Unveiling Digital Transformation: A Catalyst for Enhancing Food Security and Achieving Sustainable Development Goals at the European Union Level
Abstract
:1. Introduction
2. Literature Review
2.1. The Implications of Digital Transformation on the Food System
2.2. The Influence of Digitalization on Sustainability in the Food Sector
3. Research Methodology
3.1. Selected Data
3.2. Methods
4. Results
5. Discussion
5.1. Theoretical Implications
5.2. Empirical Implications
5.3. Limitations and Further Research
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brassesco, M.E.; Pintado, M.; Coscueta, E.R. Food system resilience thinking: From digital to integral. J. Sci. Food Agric. 2022, 102, 887–891. [Google Scholar] [CrossRef]
- Blaikie, P.; Cannon, T.; Davis, I. At Risk: Natural Hazards, People’s Vulnerability, and Disasters; De Gruyter: Berlin, Germany, 2004. [Google Scholar] [CrossRef]
- Folke, C. Resilience: The emergence of a perspective for social-ecological systems analyses. Glob. Environ. Chang. 2006, 16, 253–267. [Google Scholar] [CrossRef]
- Tendall, D.M.; Joerin, J.; Kopainsky, B.; Edwards, P.; Shreck, A.; Le, Q.B.; Krutli, P.; Grant, M.; Six, J. Food system resilience: Defining the concept. Glob. Food Secur. 2015, 6, 17–23. [Google Scholar] [CrossRef]
- Béné, C.; Headey, D.; Haddad, L.; von Grebmer, K. Is resilience a useful concept in the context of food security and nutrition programmes? Some conceptual and practical considerations. Food Secur. 2016, 8, 123–138. [Google Scholar] [CrossRef]
- Wang, H.; Li, G.; Hu, Y. The Impact of the Digital Economy on Food System Resilience: Insights from a Study across 190 Chinese Towns. Sustainability 2023, 15, 16898. [Google Scholar] [CrossRef]
- Karan, E.P.; Asgari, S.; Asadi, S. Resilience assessment of centralized and distributed food systems. Food Secur. 2023, 15, 59–75. [Google Scholar] [CrossRef]
- Abbate, S.; Centobelli, P.; Cerchione, R. The digital and sustainable transition of the agri-food sector. Technol. Forecast. Soc. Chang. 2023, 187, 122222. [Google Scholar] [CrossRef]
- Dora, M.; Biswas, S.; Choudhary, S.; Nayak, R.; Irani, Z. A system-wide interdisciplinary conceptual framework for food loss and waste mitigation strategies in the supply chain. Ind. Mark. Manag. 2021, 93, 492–508. [Google Scholar] [CrossRef]
- Sachs, J.D.; Schmidt-Traub, G.; Mazzucato, M.; Messner, D.; Nakicenovic, N.; Rockstrom, J. Six transformations to achieve the sustainable development goals. Nat. Sustain. 2019, 2, 805–814. [Google Scholar] [CrossRef]
- van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef]
- Zurek, M.; Ingram, J.; Sanderson Bellamy, A.; Goold, C.; Lyon, C.; Alexander, P.; Barnes, A.; Bebber, D.P.; Breeze, T.D.; Bruce, A.; et al. Food System Resilience: Concepts, Issues, and Challenges. Annu. Rev. Environ. Resour. 2022, 47, 511–534. [Google Scholar] [CrossRef]
- Varzakas, T.; Smaoui, S. Global Food Security and Sustainability Issues: The Road to 2030 from Nutrition and Sustainable Healthy Diets to Food Systems Change. Foods 2024, 13, 306. [Google Scholar] [CrossRef] [PubMed]
- Mondejar, M.E.; Avtar, R.; Diaz, H.L.B.; Dubey, R.K.; Esteban, J.; Gomez-Morales, A.; Hallam, B.; Mbungu, N.T.; Okolo, C.C.; Prasad, K.A.; et al. Digitalization to achieve sustainable development goals: Steps towards a Smart Green Planet. Sci. Total Environ. 2021, 794, 148539. [Google Scholar] [CrossRef]
- Esposito, B.; Sica, D.; Malandrino, O.; Supino, S. Social media on the route to circular economy transition from a dialogic perspective: Evidence from the agri-food industry. Br. Food J. 2024, 126, 64–79. [Google Scholar] [CrossRef]
- Rana, R.L.; Tricase, C.; De Cesare, L. Blockchain technology for a sustainable agri-food supply chain. Br. Food J. 2021, 123, 3471–3485. [Google Scholar] [CrossRef]
- Bachmann, N.; Tripathi, S.; Brunner, M.; Jodlbauer, H. The Contribution of Data-Driven Technologies in Achieving the Sustainable Development Goals. Sustainability 2022, 14, 2497. [Google Scholar] [CrossRef]
- Bizzo, G.; Fabbri, K.; Gajdzinska, M.; Haentjens, W.; Lueth, D.; Lutzeyer, H.-J.; Luvarà, G.; Meloni, G.; Molina, V.J.; Sainz Lopez, N.; et al. Food 2030—Pathways for Action 2.0—R&I Policy as a Driver for Sustainable, Healthy, Climate Resilient and Inclusive Food Systems; European Commission, Directorate-General for Research and Innovation, Publications Office of the European Union: Brussels, Belgium, 2023. [Google Scholar] [CrossRef]
- Oliver, T.H.; Boyd, E.; Balcombe, K.; Benton, T.G.; Bullock, J.M.; Donovan, D.; Feola, G.; Heard, M.; Mace, G.M.; Mortimer, S.R.; et al. Overcoming undesirable resilience in the global food system. Glob. Sustain. 2018, 1, e9. [Google Scholar] [CrossRef]
- Varyvoda, Y.; Taren, D. Considering ecosystem services in food system resilience. Int. J. Environ. Res. Public Health 2022, 19, 3652. [Google Scholar] [CrossRef] [PubMed]
- Jones, N.A.; Bellamy, J.; Bellotti, W.; Ross, H.; van Bommel, S.; Liu, Y. A shock to the system: What the COVID-19 pandemic reveals about Australia’s food systems and their resilience. Front. Sustain. Food Syst. 2022, 5, 790694. [Google Scholar] [CrossRef]
- Rotz, S.; Fraser, E.D.G. Resilience and the industrial food system: Analyzing the impacts of agricultural industrialization on food system vulnerability. J. Environ. Stud. Sci. 2015, 5, 459–473. [Google Scholar] [CrossRef]
- Savary, S.; Akter, S.; Almekinders, C.; Harris, J.; Korsten, L.; Rötter, R.; Waddington, S.; Watson, D. Mapping disruption and resilience mechanisms in food systems. Food Secur. 2020, 12, 695–717. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Tian, M.; Wang, J. Digital inclusive finance, agricultural industrial structure optimization, and agricultural green total factor productivity. Sustainability 2022, 14, 11450. [Google Scholar] [CrossRef]
- Xiao, Y.T.; Abula, B. Examining the impact of digital economy on agricultural trade efficiency in RCEP region: A perspective based on spatial spillover effects. J. Knowl. Econ. 2023. [Google Scholar] [CrossRef]
- Jia, X.M. Digital economy, factor allocation, and sustainable agricultural development: The perspective of labor and capital misallocation. Sustainability 2023, 15, 4418. [Google Scholar] [CrossRef]
- El Bilali, H. Research on Agro-Food Sustainability Transitions: Where are Food Security and Nutrition? Food Secur. 2019, 11, 559–577. [Google Scholar] [CrossRef]
- Amicarelli, V.; Lombardi, M.; Varese, E.; Bux, C. Material flow and economic cost analysis of the Italian artisan bread production before and during the Russia-Ukraine conflict. Environ. Impact Assess. Rev. 2023, 101, 107101. [Google Scholar] [CrossRef]
- El Bilali, H.; Ben Hassen, T. Disrupted harvests: How Ukraine—Russia war influences global food systems—A systematic review. Policy Stud. 2024, 1–26. [Google Scholar] [CrossRef]
- Fielke, S.J.; Garrard, R.; Jakku, E.; Fleming, A.; Wiseman, L.; Taylor, B.M. Conceptualising the DAIS: Implications of the D‘igitalisation of Agricultural Innovation Systems’ on Technology and Policy at Multiple Levels. NJAS—Wagening. J. Life Sci. 2019, 90–91, 100296. [Google Scholar] [CrossRef]
- Klerkx, L.; Begemann, S. Supporting Food Systems Transformation: The What, Why, Who, Where and How of Mission-Oriented Agricultural Innovation Systems. Agric. Syst. 2020, 184, 102901. [Google Scholar] [CrossRef]
- Baierle, I.C.; da Silva, F.T.; de Faria Correa, R.G.; Schaefer, J.L.; Da Costa, M.B.; Benitez, G.B.; Nara, E.O.B. Competitiveness of Food Industry in the Era of Digital Transformation towards Agriculture 4.0. Sustainability 2022, 14, 11779. [Google Scholar] [CrossRef]
- Koumas, M.; Dossou, P.-E.; Didier, J.-Y. Digital Transformation of Small and Medium-Sized Enterprises Production Manufacturing. J. Softw. Eng. Appl. 2021, 14, 607–630. [Google Scholar] [CrossRef]
- Schaefer, J.L.; Siluk, J.C.M.; de Carvalho, P.S. An MCDM-Based Approach to Evaluate the Performance Objectives for Strategic Management and Development of Energy Cloud. J. Clean. Prod. 2021, 320, 128853. [Google Scholar] [CrossRef]
- Dossou, P.-E.; Laouénan, G.; Didier, J.-Y. Development of a Sustainable Industry 4.0 Approach for Increasing the Performance of SMEs. Processes 2022, 10, 1092. [Google Scholar] [CrossRef]
- Maddikunta, P.K.R.; Pham, Q.V.; Prabadevi, B.; Deepa, N.; Dev, K.; Gadekallu, T.R.; Ruby, R.; Liyanage, M. Industry 5.0: A Survey on Enabling Technologies and Potential Applications. J. Ind. Inf. Integr. 2022, 26, 100257. [Google Scholar] [CrossRef]
- Hassoun, A.; Jagtap, S.; Trollman, H.; Garcia-Garcia, G.; Abdullah, N.A.; Goksen, G.; Bader, F.; Ozogul, F.; Barba, F.J.; Cropotova, J.; et al. Food processing 4.0: Current and future developments spurred by the fourth industrial revolution. Food Control 2023, 145, 109507. [Google Scholar] [CrossRef]
- Morella, P.; Lambóan, M.P.; Royo, J.; Carlos Saónchez, J.; Fanelli, R.M. Study and analysis of the implementation of 4.0 technologies in the agri-food supply chain: A state of the art. Agronomy 2021, 11, 2526. [Google Scholar] [CrossRef]
- Oztemel, E.; Gursev, S. Literature review of Industry 4.0 and related technologies. J. Intell. Manuf. 2020, 31, 127–182. [Google Scholar] [CrossRef]
- Onwude, D.I.; Chen, G.; Eke-Emezie, N.; Kabutey, A.; Khaled, A.Y.; Sturm, B. Recent advances in reducing food losses in the supply chain of fresh agricultural produce. Processes 2020, 8, 1431. [Google Scholar] [CrossRef]
- Jambrak, A.R.; Nutrizio, M.; Djekióc, I.; Pleslicó, S.; Chemat, F. Internet of nonthermal food processing technologies (Iontp): Food industry 4.0 and sustainability. Appl. Sci. 2021, 11, 686. [Google Scholar] [CrossRef]
- Sadeghi, K.; Kim, J.; Seo, J. Packaging 4.0: The threshold of an intelligent approach. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2615–2638. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, H.; Song, G.; Huang, K.; Luo, Y.; Liu, Q.; Cheng, N. Intelligent biosensing strategies for rapid detection in food safety: A review. Biosens. Bioelectron. 2022, 202, 114003. [Google Scholar] [CrossRef] [PubMed]
- Hassoun, A.; A‘t-kaddour, A.; Abu-mahfouz, A.M.; Rathod, N.B.; Bader, F.; Barba, F.J.; Regenstein, J. The fourth industrial revolution in the food industry—Part I: Industry 4.0 technologies. Crit. Rev. Food Sci. Nutr. 2022, 63, 6547–6563. [Google Scholar] [CrossRef] [PubMed]
- Tao, Q.; Ding, H.; Wang, H.; Cui, X. Application research: Big data in food industry. Foods 2021, 10, 2203. [Google Scholar] [CrossRef] [PubMed]
- Augusto, P.E.D. Challenges, trends and opportunities in food processing. Curr. Opin. Food Sci. 2020, 35, 72–78. [Google Scholar] [CrossRef]
- Singh, N.; Singh, A.N. Odysseys of Agriculture Sensors: Current Challenges and Forthcoming Prospects. Comput. Electron. Agric. 2020, 171, 105328. [Google Scholar] [CrossRef]
- Pathan, M.; Patel, N.; Yagnik, H.; Shah, M. Artificial Cognition for Applications in Smart Agriculture: A Comprehensive Review. Artif. Intell. Agric. 2020, 4, 81–95. [Google Scholar] [CrossRef]
- Veeck, G.; Veeck, A.; Yu, H. Challenges of Agriculture and Food Systems Issues in China and the United States. Geogr. Sustain. 2020, 1, 109–117. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, X.; Shu, L.; Hancke, G.P.; Abu-Mahfouz, A.M. From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges. IEEE Trans. Ind. Inform. 2021, 17, 4322–4334. [Google Scholar] [CrossRef]
- FAO. Coronavirus Food Supply Chain under Strain What to Do? Available online: http://www.fao.org/3/ca8308en/ca8308en.pdf (accessed on 7 April 2024).
- Roubík, H.; Lošťák, M.; Ketuama, C.T.; Procházka, P.; Soukupová, J.; Hakl, J.; Karlík, P.; Hejcman, M. Current coronavirus crisis and past pandemics—What can happen in post-COVID-19 agriculture? Sustain. Prod. Consum. 2022, 30, 752–760. [Google Scholar] [CrossRef]
- Roubík, H.; Lošťák, M.; Ketuama, C.T.; Soukupová, J.; Procházka, P.; Hruška, A.; Hakl, J.; Pacek, L.; Karlík, P.; Menšíková, L.K.; et al. COVID-19 crisis interlinkage with past pandemics and their effects on food security. Glob. Health 2023, 19, 52. [Google Scholar] [CrossRef]
- Zhong, R.X.; He, Q.; Qi, Y.B. Digital economy, agricultural technological progress, and agricultural carbon intensity: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 6488. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Wang, Y.; Liao, H. The impact of digital inclusive finance on agricultural green total factor productivity: A study based on China’s provinces. Sustainability 2023, 15, 1192. [Google Scholar] [CrossRef]
- Sridhar, A.; Ponnuchamy, M.; Kumar, P.S.; Kapoor, A.; Vo, D.V.N.; Rangasamy, G. Digitalization of the agro-food sector for achieving sustainable development goals: A review. Sustain. Food Technol. 2023, 1, 783. [Google Scholar] [CrossRef]
- Smith, M.J. Getting value from artificial intelligence in agriculture. Anim. Prod. Sci. 2020, 60, 46–54. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, J.; Si, H.; Su, Y. The impact of the digital economy on agricultural green development: Evidence from China. Agriculture 2022, 12, 1107. [Google Scholar] [CrossRef]
- Li, H.; Lin, Q.; Wang, Y.; Mao, S. Can digital finance improve China’s agricultural green total factor productivity? Agriculture 2023, 13, 1429. [Google Scholar] [CrossRef]
- Lin, Q.; Dai, X.; Cheng, Q.; Lin, W. Can digital inclusive finance promote food security? Evidence from China. Sustainability 2022, 14, 13160. [Google Scholar] [CrossRef]
- Novikov, S.V. Data Science and big data technologies role in the digital economy. TEM J. 2020, 9, 756–762. [Google Scholar] [CrossRef]
- Subeesh, A.; Mehta, C.R. Automation and digitization of agriculture using artificial intelligence and internet of things. Artif. Intell. Agric. 2021, 5, 278–291. [Google Scholar] [CrossRef]
- Iaksch, J.; Fernandes, E.; Borsato, M. Digitalization and big data in smart farming—A review. J. Manag. Anal. 2021, 8, 333–349. [Google Scholar] [CrossRef]
- Voulgaridis, K.; Lagkas, T.; Angelopoulos, C.M.; Nikoletseas, S.E. IoT and digital circular economy: Principles, applications, and challenges. Comput. Netw. 2022, 219, 109456. [Google Scholar] [CrossRef]
- Milashovska, O.; Liba, N.; Korolovych, O.; Smyrnova, N.; Slatvinska, V. The potential of applying blockchain technologies in various sectors of the digital economy. Rev. Univ. Zulia 2022, 13, 288–304. [Google Scholar] [CrossRef]
- Cook, S.; Jackson, E.L.; Fisher, M.J.; Baker, D.; Diepeveen, D. Embedding digital agriculture into sustainable Australian food systems: Pathways and pitfalls to value creation. Int. J. Agric. Sustain. 2021, 20, 346–367. [Google Scholar] [CrossRef]
- Savastano, M.; Helena, Z.; Mario, S.; Nicola, C. Assessing the Relationship between Digital Transformation and Sustainable Business Excellence in a Turbulent Scenario. Total Qual. Manag. Bus. Excell. 2022, 1–22. [Google Scholar] [CrossRef]
- Imran, M.; Liu, X.; Wang, R.; Saud, S.; Zhao, Y.; Khan, M.J. The Influence of Digital Economy and Society Index on Sustainable Development Indicators: The Case of European Union. Sustainability 2022, 14, 11130. [Google Scholar] [CrossRef]
- Jiao, S.; Sun, Q. Digital Economic Development and Its Impact on Economic Growth in China: Research Based on the Perspective of Sustainability. Sustainability 2021, 13, 10245. [Google Scholar] [CrossRef]
- Arora, N.K.; Mishra, I. United Nations Sustainable Development Goals 2030 and environmental sustainability: Race against time. J. Environ. Sustain. 2019, 2, 339–342. [Google Scholar] [CrossRef]
- Alkire, S.; Kanagaratnam, U.; Suppa, N. The Global Multidimensional Poverty Index (MPI) 2020; OPHI MPI Methodology Notes; Oxford Poverty and Human Development Initiative, University of Oxford: Oxford, UK, 2020; Volume 51, pp. 1–39. [Google Scholar]
- Bourguignon, F.; Chakravarty, S.R. The measurement of multidimensional poverty. In Poverty, Social Exclusion and Stochastic Dominance; Chakravarty, S.R., Ed.; Springer: Singapore, 2019; pp. 83–107. [Google Scholar] [CrossRef]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Nerini, F.F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [CrossRef] [PubMed]
- Tireuov, K.; Mizanbekova, S.; Kalykova, B.; Nurmanbekova, G. Towards food security and sustainable development through enhancing efficiency of grain industry. Entrep. Sustain. Issues 2018, 6, 446–455. [Google Scholar] [CrossRef]
- Blesh, J.; Hoey, L.; Jones, A.D.; Friedmann, H.; Perfecto, I. Development pathways toward “zero hunger”. World Dev. 2019, 118, 1–14. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Nisbett, N.; Pretty, J.; Robinson, S.; Toulmin, C.; Whiteley, R. The future of the global food system. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2769–2777. [Google Scholar] [CrossRef]
- Purnhagen, K.P.; Clemens, S.; Eriksson, D.; Fresco, L.O.; Tosun, J.; Qaim, M.; Visser, R.G.; Weber, A.P.; Wesseler, J.H.; Zilberman, D. Europe’s Farm to Fork Strategy and Its Commitment to Biotechnology and Organic Farming: Conflicting or Complementary Goals? Trends Plant Sci. 2021, 26, 600–606. [Google Scholar] [CrossRef]
- Kuhn, H. Reducing inequality within and among countries: Realizing SDG 10—A developmental perspective. In Sustainable Development Goals and Human Rights; Kaltenborn, M., Krajewski, M., Kuhn, H., Eds.; Interdisciplinary Studies in Human Rights; Springer: Cham, Switzerland, 2020; Volume 5, pp. 137–153. [Google Scholar] [CrossRef]
- Apel, H. Inequality in development: The 2030 Agenda, SDG 10 and the role of redistribution. Real-World Econ. Rev. 2020, 92, 228–237. Available online: http://www.paecon.net/PAEReview/issue92/Apel92.pdf (accessed on 12 February 2024).
- Banhidi, Z.; Dobos, I.; Nemeslaki, A. What the Overall Digital Economic and Society Index Reveals: A Statistical Analysis of the DESI EU28 Dimensions. Reg. Stat. 2020, 10, 42–62. [Google Scholar] [CrossRef]
- Boyaci-Gunduz, C.P.; Ibrahim, S.A.; Wei, O.C.; Galanakis, C.M. Transformation of the food sector: Security and resilience during the COVID-19 pandemic. Foods 2021, 10, 497. [Google Scholar] [CrossRef] [PubMed]
- Knorr, D.; Augustin, M.A.; Tiwari, B. Advancing the role of food processing for improved integration in sustainable food chains. Front. Nutr. 2020, 7, 34. [Google Scholar] [CrossRef]
- Chapman, J.; Power, A.; Netzel, M.E.; Sultanbawa, Y.; Smyth, H.E.; Truong, V.K.; Cozzolino, D. Challenges and opportunities of the fourth revolution: A brief insight into the future of food. Crit. Rev. Food Sci. Nutr. 2021, 62, 2845–2853. [Google Scholar] [CrossRef]
- Sachs, D.; Lafortune, G.; Fuller, G.; Drumm, E. Sustainable Development Report 2023. Available online: https://dashboards.sdgindex.org/static/downloads/files/SDR2023-data.xlsx (accessed on 12 February 2024).
- European Commission. The Digital Economy and Society Index (DESI). Available online: https://digital-strategy.ec.europa.eu/en/policies/desi (accessed on 12 February 2024).
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.A. Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; Sage: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Garson, D. Partial Least Squares (PLS-SEM). Available online: https://www.smartpls.com/resources/ebook_on_pls-sem.pdf (accessed on 14 February 2024).
- PennState, Eberly College of Science. Agglomerative Hierarchical Clustering. Available online: https://online.stat.psu.edu/stat505/lesson/14/14.4 (accessed on 12 February 2024).
- Ringle, C.M.; Wende, S.; Becker, J.-M. SmartPLS 4. Monheim am Rhein, Germany: SmartPLS. Available online: https://www.smartpls.com (accessed on 12 February 2024).
- Hu, Y.; Li, K.; Meng, A. Agglomerative Hierarchical Clustering Using Ward Linkage. Available online: https://jbhender.github.io/Stats506/F18/GP/Group10.html (accessed on 15 February 2024).
- Cabell, J.F.; Oelofse, M. An indicator framework for assessing agroecosystem resilience. Ecol. Soc. 2012, 17, 78. [Google Scholar] [CrossRef]
- Reuter, T. Understanding Food System Resilience in Bali, Indonesia: A Moral Economy Approach. Cult. Agric. Food Environ. 2019, 41, 4–14. [Google Scholar] [CrossRef]
- Helicke, N.A. Seed exchange networks and food system resilience in the United States. J. Environ. Stud. Sci. 2015, 5, 636–649. [Google Scholar] [CrossRef]
- Calo, A.; McKee, A.; Perrin, C.; Gasselin, P.; McGreevy, S.; Sippel, S.R.; Desmarais, A.A.; Shields, K.; Baysse-Lainé, A.; Magnan, A.; et al. Achieving food system resilience requires challenging dominant land property regimes. Front. Sustain. Food Syst. 2021, 5, 683544. [Google Scholar] [CrossRef]
- Fan, S.; Teng, P.; Chew, P.; Smith, G.; Copeland, L. Food system resilience and COVID-19—Lessons from the Asian experience. Glob. Food Secur. 2021, 28, 100501. [Google Scholar] [CrossRef] [PubMed]
- Coopmans, I.; Bijttebier, J.; Marchand, F.; Mathijs, E.; Messely, L.; Rogge, E.; Sanders, A.; Wauters, E. COVID-19 impacts on Flemish food supply chains and lessons for agri-food system resilience. Agric. Syst. 2021, 190, 103136. [Google Scholar] [CrossRef]
- Zouaghi, F.; Sánchez, M. Has the Global Financial Crisis Had Different Effects on Innovation Performance in the Agri-Food Sector by Comparison to the Rest of the Economy? Trends Food Sci. Technol. 2016, 50, 230–242. [Google Scholar] [CrossRef]
- Ciasullo, M.V.; Montera, R.; Mercuri, F.; Mugova, S. When Digitalization Meets Omnichannel in International Markets: A Case Study from the Agri-Food Industry. Adm. Sci. 2022, 12, 68. [Google Scholar] [CrossRef]
- Serrano, R.; Fernández-Olmos, M.; Pinilla, V. Internationalization and Performance in Agri-Food Firms. Span. J. Agric. Res. 2018, 16, e0107. [Google Scholar] [CrossRef]
- Pivoto, D.; Barham, B.; Waquil, P.D.; Foguesatto, C.R.; Corte, V.F.D.; Zhang, D.; Talamini, E. Factors Influencing the Adoption of Smart Farming by Brazilian Grain Farmers. Int. Food Agribus. Manag. Rev. 2019, 22, 571–588. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Ji, M.X.; Zheng, X.Z. Digital economy, agricultural technology innovation, and agricultural green total factor productivity. Sage Open 2023, 13, 21582440231194388. [Google Scholar] [CrossRef]
- Luthra, S.; Mangla, S.K. Evaluating Challenges to Industry 4.0 Initiatives for Supply Chain Sustainability in Emerging Economies. Process Saf. Environ. Prot. 2018, 117, 168–179. [Google Scholar] [CrossRef]
- Da Silveira, F.; Lermen, F.H.; Amaral, F.G. An Overview of Agriculture 4.0 Development: Systematic Review of Descriptions, Technologies, Barriers, Advantages, and Disadvantages. Comput. Electron. Agric. 2021, 189, 106405. [Google Scholar] [CrossRef]
- Brzezina, N.; Kopainsky, B.; Mathijs, E. Can Organic Farming Reduce Vulnerabilities and Enhance the Resilience of the European Food System? A Critical Assessment Using System Dynamics Structural Thinking Tools. Sustainability 2016, 8, 971. [Google Scholar] [CrossRef]
- Demartini, M.; Pinna, C.; Tonelli, F.; Terzi, S.; Sansone, C.; Testa, C. Food industry digitalization: From challenges and trends to opportunities and solutions. IFAC-PapersOnLine 2018, 51, 1371–1378. [Google Scholar] [CrossRef]
- Zhang, W.E.; Zhang, Y.Y. Enigma of relationship between digital economy and intellectual property rights: Reflections on innovation digital economy represented by cloud computing. EAI Endorsed Trans. Scalable Inf. Syst. 2023, 10, 3946. [Google Scholar] [CrossRef]
- Liu, J.X.; Ren, Y.Y. Can digital inclusive finance ensure food security while achieving low-carbon transformation in agricultural development? Evidence from China. J. Clean. Prod. 2023, 418, 138016. [Google Scholar] [CrossRef]
Variable | Dataset | Measures | Timeframe | Sources |
---|---|---|---|---|
C | Connectivity | Weighted score (0 to 100) | 2017–2022 | [85] |
DPS | Digital Public Services | Weighted score (0 to 100) | 2017–2022 | [85] |
HC | Human Capital | Weighted score (0 to 100) | 2017–2022 | [85] |
IDT | Integration of Digital Technology | Weighted score (0 to 100) | 2017–2022 | [85] |
SDG1 | GOAL 1: No Poverty | Weighted score (0 to 100) | 2017–2022 | [84] |
SDG2 | GOAL 2: Zero Hunger | Weighted score (0 to 100) | 2017–2022 | [84] |
SDG3 | GOAL 3: Good Health and Well-being | Weighted score (0 to 100) | 2017–2022 | [84] |
SDG10 | GOAL 10: Reduced Inequality | Weighted score (0 to 100) | 2017–2022 | [84] |
SDGi | SDG Index Score | Weighted score (0 to 100) | 2017–2022 | [84] |
VIF | |
---|---|
C | 1.316 |
DPS | 1.363 |
HC | 1.382 |
IDT | 1.585 |
SDG1 | 1.306 |
SDG2 | 1.006 |
SDG3 | 1.017 |
SDG10 | 1.302 |
SDGi | 1.000 |
Original Sample | Sample Mean | Standard Deviation | T Statistics | p Values | |
---|---|---|---|---|---|
Digital Economy and Society Index- > SDG Index | 0.016 | 0.009 | 0.117 | 0.140 | 0.889 |
Digital Economy and Society Index- > SDGs related to food | 0.417 | 0.47 | 0.069 | 6.063 | 0 |
VIF | |
---|---|
C | 1.316 |
DPS | 1.363 |
HC | 1.382 |
IDT | 1.585 |
SDG1 | 1.306 |
SDG2 | 1.006 |
SDG3 | 1.017 |
SDG10 | 1.302 |
SDGi | 1.000 |
Original Sample | Sample Mean | Standard Deviation | T Statistics | p Values | |
---|---|---|---|---|---|
Digital Economy and Society Index → GOAL 1: No Poverty | 0.229 | 0.23 | 0.11 | 2.085 | 0.038 |
Digital Economy and Society Index → GOAL 2: Zero Hunger | 0.019 | 0.022 | 0.14 | 0.134 | 0.893 |
Digital Economy and Society Index → GOAL 3: Good Health and Well-being | 0.257 | 0.273 | 0.102 | 2.524 | 0.012 |
Digital Economy and Society Index → GOAL 10: Reduced Inequality | 0.341 | 0.342 | 0.108 | 3.165 | 0.002 |
Digital Economy and Society Index → SDG Index | 0.036 | 0.023 | 0.104 | 0.347 | 0.729 |
C | DPS | HC | IDT | SDG1 | SDG2 | SDG3 | SDG10 | |
---|---|---|---|---|---|---|---|---|
France | 16.05 | 16.84 | 12.47 | 7.98 | 99.7 | 72.4 | 93.2 | 87.5 |
Germany | 16.83 | 15.85 | 11.24 | 8.96 | 99.5 | 72.4 | 93.0 | 88.1 |
Greece | 12.39 | 9.85 | 10.03 | 6.66 | 99.2 | 66.6 | 90.3 | 84.6 |
Italy | 15.31 | 14.62 | 9.14 | 10.19 | 97.5 | 69.8 | 93.9 | 77.9 |
Portugal | 12.90 | 16.98 | 11.49 | 9.40 | 99.9 | 64.3 | 92.1 | 84.4 |
Spain | 17.43 | 20.88 | 12.83 | 9.63 | 98.7 | 65.4 | 94.2 | 81.4 |
Luxembourg | 14.83 | 20.84 | 14.44 | 8.74 | 100.0 | 58.9 | 96.5 | 84.0 |
Ireland | 15.38 | 20.86 | 15.66 | 10.83 | 99.9 | 67.7 | 94.4 | 90.3 |
Netherlands | 17.53 | 21.05 | 15.78 | 13.02 | 99.3 | 67.7 | 95.7 | 89.8 |
Estonia | 11.11 | 22.79 | 13.49 | 9.12 | 100.0 | 63.2 | 89.5 | 89.1 |
Malta | 13.25 | 21.45 | 14.15 | 12.03 | 99.8 | 66.3 | 91.2 | 86.6 |
Cyprus | 14.69 | 14.38 | 10.44 | 8.84 | 99.9 | 53.7 | 91.1 | 85.5 |
Cluster A mean | 14.81 | 18.03 | 12.60 | 9.62 | 99.46 | 65.68 | 92.92 | 85.77 |
Hungary | 14.40 | 14.35 | 9.61 | 5.40 | 98.9 | 70.3 | 83.6 | 92.7 |
Poland | 11.63 | 13.94 | 9.26 | 5.72 | 99.0 | 67.5 | 85.2 | 93.4 |
Croatia | 12.01 | 13.39 | 12.96 | 9.18 | 100.0 | 74.3 | 86.4 | 94.2 |
Slovakia | 12.46 | 13.00 | 11.03 | 6.96 | 99.2 | 72.3 | 87.8 | 100.0 |
Finland | 15.14 | 21.84 | 17.85 | 14.77 | 99.6 | 60.9 | 95.4 | 98.5 |
Sweden | 15.06 | 20.61 | 15.49 | 14.06 | 98.9 | 63.1 | 96.9 | 95.0 |
Czechia | 13.17 | 16.11 | 11.40 | 8.46 | 99.9 | 62.1 | 90.2 | 100.0 |
Slovenia | 14.97 | 17.37 | 11.06 | 9.96 | 99.4 | 66.6 | 92.4 | 100.0 |
Austria | 14.12 | 18.03 | 12.74 | 9.79 | 99.5 | 73.1 | 92.5 | 94.6 |
Belgium | 9.96 | 16.19 | 12.17 | 11.99 | 99.5 | 71.2 | 93.4 | 100.0 |
Denmark | 19.27 | 20.77 | 14.80 | 14.50 | 99.2 | 71.0 | 95.4 | 98.2 |
Cluster B mean | 13.84 | 16.87 | 12.58 | 10.07 | 99.36 | 68.40 | 90.82 | 96.96 |
Latvia | 12.52 | 19.70 | 11.03 | 6.46 | 100.0 | 64.2 | 84.3 | 72.6 |
Lithuania | 12.34 | 20.45 | 10.61 | 9.31 | 100.0 | 59.6 | 86.1 | 70.9 |
Romania | 13.81 | 5.26 | 7.73 | 3.79 | 98.6 | 72.9 | 80.6 | 77.2 |
Bulgaria | 12.68 | 12.97 | 8.15 | 3.88 | 100.0 | 68.2 | 79.3 | 51.0 |
Cluster C mean | 12.83 | 14.60 | 9.38 | 5.86 | 99.63 | 66.25 | 82.56 | 67.95 |
EU mean | 14.12 | 17.05 | 12.11 | 9.24 | 99.45 | 66.87 | 90.53 | 87.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vărzaru, A.A. Unveiling Digital Transformation: A Catalyst for Enhancing Food Security and Achieving Sustainable Development Goals at the European Union Level. Foods 2024, 13, 1226. https://doi.org/10.3390/foods13081226
Vărzaru AA. Unveiling Digital Transformation: A Catalyst for Enhancing Food Security and Achieving Sustainable Development Goals at the European Union Level. Foods. 2024; 13(8):1226. https://doi.org/10.3390/foods13081226
Chicago/Turabian StyleVărzaru, Anca Antoaneta. 2024. "Unveiling Digital Transformation: A Catalyst for Enhancing Food Security and Achieving Sustainable Development Goals at the European Union Level" Foods 13, no. 8: 1226. https://doi.org/10.3390/foods13081226
APA StyleVărzaru, A. A. (2024). Unveiling Digital Transformation: A Catalyst for Enhancing Food Security and Achieving Sustainable Development Goals at the European Union Level. Foods, 13(8), 1226. https://doi.org/10.3390/foods13081226