplements and Beverages: Trends of Consumption for Performance Purposes and Safety Concerns. Food Res. Int. 2018, 109, 310–319. [Google Scholar] [CrossRef]
- Caudle, A.G.; Gu, Y.; Bell, L.N. Improved Analysis of Theobromine and Caffeine in Chocolate Food Products Formulated with Cocoa Powder. Food Res. Int. 2001, 34, 599–603. [Google Scholar] [CrossRef]
- Abdul Mumin, M.; Farida Akhter, K.; Zainal Abedin, M.; Zakir Hossain, M. Determination and Characterization of Caffeine in Tea, Coffee and Soft Drinks by Solid Phase Extraction and High Performance Liquid Chromatography (SPE–HPLC). Malaysian J. Chem. 2006, 8, 45–51. [Google Scholar]
- Ku, Y.R.; Wen, K.C.; Ho, L.K.; Chang, Y.S. Solid-Phase Extraction for the Determination of Caffeine in Traditional Chinese Medicinal Prescriptions Containing Theae Folium by High Performance Liquid Chromatography. J. Pharm. Biomed. Anal. 1999, 20, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Xuan, Y.H.; Jin, Y.S.; Row, K.H. Multi-Spe of Caffeine and Catechin Compounds from Green Tea by Caffeine and (+) Catechin MIPS. J. Liq. Chromatogr. Relat. Technol. 2011, 34, 1604–1616. [Google Scholar] [CrossRef]
- Jin, Y.; Kyung, H.R. Solid-Phase Extraction of Caffeine and Catechin Compounds from Green Tea by Caffeine Molecular Imprinted Polymer. Bull. Korean Chem. Soc. 2007, 28, 276–280. [Google Scholar] [CrossRef]
- Rodrigues, C.I.; Marta, L.; Maia, R.; Miranda, M.; Ribeirinho, M.; Máguas, C. Application of Solid-Phase Extraction to Brewed Coffee Caffeine and Organic Acid Determination by UV/HPLC. J. Food Compos. Anal. 2007, 20, 440–448. [Google Scholar] [CrossRef]
- Tian, M.; Yan, H.; Row, K.H. Solid-Phase Extraction of Caffeine and Theophylline from Green Tea by a New Ionic Liquid-Modified Functional Polymer Sorbent. Anal. Lett. 2010, 43, 110–118. [Google Scholar] [CrossRef]
- Srdjenovic, B.; Djordjevic-Milic, V.; Grujic, N.; Injac, R.; Lepojevic, Z. Simultaneous HPLC Determination of Caffeine, Theobromine, and Theophylline in Food, Drinks, and Herbal Products. J. Chromatogr. Sci. 2008, 46, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Joshi, D.R.; Adhikari, N. An Overview on Common Organic Solvents and Their Toxicity. J. Pharm. Res. Int. 2019, 28, 1–18. [Google Scholar] [CrossRef]
- Friedman, M.; Kim, S.Y.; Lee, S.J.; Han, G.P.; Han, J.S.; Lee, K.R.; Kozukue, N. Distribution of Catechins, Theaflavins, Caffeine, and Theobromine in 77 Teas Consumed in the United States. J. Food Sci. 2005, 70, C550–C559. [Google Scholar] [CrossRef]
- Horie, H.; Nesumi, A.; Ujihara, T.; Kohata, K. Rapid Determination of Caffeine in Tea Leaves. J. Chromatogr. A 2002, 942, 271–273. [Google Scholar] [CrossRef]
- Sereshti, H.; Khosraviani, M.; Samadi, S.; Amini-Fazl, M.S. Simultaneous Determination of Theophylline, Theobromine and Caffeine in Different Tea Beverages by Graphene-Oxide Based Ultrasonic-Assisted Dispersive Micro Solid-Phase Extraction Combined with HPLC-UV. RSC Adv. 2014, 4, 47114–47120. [Google Scholar] [CrossRef]
- El-Shahawi, M.S.; Hamza, A.; Bahaffi, S.O.; Al-Sibaai, A.A.; Abduljabbar, T.N. Analysis of Some Selected Catechins and Caffeine in Green Tea by High Performance Liquid Chromatography. Food Chem. 2012, 134, 2268–2275. [Google Scholar] [CrossRef] [PubMed]
- Rojo De Camargo, M.C.; Toledo, M.C.F. HPLC Determination of Caffeine in Tea, Chocolate Products and Carbonated Beverages. J. Sci. Food Agric. 1999, 79, 1861–1864. [Google Scholar] [CrossRef]
- Wu, J.; Xie, W.; Pawliszyn, J. Automated In-Tube Solid Phase Microextraction Coupled with HPLC-ES-MS for the Determination of Catechins and Caffeine in Tea. Analyst 2000, 125, 2216–2222. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.J.; Gao, Y.; Liu, Y.; Zheng, X.Q.; Ye, J.H.; Liang, Y.R.; Lu, J.L. Studies on the Mechanism of Efficient Extraction of Tea Components by Aqueous Ethanol. Food Chem. 2016, 194, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Aly, A.A.; Górecki, T. Green Chromatography and Related Techniques. In Green Analytical Chemistry; Springer Nature: Berlin/Heidelberg, Germany, 2019; pp. 241–298. [Google Scholar]
- Korany, M.A.; Mahgoub, H.; Haggag, R.S.; Ragab, M.A.A.; Elmallah, O.A. Green Chemistry: Analytical and Chromatography. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 839–852. [Google Scholar] [CrossRef]
- Płotka, J.; Tobiszewski, M.; Sulej, A.M.; Kupska, M.; Górecki, T.; Namieśnik, J. Green Chromatography. J. Chromatogr. A 2013, 1307, 1–20. [Google Scholar] [CrossRef]
- Sandra, B.P.; Vanhoenacker, G.; David, F.; Sandra, K.; Pereira, A. Green Chromatography (Part 1): Introduction and Liquid Chromatography. LC-GC Eur. 2011, 23, 1–21. [Google Scholar]
- Içen, H.; Gürü, M. Effect of Ethanol Content on Supercritical Carbon Dioxide Extraction of Caffeine from Tea Stalk and Fiber Wastes. J. Supercrit. Fluids 2010, 55, 156–160. [Google Scholar] [CrossRef]
- Saldaña, M.D.A.; Zetzl, C.; Mohamed, R.S.; Brunner, G. Extraction of Methylxanthines from Guaraná Seeds, Maté Leaves, and Cocoa Beans Using Supercritical Carbon Dioxide and Ethanol. J. Agric. Food Chem. 2002, 50, 4820–4826. [Google Scholar] [CrossRef]
- De Azevedo, A.B.A.; Mazzafera, P.; Mohamed, R.S.; Vieira De Melo, S.A.B.; Kieckbusch, T.G. Extraction of Caffeine, Chlorogenic Acids and Lipids from Green Coffee Beans Using Supercritical Carbon Dioxide and Co-Solvents. Brazilian J. Chem. Eng. 2008, 25, 543–552. [Google Scholar] [CrossRef]
- Safaei, Z.; Bocian, S.; Buszewski, B. Green Chromatography-Carbon Footprint of Columns Packed with Core-Shell Materials. RSC Adv. 2014, 4, 53915–53920. [Google Scholar] [CrossRef]
- Chen, K.; Lynen, F.; De Beer, M.; Hitzel, L.; Ferguson, P.; Hanna-Brown, M.; Sandra, P. Selectivity Optimization in Green Chromatography by Gradient Stationary Phase Optimized Selectivity Liquid Chromatography. J. Chromatogr. A 2010, 1217, 7222–7230. [Google Scholar] [CrossRef] [PubMed]
- González-Ruiz, V.; León, A.G.; Olives, A.I.; Martín, M.A.; Menéndez, J.C. Eco-Friendly Liquid Chromatographic Separations Based on the Use of Cyclodextrins as Mobile Phase Additives. Green Chem. 2011, 13, 115–126. [Google Scholar] [CrossRef]
- Kalisz, O.; Studzińska, S.; Bocian, S. A Determination of the Caffeine Content in Dietary Supplements According to Green Chemistry Principles. Foods 2023, 12, 2474. [Google Scholar] [CrossRef] [PubMed]
- Chin, J.M.; Merves, M.L.; Goldberger, B.A.; Sampson-Cone, A.; Cone, E.J. Caffeine Content of Brewed Teas. J. Anal. Toxicol. 2008, 32, 702–704. [Google Scholar] [CrossRef] [PubMed]
- Wojnowski, W.; Tobiszewski, M.; Pena-Pereira, F.; Psillakis, E. AGREEprep—Analytical Greenness Metric for Sample Preparation. TrAC—Trends Anal. Chem. 2022, 149, 116553. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
- Wojnowski, W. Analytical Greenness Calculator. Available online: https://mostwiedzy.pl/pl/wojciech-wojnowski,174235-1/AGREE? (accessed on 14 February 2024).
- Fernández, P.L.; Martin, M.J.; González, A.G.; Pablos, F. HPLC Determination of Catechins and Caffeine in Tea. Differentiation of Green, Black and Instant Teas. Analyst 2000, 125, 421–425. [Google Scholar] [CrossRef]
- Rahim, A.A.; Nofrizal, S.; Saad, B. Rapid Tea Catechins and Caffeine Determination by HPLC Using Microwave-Assisted Extraction and Silica Monolithic Column. Food Chem. 2014, 147, 262–268. [Google Scholar] [CrossRef]
- Mashkouri Najafi, N.; Hamid, A.S.; Afshin, R.K. Determination of Caffeine in Black Tea Leaves by Fourier Transform Infrared Spectrometry Using Multiple Linear Regression. Microchem. J. 2003, 75, 151–158. [Google Scholar] [CrossRef]
- Lin, Y.S.; Tsai, Y.J.; Tsay, J.S.; Lin, J.K. Factors Affecting the Levels of Tea Polyphenols and Caffeine in Tea Leaves. J. Agric. Food Chem. 2003, 51, 1864–1873. [Google Scholar] [CrossRef] [PubMed]
- Astill, C.; Birch, M.R.; Dacombe, C.; Humphrey, P.G.; Martin, P.T. Factors Affecting the Caffeine and Polyphenol Contents of Black and Green Tea Infusions. J. Agric. Food Chem. 2001, 49, 5340–5347. [Google Scholar] [CrossRef] [PubMed]
- Boros, K.; Jedlinszki, N.; Csupor, D. Theanine and Caffeine Content of Infusions Prepared from Commercial Tea Samples. Pharmacogn. Mag. 2016, 12, 75–78. [Google Scholar] [CrossRef] [PubMed]
Tea Number | Type of Tea | Country of Origin | Degree of Leaf Fragmentation |
---|---|---|---|
#1 | black | Sri Lanka | partially ground leaves |
#2 | Sri Lanka | partially ground leaves | |
#3 | India | granulate | |
#4 | Sri Lanka | granulate | |
#5 | Sri Lanka | granulate | |
#6 | India | granulate | |
#7 | Kenia | granulate | |
#8 | green | China | whole leaves |
#9 | China | granulate | |
#10 | Sri Lanka | partially ground leaves | |
#11 | Japan | powder | |
#12 | not provided | granulate | |
#13 | Pu-erh | China | partially ground leaves |
#14 | China | granulate | |
#15 | Oolong | China | whole leaves |
#16 | yellow | China | whole leaves |
#17 | white | China | whole leaves |
Calibration Curve Equation | R2 | LOD [μg/mL] | LOQ [μg/mL] | RSD [%] Intra-Day | RSD [%] Inter-Day | Recovery [%] | ||||
---|---|---|---|---|---|---|---|---|---|---|
1 [μg/mL] | 10 [μg/mL] | 50 [μg/mL] | 1 [μg/mL] | 10 [μg/mL] | 50 [μg/mL] | |||||
y = 4557.94x + 0.50 | 0.9998 | 0.06 | 0.125 | 1.94 | 0.43 | 0.31 | 2.14 | 0.73 | 0.27 | 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalisz, O.; Jaworska, A.; Studzińska, S.; Bocian, S. Elimination of Toxic Solvents from Analytical Methods in Food Analysis: Caffeine Determination in Tea as an Example. Foods 2024, 13, 1189. https://doi.org/10.3390/foods13081189
Kalisz O, Jaworska A, Studzińska S, Bocian S. Elimination of Toxic Solvents from Analytical Methods in Food Analysis: Caffeine Determination in Tea as an Example. Foods. 2024; 13(8):1189. https://doi.org/10.3390/foods13081189
Chicago/Turabian StyleKalisz, Oktawia, Aleksandra Jaworska, Sylwia Studzińska, and Szymon Bocian. 2024. "Elimination of Toxic Solvents from Analytical Methods in Food Analysis: Caffeine Determination in Tea as an Example" Foods 13, no. 8: 1189. https://doi.org/10.3390/foods13081189
APA StyleKalisz, O., Jaworska, A., Studzińska, S., & Bocian, S. (2024). Elimination of Toxic Solvents from Analytical Methods in Food Analysis: Caffeine Determination in Tea as an Example. Foods, 13(8), 1189. https://doi.org/10.3390/foods13081189