Comparing the Structural and Physicochemical Properties of Highland Barley β-Glucan from Different Sources: A Focus on Color
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pretreatment of HB Samples
2.3. Extraction and Quantification of β-Glucan
2.4. Purity, Moisture Content (MC) and Color Variation in Β-Glucan
2.5. Molecular Structure Analysis
2.5.1. Monosaccharide Composition
2.5.2. Methylation Analysis
2.5.3. Molecular Weight Determination
2.5.4. XRD
2.5.5. FT-IR
2.6. Particle Morphology Analysis
2.6.1. SEM
2.6.2. Particle Size Distribution Determination
2.7. Physicochemical Properties
2.7.1. RVA
2.7.2. Rheological Measurements
2.7.3. TGA
2.8. Statistical Analyses
3. Results and Discussion
3.1. Characteristics of β-Glucan
3.2. Molecular Structure Analysis
3.2.1. Monosaccharide Composition and Methylation Analysis
3.2.2. Molecular Weight Distribution Analysis
3.2.3. XRD Analysis
3.2.4. FT-IR Analysis
3.3. Particle Morphology Analysis of β-Glucan
3.3.1. Morphology Observation
3.3.2. Particle Size Distribution Determination
3.4. Physicochemical Properties
3.4.1. Rapid Viscosity Analysis (RVA)
3.4.2. Rheological Measurements
3.4.3. Thermal Property Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Subramanian, H.; Krishnan, M.; Mahalingam, A. Photocatalytic dye degradation and photoexcited anti-microbial activities of green zinc oxide nanoparticles synthesized via Sargassum muticum extracts. RSC Adv. 2022, 12, 985–997. [Google Scholar] [CrossRef]
- Sujithra, S.; Arthanareeswaran, G.; Ismail, A.F.; Taweepreda, W. Isolation, purification and characterization of β-glucan from cereals-a review. Int. J. Biol. Macromol. 2024, 256, 128255. [Google Scholar] [CrossRef] [PubMed]
- Henrion, M.; Francey, C.; Lê, K.A.; Lamothe, L. Cereal B-glucans: The impact of processing and how it affects physiological responses. Nutrients 2019, 11, 1729. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, G.; Sowrirajan, S.; Joseph, B. Extraction and isolation of β-glucan from grain sources-A review. J. Food Sci. 2017, 82, 1535–1545. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Subirà, M.; Romero, M.P.; Puig, E.; Macià, A.; Romagosa, I.; Moralejo, M. Purple, high β-glucan, hulless barley as valuable ingredient for functional food. LWT-Food. Sci. Technol. 2020, 131, 109582. [Google Scholar] [CrossRef]
- Izydorczyk, M.S.; Macri, L.J.; MacGregor, A.W. Structure and physicochemical properties of barley non-starch polysaccharides—I. Water-extractable β-glucans and arabinoxylans. Carbohydr. Polym. 1998, 35, 249–258. [Google Scholar] [CrossRef]
- Manthey, F.A.; Hareland, G.A.; Huseby, D.J. Soluble and insoluble dietary fiber content and composition in oat. Cereal Chem. 1999, 76, 417–420. [Google Scholar] [CrossRef]
- Ji, X.L.; Cheng, Y.Q.; Tian, J.Y.; Zhang, S.Q.; Jing, Y.S.; Shi, M.M. Structural characterization of polysaccharide from jujube (Ziziphus jujuba Mill.) fruit. Chem. Biol. Technol. Agric. 2021, 8, 1–7. [Google Scholar] [CrossRef]
- Rahar, S.; Swami, G.; Nagpal, N.; Nagpal, M.A.; Singh, G.S. Preparation, characterization, and biological properties of β-glucans. J. Adv. Pharm. Technol. Res. 2011, 2, 94–103. [Google Scholar] [CrossRef]
- Ji, X.L.; Guo, J.H.; Tian, J.Y.; Ma, K.; Liu, Y.Q. Research progress on degradation methods and product properties of plant polysaccharides. J. Light Ind. 2023, 38, 55–62. [Google Scholar]
- Yuan, C.; Hu, R.; He, L.; Hu, J.; Liu, H. Extraction and prebiotic potential of β-glucan from highland barley and its application in probiotic microcapsules. Food Hydrocoll. 2023, 139, 108520. [Google Scholar] [CrossRef]
- Cao, H.; Li, R.; Shi, M.; Song, H.; Li, S.; Guan, X. Promising effects of β-glucans on gelation in protein-based products: A review. Int. J. Biol. Macromol. 2023, 256, 127574. [Google Scholar] [CrossRef] [PubMed]
- Szpicer, A.; Onopiuk, A.; Półtorak, A.; Wierzbicka, A. Influence of oat β-glucan and canola oil addition on the physico-chemical properties of low-fat beef burgers. J. Food Process. Preserv. 2018, 42, e13785. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Zhou, W.J.; Tu, Z.X.; Yang, S.; Xia, T.L.; Chen, Z.X.; Du, Y. Intelligent films based on highland barley β-glucan/highland barley prolamin incorporated with black rice bran anthocyanins. Food Packag. Shelf 2023, 39, 101146. [Google Scholar] [CrossRef]
- Yuan, T.; Zhao, S.; Yang, J.; Niu, M.; Xu, Y. Structural characteristics of β-glucans from various sources and their influences on the short-and long-term starch retrogradation in wheat flour. Int. J. Biol. Macromol. 2024, 264, 130561. [Google Scholar] [CrossRef] [PubMed]
- Obadi, M.; Sun, J.; Xu, B. Highland barley: Chemical composition, bioactive compounds, health effects, and applications. Food Res. Int. 2021, 140, 110065. [Google Scholar] [CrossRef]
- Li, Y.; You, M.L.; Liu, H.B.; Liu, X. Comparison of distribution and physicochemical properties of β-glucan extracted from different fractions of highland barley grains. Int. J. Biol. Macromol. 2021, 189, 91–99. [Google Scholar] [CrossRef]
- Wang, C.; Tian, X.Y.; Fang, S.J.; Ren, C.J.; Huang, C.S.; Yuan, G.Q.; Zeng, X.X. Brewing characteristics, physicochemical constituents, and antioxidant activity of the infusions of colored highland barley roasted at different times. J. Cereal Sci. 2023, 110, 103639. [Google Scholar] [CrossRef]
- Bai, Y.P.; Zhou, H.M.; Zhu, K.R.; Li, Q. Effect of thermal processing on the molecular, structural, and antioxidant characteristics of highland barley β-glucan. Carbohydr. Polym. 2021, 271, 118416. [Google Scholar] [CrossRef]
- Kupetz, M.; Sacher, B.; Becker, T. Impact of flavouring substances on the aggregation behaviour of dissolved barley β-glucans in a model beer. Carbohydr. Polym. 2016, 143, 204–211. [Google Scholar] [CrossRef]
- Gao, W.; Zhu, J.; Kang, X.M.; Wang, B.; Liu, P.F.; Cui, B.; Abd El-Aty, A.M. Development and characterization of starch films prepared by extrusion blowing: The synergistic plasticizing effect of water and glycerol. LWT-Food. Sci. Technol. 2021, 148, 111820. [Google Scholar] [CrossRef]
- Li, L.Y.; Wang, Y.X.; Zhang, T.; Zhang, J.F.; Pan, M.; Huang, X.J.; Yin, J.Y.; Nie, S.P. Structural characteristics and rheological properties of alkali-extracted arabinoxylan from dehulled barley kernel. Carbohydr. Polym. 2020, 249, 116813. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Nie, S.P.; Peng, F.; Yang, Y.D.; Xu, B.J. A narrative review on conformational structure characterization of natural polysaccharides. Food Front. 2022, 3, 631–640. [Google Scholar] [CrossRef]
- Gao, W.; Zhu, J.; Liu, P.F.; Cui, B.; Abd El-Aty, A.M. Preparation and characterization of octenyl succinylated starch microgels via a water-in-oil (W/O) inverse microemulsion process for loading and releasing epigallocatechin gallate. Food Chem. 2021, 355, 129661. [Google Scholar] [CrossRef] [PubMed]
- Karimi, R.; Azizi, M.H.; Xu, Q. Effect of different enzymatic extractions on molecular weight distribution, rheological and microstructural properties of barley bran β-glucan. Int. J. Biol. Macromol. 2019, 126, 298–309. [Google Scholar] [CrossRef]
- Gao, W.; Sui, J.; Yu, B.; Liu, P.F.; Cui, B. Effect of shell separation pretreatment on the physicochemical properties of octenyl succinic anhydride-modified starch. Int. J. Biol. Macromol. 2022, 221, 1–7. [Google Scholar] [CrossRef]
- Iqbal, S.; Wu, P.; Kirk, T.V.; Chen, X.D. Amylose content modulates maize starch hydrolysis, rheology, and microstructure during simulated gastrointestinal digestion. Food Hydrocoll. 2021, 110, 106171. [Google Scholar] [CrossRef]
- Ma, H.; Huang, Q.; Ren, J.; Zheng, Z.; Xiao, Y. Structure characteristics, solution properties and morphology of oxidized yeast β-glucans derived from controlled TEMPO-mediated oxidation. Carbohydr. Polym. 2020, 250, 116924. [Google Scholar] [CrossRef]
- Xu, S.; Xu, X.; Zhang, L. Effect of heating on chain conformation of branched β-glucan in water. J. Phys. Chem. B 2013, 117, 8370–8377. [Google Scholar] [CrossRef] [PubMed]
- Jian, W.J.; Tu, L.Y.; Wu, L.L.; Xiong, H.J.; Pang, J.; Sun, Y.M. Physicochemical properties and cellular protection against oxidation of degraded Konjac glucomannan prepared by γ-irradiation. Food Chem. 2017, 231, 42–50. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, H.M.; Huang, Z.H.; Zhao, R.Y. Different aggregation states of barley β-glucan molecules affects their solution behavior: A comparative analysis. Food Hydrocoll. 2020, 101, 105543. [Google Scholar] [CrossRef]
- Li, Q.; Liu, J.; Zhai, H.S.; Zhang, Z.H.; Xie, R.; Xiao, F.T.; Zeng, X.Q.; Zhang, Y.H.; Li, Z.Y.; Pan, Z.F. Extraction and characterization of waxy and normal barley β-glucans and their effects on waxy and normal barley starch pasting and degradation properties and mash filtration rate. Carbohydr. Polym. 2023, 302, 120405. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.F.; Wu, C.H.; Zhu, T.Y.; Peng, S.; Xu, S.W.; Hu, Y.L.; Liu, Z.G.; Yang, Y.; Wang, D.Y. Structure of a Pueraria root polysaccharide and its immunoregulatory activity on T and B lymphocytes, macrophages, and immunosuppressive mice. Int. J. Biol. Macromol. 2023, 230, 123386. [Google Scholar] [CrossRef]
- Pérez-Bassart, Z.; Falcó, I.; Martínez-Sanz, M.; Martínez-Abad, A.; Sánchez, G.; López-Rubio, A.; Fabra, M.J. Antiviral and technological properties of β-glucan-rich aqueous fractions from Pleurotus ostreatus waste biomass. Food Hydrocoll. 2024, 146, 109308. [Google Scholar] [CrossRef]
- Gao, W.; Dong, H.Z.; Hou, H.X.; Zhang, H. Effects of clays with various hydrophilicities on properties of starch-clay nanocomposites by film blowing. Carbohydr. Polym. 2012, 88, 321–328. [Google Scholar] [CrossRef]
- Liu, H.B.; Li, Y.; You, M.L.; Liu, X. Comparison of physicochemical properties of β-glucans extracted from hull-less barley bran by different methods. Int. J. Biol. Macromol. 2021, 182, 1192–1199. [Google Scholar] [CrossRef]
- Dong, J.L.; Yang, M.; Zhu, Y.Y.; Shen, R.L.; Zhang, K.Y. Comparative study of thermal processing on the physicochemical properties and prebiotic effects of the oat β-glucan by in vitro human fecal microbiota fermentation. Food Res. Int. 2020, 138, 109818. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Gani, A.; Shah, A.; Gani, A.; Masoodi, F.A. Germination and microwave processing of barley (Hordeum vulgare L.) changes the structural and physicochemical properties of β-d-glucan & enhances its antioxidant potential. Carbohydr. Polym. 2016, 153, 696–702. [Google Scholar] [PubMed]
- Guo, R.; Xu, Z.X.; Wu, S.F.; Li, X.J.; Li, J.N.; Hu, H.; Wu, Y.; Ai, L. Molecular properties and structural characterization of an alkaline extractable arabinoxylan from hull-less barley bran. Carbohydr. Polym. 2019, 218, 250–260. [Google Scholar] [CrossRef]
- Shah, A.; Masoodi, F.A.; Gani, A.; Ashwar, B.A. Effect of γ-irradiation on antioxidant and antiproliferative properties of oat β-glucan. Radiat. Phys. Chem. 2015, 117, 120–127. [Google Scholar] [CrossRef]
- Cory, A.T.; Gangola, M.P.; Anyia, A.; Båga, M.; Chibbar, R.N. Genotype, environment and G × E interaction influence (1, 3; 1, 4)-β-d-glucan fine structure in barley (Hordeum vulgare L.). J. Sci. Food Agric. 2017, 97, 743–752. [Google Scholar] [CrossRef]
- Ma, X.; Dong, L.; He, Y.; Chen, S.W. Effects of ultrasound-assisted H2O2 on the solubilization and antioxidant activity of yeast β-glucan. Ultrason. Sonochem. 2022, 90, 106210. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, T.I.; Hussien, G.M.A.; Mekawey, A.A.; Ghalia, H.H.A.; Youssry, A.A.; El Mokadem, M.T. Facile extraction of nanosized β-glucans from edible mushrooms and their antitumor activities. J. Food Compos. Anal. 2022, 111, 104607. [Google Scholar] [CrossRef]
- Gong, J.J.; Su, Y.; Lei, J.N.; Zhu, S.; He, Y.; Tan, C.P.; Liu, Y.F.; Xu, Y.J. Construction and characterization of pickering emulsion gels stabilized by β-glucans microgel particles. Food Hydrocoll. 2024, 151, 109778. [Google Scholar] [CrossRef]
- Singh, H.; Sodhi, N.S.; Singh, N. Characterisation of starches separated from sorghum cultivars grown in India. Food Chem. 2010, 119, 95–100. [Google Scholar] [CrossRef]
- Yang, X.; Feng, M.Q.; Sun, J.; Xu, X.L.; Zhou, G.H. The influence of flaxseed gum on the retrogradation of maize starch. Int. J. Food Sci. Technol. 2017, 52, 2654–2660. [Google Scholar] [CrossRef]
- Oyeyinka, S.A.; Singh, S.; Amonsou, E.O. Physicochemical properties of starches extracted from bambara groundnut landraces. Starch-Stärke 2017, 69, 1600089. [Google Scholar] [CrossRef]
- Ma, Y.S.; Pan, Y.; Xie, Q.T.; Li, X.M.; Zhang, B.; Chen, H.Q. Evaluation studies on effects of pectin with different concentrations on the pasting, rheological and digestibility properties of corn starch. Food Chem. 2019, 274, 319–323. [Google Scholar] [CrossRef]
- Li, Y.; Shabani, K.I.; Liu, H.; Guo, Q.; Liu, X. Structural, physicochemical and rheological properties of a novel native starch obtained from Rhizoma Gastrodiae. Food Struct. 2020, 25, 100148. [Google Scholar] [CrossRef]
- Aktas-Akyildiz, E.; Sibakov, J.; Nappa, M.; Hytonen, E.; Koksel, H.; Poutanen, K. Extraction of soluble beta-glucan from oat and barley fractions: Process efficiency and dispersion stability. J. Cereal Sci. 2018, 81, 60–68. [Google Scholar] [CrossRef]
- Tangsrianugul, N.; Wongsagonsup, R.; Suphantharika, M. Physicochemical and rheological properties of flour and starch from Thai pigmented rice cultivars. Int. J. Biol. Macromol. 2019, 137, 666–675. [Google Scholar] [CrossRef]
- Janković, B. Thermal characterization and detailed kinetic analysis of Cassava starch thermo-oxidative degradation. Carbohydr. Polym. 2013, 95, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Xu, X.; Zhang, L. Branching structure and chain conformation of water-soluble glucan extracted from Auricularia auricula-judae. J. Agric. Food Chem. 2012, 60, 3498–3506. [Google Scholar] [CrossRef]
Sample | Extractability/% | Purity/% | MC (%) |
---|---|---|---|
BBG | 4.94 ± 0.09 b | 89.06 ± 1.99 b | 10.91 ± 0.29 a |
WBG | 4.47 ± 0.18 b | 82.37 ± 1.23 a | 11.84 ± 0.09 b |
LBG | 3.32 ± 0.24 a | 83.69 ± 1.74 a | 11.85 ± 0.22 b |
Sample | L* | a* | b* | ΔE* |
---|---|---|---|---|
BBG | 72.40 ± 0.07 b | 1.94 ± 0.01 ab | 10.72 ± 0.01 c | 17.31 ± 0.08 a |
WBG | 82.36 ± 1.76 a | 3.29 ± 0.75 a | 11.60 ± 1.05 a | 7.11 ± 0.16 c |
LBG | 83.38 ± 0.01 a | 1.41 ± 0.04 b | 9.37 ± 0.09 b | 6.25 ± 0.01 b |
Sample | Arabinose | Glucose | Xylose |
---|---|---|---|
BBG | 1.47% | 96.75% | 1.78% |
WBG | 1.52% | 96.65% | 1.83% |
LBG | 1.71% | 95.97% | 2.32% |
Sample | Linkage Patterns | Derivative Name | RT | Molar Ratios (%) |
---|---|---|---|---|
BBG | t-Ara(f) | 1,4-di-O-acetyl-2,3,5-tri-O-methyl arabinitol | 6.001 | 1.61 |
t-Glc(p) | 1,5-di-O-acetyl-2,3,4,6-tetra-O-methyl glucitol | 8.800 | 6.97 | |
4-Xyl(p) | 1,4,5-tri-O-acetyl-2,3-di-O-methyl xylitol | 11.409 | 1.25 | |
3-Glc(p) | 1,3,5-tri-O-acetyl-2,4,6-tri-O-methyl glucitol | 11.976 | 17.37 | |
4-Glc(p) | 1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl glucitol | 13.918 | 66.39 | |
3,4-Glc(p) | 1,3,4,5-tetra-O-acetyl-2,6-di-O-methyl glucitol | 16.064 | 1.42 | |
4,6-Glc(p) | 1,4,5,6-tetra-O-acetyl-2,3-di-O-methyl glucitol | 18.153 | 4.99 | |
WBG | t-Ara(f) | 1,4-di-O-acetyl-2,3,5-tri-O-methyl arabinitol | 5.987 | 1.59 |
t-Glc(p) | 1,5-di-O-acetyl-2,3,4,6-tetra-O-methyl glucitol | 8.779 | 6.19 | |
4-Xyl(p) | 1,4,5-tri-O-acetyl-2,3-di-O-methyl xylitol | 11.391 | 1.30 | |
3-Glc(p) | 1,3,5-tri-O-acetyl-2,4,6-tri-O-methyl glucitol | 11.980 | 20.94 | |
4-Glc(p) | 1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl glucitol | 13.961 | 64.50 | |
3,4-Glc(p) | 1,3,4,5-tetra-O-acetyl-2,6-di-O-methyl glucitol | 16.050 | 1.44 | |
4,6-Glc(p) | 1,4,5,6-tetra-O-acetyl-2,3-di-O-methyl glucitol | 18.138 | 4.04 | |
LBG | t-Ara(f) | 1,4-di-O-acetyl-2,3,5-tri-O-methyl arabinitol | 5.983 | 1.32 |
t-Glc(p) | 1,5-di-O-acetyl-2,3,4,6-tetra-O-methyl glucitol | 8.779 | 6.04 | |
4-Xyl(p) | 1,4,5-tri-O-acetyl-2,3-di-O-methyl xylitol | 11.391 | 1.17 | |
3-Glc(p) | 1,3,5-tri-O-acetyl-2,4,6-tri-O-methyl glucitol | 11.976 | 22.23 | |
4-Glc(p) | 1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl glucitol | 13.957 | 66.87 | |
4,6-Glc(p) | 1,4,5,6-tetra-O-acetyl-2,3-di-O-methyl glucitol | 18.142 | 2.37 |
Sample | Mn (kDa) | Mw (kDa) | Polydispersity (Mw/Mn) |
---|---|---|---|
BBG | 24.35 ± 0.17 b | 55.87 ± 0.24 a | 2.36 ± 0.05 a |
WBG | 36.75 ± 0.15 c | 81.59 ± 0.18 c | 2.23 ± 0.07 a |
LBG | 22.54 ± 0.13 a | 65.19 ± 0.08 b | 2.83 ± 0.09 b |
Sample | D10 (μm) | D50 (μm) | D90 (μm) | D(4,3) (μm) | D(3,2) (μm) |
---|---|---|---|---|---|
BBG | 24.90 ± 0.56 a | 112.15 ± 0.55 a | 244.15 ± 1.45 a | 127.75 ± 0.05 a | 56.57 ± 0.68 a |
WBG | 25.60 ± 1.02 a | 112.75 ± 1.15 a | 253.65 ± 4.15 a | 130.60 ± 2.10 a | 55.94 ± 2.09 a |
LBG | 17.21 ± 0.21 b | 87.93 ± 0.16 b | 220.1 ± 1.3 b | 107.70 ± 0.60 b | 40.72 ± 0.46 b |
Sample | PV (cP) | TV (cP) | BD (cP) | FV (cP) | SB (cP) | PT (°C) |
---|---|---|---|---|---|---|
BBG | 296.5 ± 4.95 b | 147 ± 1.41 c | 149.5 ± 3.54 c | 399 ± 1.31 c | 252 ± 2.9 c | 73.38 ± 0.04 c |
WBG | 295 ± 2.46 b | 142 ± 0.73 b | 153 ± 0.73 b | 399.5 ± 0.28 b | 257.5 ± 0.55 b | 72.95 ± 1.76 b |
LBG | 183 ± 1.41 a | 104.5 ± 0.71 a | 78.5 ± 2.12 a | 275 ± 1.41 a | 170.5 ± 0.71 a | 70.18 ± 0.08 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, P.; Kang, X.; Liu, P.; Wu, Z.; Cheng, Y.; Cui, B.; Gao, W. Comparing the Structural and Physicochemical Properties of Highland Barley β-Glucan from Different Sources: A Focus on Color. Foods 2025, 14, 316. https://doi.org/10.3390/foods14020316
Yu P, Kang X, Liu P, Wu Z, Cheng Y, Cui B, Gao W. Comparing the Structural and Physicochemical Properties of Highland Barley β-Glucan from Different Sources: A Focus on Color. Foods. 2025; 14(2):316. https://doi.org/10.3390/foods14020316
Chicago/Turabian StyleYu, Ping, Xuemin Kang, Pengfei Liu, Zhengzong Wu, Yue Cheng, Bo Cui, and Wei Gao. 2025. "Comparing the Structural and Physicochemical Properties of Highland Barley β-Glucan from Different Sources: A Focus on Color" Foods 14, no. 2: 316. https://doi.org/10.3390/foods14020316
APA StyleYu, P., Kang, X., Liu, P., Wu, Z., Cheng, Y., Cui, B., & Gao, W. (2025). Comparing the Structural and Physicochemical Properties of Highland Barley β-Glucan from Different Sources: A Focus on Color. Foods, 14(2), 316. https://doi.org/10.3390/foods14020316