Light-Emitting-Diode-Induced Fluorescence from Organic Dyes for Application in Excitation–Emission Fluorescence Spectroscopy for Food System Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fluorescent Medium
2.2. Exciting and Receiving Components
2.3. Experimental Set-Up
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weber, A.; Lednev, I.K. Brightness of Blood: Review of Fluorescence Spectroscopy Analysis of Bloodstains. Front. Anal. Sci. 2022, 2, 906532. [Google Scholar] [CrossRef]
- Tadini, A.M.; Xavier, A.A.P.; Milori, D.M.B.P.; Oliveira, P.P.A.; Pezzopane, J.R.; Bernardi, A.C.C.; Martin-Neto, L. Evaluation of Soil Organic Matter from Integrated Production Systems Using Laser-Induced Fluorescence Spectroscopy. Soil Tillage Res. 2021, 211, 105001. [Google Scholar] [CrossRef]
- Sørensen, D.H.; Christensen, N.P.A.; Skibsted, E.; Rantanen, J.; Rinnan, A. In-line Fluorescence Spectroscopy for Quantification of Low Amount of Active Pharmaceutical Ingredient. J. Pharm. Sci. 2022, 111, 2406–2410. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.H.S.; Delgado, G.G.; da Costa, T.S.; Tasic, L. Applications of Fluorescence Spectroscopy in Protein Conformational Changes and Intermolecular Contacts. BBA Adv. 2023, 3, 100091. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, H.; Wang, J.; Chen, W.; Zhao, M. Single-Molecule Fluorescence Techniques for Membrane Protein Dynamics Analysis. Appl. Spectrosc. 2021, 75, 491–505. [Google Scholar] [PubMed]
- Raghushaker, C.R.; D’Souza, M.; Urala, A.S.; Ray, S.; Mahato, K.K. An Overview of Conventional and Fluorescence Spectroscopy Tools in Oral Cancer Diagnosis. Lasers Dent. Sci. 2020, 4, 167–179. [Google Scholar] [CrossRef]
- Kumar, K.; Tarai, M.; Mishra, A.K. Unconventional Steady-State Fluorescence Spectroscopy as an Analytical Technique for Analyses of Complex-Multifluorophoric Mixtures. Trends Anal. Chem. 2017, 97, 216–243. [Google Scholar] [CrossRef]
- Sampaio, G.R.; Guizellini, G.M.; da Silva, S.A.; de Almeida, A.P.; Pinaffi-Langley, A.C.C.; Rogero, M.M.; de Camargo, A.C.; Torres, E. Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods And Strategies to Reduce Their Formation. Int. J. Mol. Sci. 2021, 22, 6010. [Google Scholar] [CrossRef] [PubMed]
- Domingo, J.L.; Nadal, M. Human Dietary Exposure to Polycyclic Atomatic Hydrocarbons: A Review of the Scientific Literature. Food Chem. Toxicol. 2015, 86, 144–153. [Google Scholar] [CrossRef]
- Rengarajan, T.; Rajendran, P.; Nandakumar, N.; Lokeshkumar, B.; Rajendran, P.; Nishigaki, I. Exposure to Polycyclic Aromatic Hydrocarbons with Special Focus on Cancer. Asian Pac. J. Trop. Biomed. 2015, 5, 1691–2221. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, S.; Gong, G. Trends of Research on Polycyclic Aromatic Hydrocarbons in Food: A 20-year Perspective from 1997 to 2007. Trends Food Sci Technol. 2019, 83, 86–98. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemistry. Available online: www.eoma.aoac.org (accessed on 10 March 2024).
- Sikorska, E.; Khmelinskii, I.; Sikorski, M. Fluorescence Spectroscopy and Imaging Instruments for Food Quality Evaluation. In Evaluation Technologies for Food Quality; Zhong, J., Wang, X., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 491–533. [Google Scholar] [CrossRef]
- Radotic, K.; Stankovic, M.; Bartolic, D.; Natic, M. Intrinsic Fluorescence Markers for Food Characteristics, Shelf Life, and Safety Estimation: Advanced Analytical Approach. Foods 2023, 12, 862–872. [Google Scholar]
- Lia, F.; Formosa, J.P.; Zammit-Mangion, M.; Farrugia, C. The First Identification of the Uniqueness and Authentication of Maltese Extra Virgin Olive Oil Using 3D-Fluorescence Spectroscopy Coupled with Multi-Way Data Analysis. Foods 2020, 9, 498. [Google Scholar] [CrossRef]
- Botosoa, E.P.; Karoui, R. 3D Front Face Fluorescence Spectroscopy as a Tool for Monitoring the Oxidation Level of Edible Vegetable Oil during Storage at 60 °C. LWT 2022, 154, 1–8. [Google Scholar] [CrossRef]
- Dramicanin, T.; Lenhardt Ackovic, L.; Zekovic, I.; Dramicanin, M.D. Detection of Adulterated Honey by Fluorescence Excitation-Emission Matrices. J. Spectrosc. 2018, 2018, 8395212. [Google Scholar] [CrossRef]
- Sciscenko, I.; Arques, A.; Mico, P.; Mora, M.; García-Ballesteros, S. Emerging Applications of EEM-PARAFAC for Water Treatment: A Concise Review. Chem. Eng. J. Adv. 2022, 10, 100286. [Google Scholar] [CrossRef]
- Rossi, G.; Durek, J.; Ojha, S.; Schlüter, O.K. Fluorescence-Based Characterisation of Selected Edible Insect Species: Excitation Emission Matrix (EEM) and Parallel Factor (PARAFAC) Analysis. Curr. Res. Food Sci. 2021, 4, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Samokhvalov, A.V.; Safenkova, I.V.; Zherdev, A.V.; Dzantiev, B.B. The Registration of Aptamereligand (Ochratoxin A) Interactions Based on Ligand Fluorescence Changes. Biochem. Biophys. Res. Commun. 2018, 505, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Bartolić, D.; Mutavdžić, D.; Carstensen, J.M.; Stanković, S.; Nikolić, M.; Krstović, S.; Radotić, K. Fluorescence Spectroscopy and Multispectral Imaging for Fingerprinting of Aflatoxin-B1 Contaminated (Zea mays L.) Seeds: A Preliminary Study. Sci. Rep. 2022, 12, 4849. [Google Scholar] [CrossRef]
- Xagoraris, M.; Revelou, P.-K.; Alissandrakis, E.; Tarantilis, P.A.; Pappas, C.S. The Use of Right Angle Fluorescence Spectroscopy to Distinguish the Botanical Origin of Greek Common Honey Varieties. Appl. Sci. 2021, 11, 4047. [Google Scholar] [CrossRef]
- Hao, S.; Yuan, J.; Wu, Q.; Liu, X.; Cui, J.; Xuan, H. Rapid Identification of Corn Sugar Syrup Adulteration in Wolfberry Honey Based on Fluorescence Spectroscopy Coupled with Chemometrics. Foods 2023, 12, 2309. [Google Scholar] [CrossRef] [PubMed]
- Airado-Rodriguez, D.; Galeano-Diaz, T.; Duran-Meras, I.; Wold, J.P. Usefulness of Fluorescence Excitation-Emission Matrices in Combination with PARAFAC, as Fingerprints of Red Wines. J. Agric. Food Chem. 2009, 57, 1711–1720. [Google Scholar] [CrossRef] [PubMed]
- Parri, E.; Santinami, G.; Domenici, V. Front-Face Fluorescence of Honey of Different Botanic Origin: A Case Study from Tuscany (Italy). Appl. Sci. 2020, 10, 1776. [Google Scholar] [CrossRef]
- Strelec, I.; Brodar, L.; Flanjak, I.; Kenjerić, F.Č.; Kovač, T.; Kenjerić, D.Č.; Primorac, L. Characterization of Croatian Honeys by Right-Angle Fluorescence Spectroscopy and Chemometrics. Food Anal. Methods 2018, 11, 824–838. [Google Scholar] [CrossRef]
- Quintanilla-Casas, B.; Rinnan, Å.; Romero, A.; Guardiola, F.; Tres, A.; Vichi, S.; Bro, R. Using Fluorescence Excitation-Emission Matrices to Predict Bitterness and Pungency of Virgin Olive Oil: A Feasibility Study. Food Chem. 2022, 395, 133602. [Google Scholar] [CrossRef] [PubMed]
- Martín-Tornero, E.; Fernández, A.; Durán-Merás, I.; Martín-Vertedor, D. Fluorescence Monitoring Oxidation of Extra Virgin Olive Oil Packed in Different Containers. Molecules 2022, 27, 7254. [Google Scholar] [CrossRef]
- Martín-Tornero, E.; Fernández, A.; Pérez-Rodriguez, J.M.; Durán-Merás, I.; Prieto, M.H.; Martín-Vertedor, D. Non-destructive Fluorescence Spectroscopy as a Tool for Discriminating between Olive Oils According to Agronomic Practices and for Assessing Quality Parameters. Food Anal. Methods 2022, 15, 253–265. [Google Scholar] [CrossRef]
- Mu, T.; Chen, S.; Zhang, Y.; Chen, H.; Gu, P.; Meng, F. Portable Detection and Quantification of Olive Oil Adulteration by 473-nm Laser-Induced Fluorescence. Food Anal. Methods 2016, 9, 275–279. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, T.; Chen, H.; Chen, S.; Guo, P.; Li, Y. Excitation Wavelength Analysis of a Laser-Induced Fluorescence Technique for Quantification of Extra Virgin Olive Oil Adulteration. Appl. Opt. 2019, 58, 4484–4491. [Google Scholar] [CrossRef]
- Hart, S.J.; JiJi, R.D. Light Emitting Diode Excitation Emission Matrix Fluorescence Spectroscopy. Analyst 2002, 127, 1693–1699. [Google Scholar] [CrossRef]
- Omwange, K.A.; Al Riza, D.F.; Saito, Y.; Suzuki, T.; Ogawa, Y.; Shiraga, K.; Giametta, F.; Kondo, N. Potential of Front Face Fluorescence Spectroscopy and Fluorescence Imaging in Discriminating Adulterated Extra-Virgin Olive Oil with Virgin Olive Oil. Food Control 2021, 124, 107906. [Google Scholar] [CrossRef]
- Venturini, F.; Sperti, M.; Michelucci, U.; Herzig, I.; Baumgartner, M.; Caballero, J.P.; Jimenez, A.; Deriu, M.A. Exploration of Spanish Olive Oil Quality with a Miniaturized Low-Cost Fluorescence Sensor and Machine Learning Techniques. Foods 2021, 10, 1010. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Y.; Dai, Z.; Cui, L.; Lin, H.; Li, Z.; Wu, K.; Liu, G. Quantitative Detection of Extra Virgin Olive Oil Adulteration, as Opposed to Peanut and Soybean Oil, Employing LED-Induced Fluorescence Spectroscopy. Sensors 2022, 22, 1227. [Google Scholar] [CrossRef] [PubMed]
- Minkova, S.; Vladev, V.; Hristova-Aqakumova, N.; Gabrova, R.; Nikolova, K.; Evtimov, T.; Hadjimitova, V. Comparative Study of the Characteristics of Red Bulgarian and French Wines Using Applied Photonics Methods. In Proceedings of the International Conference and School on Quantum Electronics “Laser Physics And Applications”: ICSQE 2018, Nessebar, Bulgaria, 17–21 September 2018; SPIE: Bellingham, WA, USA, 2019; Volume 11047, pp. 142–147. [Google Scholar] [CrossRef]
- Nikolova, K.; Tsankova, D.; Evtimov, T. Determination of The Optical Properties of Bulgarian Honey. In Proceedings of the 9th International Physics Conference Of The Balkan Physical Union (Bpu-9), Istanbul, Turkey, 24–27 August 2015; AIP Publishing: College Park, MD, USA, 2016; Volume 1722, p. 290009. [Google Scholar] [CrossRef]
- Nikolova, K.; Zlatanov, M.; Eftimov, T.; Brabant, D.; Yosifova, S.; Halil, E.; Antova, G.; Angelova, M. Fluoresence Spectra From Vegetable Oils Using Violet and Blue Ld/Led Exitation and An Optical Fiber Spectrometer. Int. J. Food Prop. 2014, 17, 1211–1223. [Google Scholar] [CrossRef]
- Nikolova, K.; Eftimov, T.; Perifanova, M.; Brabant, D. Quick Fluorescence Method for The Distinguishing of Vegetable Oils. J. Food Sci. Eng. 2012, 2, 674–684. [Google Scholar] [CrossRef]
- Vladev, V.; Eftimov, T. Fiberized Fluorescent Dye Microtubes. In Proceeding of the 17th International School on Quantum Electronics: Laser Physics and Applications, Nessebar, Bulgaria, 24–28 September 2012; SPIE: Bellingham, WA, USA, 2013; Volume 8770, p. 87700V. [Google Scholar] [CrossRef]
- Vladev, V.; Eftimov, T.; Bock, W. Broad-Band Fluorescent All-Fiber Source Based on Microstructured Optical Fibers. Photonics Lett. Pol. 2015, 7, 41–43. [Google Scholar] [CrossRef]
- Vladev, V.; Eftimov, T.; Bock, W. Fluorescent All-Fiber Light Source Based on Micro-Capillaries and on Microstructured Optical Fibers Terminated With a Microbulb. Opt. Commun. 2015, 356, 34–40. [Google Scholar] [CrossRef]
- Vladev, V.; Eftimov, T.; Nedev, S. Excitation Efficiency of a Side-Pumped Fiberized Fluorescent Dye Microcapillary. Opt. Fib. Tech. 2016, 28, 28–37. [Google Scholar] [CrossRef]
- Vladev, V.; Todorova, M.; Slavchev, V.; Brazkova, M.; Belina, E.; Bozhkov, S.; Radusheva, P. A New Basic Structure Suitable for a Fully Integrated All-Fiberoptic Stimulated Emission Dye Source. J. Phys. Conf. Ser. 2021, 1859, 012059. [Google Scholar] [CrossRef]
- Vladev, V.P.; Todorova, M.M.; Brazkova, M.S.; Bozhkov, S.I. Diode-Pumped All-Fiber-Optic Liquid Dye Laser. Laser Phys. Lett. 2021, 18, 115103. [Google Scholar] [CrossRef]
- Vladev, V.; Eftimov, T.; Bozhkov, S.; Nikolova, K.; Minkova, S.; Blazheva, D.; Angelova, G.; Brazkova, M. Fiber-Coupled Fluorescence Light Source Suitable for Spectroscopic Applications. Photonics Lett. Pol. 2022, 14, 65–67. [Google Scholar] [CrossRef]
- Poh, A.H.; Jamaludin, M.F.; Fadzallah, I.A.; Ibrahim, N.M.J.N.; Yusof, F.; Adikan, F.; Moghavvemi, M. Diffuse Reflectance Spectroscopic Analysis of Barium Sulfate as a Reflection Sstandard within 173–2500 nm: From Pure to Sintered Form. J. Near Infrared Spectrosc. 2019, 27, 393–401. [Google Scholar] [CrossRef]
- Hadi, A.G.; Lafta, F.; Hashim, A.; Hakim, H.; Al-Zuheiry, A.I.O.; Salman, S.R.; Ahmed, H. Study the Effect of Barium Sulphate on Optical Properties of Polyvinyl Alcohol (PVA). Univers. J. Mater. Sci. 2013, 1, 52–55. [Google Scholar] [CrossRef]
- OMLC. Coumarin 1. Available online: https://omlc.org/spectra/PhotochemCAD/html/045.html (accessed on 18 March 2024).
- Hernández-Sánchez, N.; Lleó, L.; Diezma, B.; Correa, E.C.; Sastre, B.; Roger, J.-M. Multiblock Analysis Applied to Fluorescence and Absorbance Spectra to Estimate Total Polyphenol Content in Extra Virgin Olive Oil. Foods 2021, 10, 2556. [Google Scholar] [CrossRef]
- Lastra-Mejias, M.; Izquierdo, M.; Torreblanca-Zanca, A.; Aroca-Santos, R.; Cancilla, J.C.; Sepulveda-Diaz, J.E.; Torrecilla, J.S. Cognitive Fluorescence Sensing to Monitor The Storage Conditions and Locate Adulterations of Extra Virgin Olive Oil. Food Control 2019, 103, 48–58. [Google Scholar] [CrossRef]
- Baltazar, P.; Hernández-Sánchez, N.; Diezma, B.; Lleó, L. Development of Rapid Extra Virgin Olive Oil Quality Assessment Procedures Based on Spectroscopic Techniques. Agronomy 2020, 10, 41. [Google Scholar] [CrossRef]
- Ansar, A.; Ahmad, N.; Albqmi, M.; Saleem, M.; Ali, H. Thermal Effects on The Quality Parameters of Extra Virgin Olive Oil Using Fluorescence Spectroscopy. J. Fluoresc. 2023, 33, 1749–1760. [Google Scholar] [CrossRef]
- Kongbonga, G.Y.M.; Hassine, K.B.; Ghalila, H.; Malouche, D. Front-Face Fluorescence Using UV-LED Coupled to USB Spectrometer to Discriminate between Virgin Olive Oil from Two Cultivars. Food Nutr. Sci. 2019, 10, 119–127. [Google Scholar] [CrossRef]
- Mishra, P.; Lleó, L.; Cuadrado, T.; Ruiz-Altisent, M.; Hernández-Sánchez, N. Monitoring Oxidation Changes in Commercial Extra Virgin Olive Oils with Fluorescence Spectroscopy-Based Prototype. Eur. Food Res. Technol. 2018, 244, 565–575. [Google Scholar] [CrossRef]
- Kongbonga, Y.M.; Ghalila, H.; Majdi, Y.; Feudjio, W.M.; Lakhdar, Z.B. Investigation of Heat-Induced Degradation of Virgin Olive Oil Using Front Face Fluorescence Spectroscopy and Chemometric Analysis. J. Am. Oil Chem. Soc. 2015, 92, 1399–1404. [Google Scholar] [CrossRef]
- OMLC. Coumarin 6. Available online: https://omlc.org/spectra/PhotochemCAD/html/013.html (accessed on 18 March 2024).
- OMLC. Perylene. Available online: https://omlc.org/spectra/PhotochemCAD/html/023.html (accessed on 18 March 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vladev, V.; Brazkova, M.; Bozhkov, S.; Angelova, G.; Blazheva, D.; Minkova, S.; Nikolova, K.; Eftimov, T. Light-Emitting-Diode-Induced Fluorescence from Organic Dyes for Application in Excitation–Emission Fluorescence Spectroscopy for Food System Analysis. Foods 2024, 13, 1329. https://doi.org/10.3390/foods13091329
Vladev V, Brazkova M, Bozhkov S, Angelova G, Blazheva D, Minkova S, Nikolova K, Eftimov T. Light-Emitting-Diode-Induced Fluorescence from Organic Dyes for Application in Excitation–Emission Fluorescence Spectroscopy for Food System Analysis. Foods. 2024; 13(9):1329. https://doi.org/10.3390/foods13091329
Chicago/Turabian StyleVladev, Veselin, Mariya Brazkova, Stefan Bozhkov, Galena Angelova, Denica Blazheva, Stefka Minkova, Krastena Nikolova, and Tinko Eftimov. 2024. "Light-Emitting-Diode-Induced Fluorescence from Organic Dyes for Application in Excitation–Emission Fluorescence Spectroscopy for Food System Analysis" Foods 13, no. 9: 1329. https://doi.org/10.3390/foods13091329
APA StyleVladev, V., Brazkova, M., Bozhkov, S., Angelova, G., Blazheva, D., Minkova, S., Nikolova, K., & Eftimov, T. (2024). Light-Emitting-Diode-Induced Fluorescence from Organic Dyes for Application in Excitation–Emission Fluorescence Spectroscopy for Food System Analysis. Foods, 13(9), 1329. https://doi.org/10.3390/foods13091329