Mycotoxins in Cheese: Assessing Risks, Fungal Contaminants, and Control Strategies for Food Safety
Abstract
:1. Introduction
2. The History of Cheese-Making: Microbial Succession and Its Role in Flavor and Safety
3. The Role of Penicillium and Other Filamentous Fungi in Cheese-Making: From Flavor Development to Spoilage Risks
3.1. Unveiling the Hidden Threats: Fungal Mycotoxins in Cheese and Cutting-Edge Biosensors for Detection
3.2. Aflatoxins: Carcinogenic Contaminants in Cheese Production
3.3. Ochratoxin A: A Salt-Tolerant Mycotoxin in Cheese Maturation
3.4. Other Relevant Mycotoxins: Emerging Risks in Cheese Safety
3.5. Impact of Physicochemical Conditions on Mycotoxin Formation in Cheese
3.6. Temperature, Water Activity, and pH: Key Drivers of Mycotoxin Production in Cheese
3.7. Preventing Mycotoxin Contamination: The Role of Hygiene and Control Strategies
3.8. Pasteurization: A Critical Step to Minimize Mycotoxin Risks in Cheese
3.9. Chemical Preservatives: Enhancing Shelf Life and Preventing Mycotoxin Growth in Cheese
3.10. Biological Control: Harnessing Microbial Antagonists to Combat Mycotoxins in Cheese
3.11. Plant Extracts: Natural Solutions for Mycotoxin Prevention in Cheese
Strategies | Advantages | Disadvantages |
---|---|---|
Sanitation of processing fabrication plant | Reduces contamination risk, improves product safety, enhances shelf life, cost-effective, builds consumer trust [33,45,110]. | Labor-intensive, costly initial investment, prone to human error, limited effectiveness alone, environmental concerns [110]. |
Pasteurization | Destroys pathogens, reduces spoilage microorganisms, ensures consistent safety, widely accepted and regulated [114]. | Energy-intensive, requires precise control, can alter flavor or texture, may not eliminate all contaminants [43]. |
Chemical preservatives | Effective against fungal growth, extend shelf life, easy to apply, well studied and regulated [115]. | Potential health risks with excessive use, synthetic nature may deter consumers, regulated usage levels [42,112] |
Biological control | Natural method, enhances food safety, sustainable, inhibits fungal growth without synthetic chemicals [128] | Requires specific microbial strains, possible flavor alteration, dependent on environmental conditions [129]. |
Natural plant extract | Eco-friendly, reduces fungal growth and mycotoxins, has multiple health benefits, natural alternative to chemicals [103]. | Variable efficacy, dependent on concentration and type, may not fully inhibit contamination, potential sensory changes [57,102]. |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD/FAO. Dairy and Dairy Products. In OECD-FAO Agricultural Outlook 2022–2031; OECD: Paris, France, 2022; Chapter 7; pp. 212–223. [Google Scholar]
- Mousavi Khaneghah, A.; Moosavi, M.; Omar, S.S.; Oliveira, C.A.F.; Karimi-Dehkordi, M.; Fakhri, Y.; Huseyn, E.; Nematollahi, A.; Farahani, M.; Sant’Ana, A.S. The Prevalence and Concentration of Aflatoxin AFM1 among Different Types of Cheeses: A Global Systematic Review, Meta-Analysis, and Meta-Regression. Food Control 2021, 125, 107960. [Google Scholar] [CrossRef]
- Kindstedt, P.S. The Basics of Cheesemaking. Microbiol. Spectr. 2013, 1, 17–38. [Google Scholar] [CrossRef]
- Bockelmann, W. Cheeses with Secondary Cultures: Farmhouse Cheeses; Woodhead Publishing Limited: Sawston, UK, 2004. [Google Scholar]
- Lessard, M.H.; Bélanger, G.; St-Gelais, D.; Labrie, S. The Composition of Camembert Cheese-Ripening Cultures Modulates Both Mycelial Growth and Appearance. Appl. Environ. Microbiol. 2012, 78, 1813–1819. [Google Scholar] [CrossRef] [PubMed]
- Ewert, J.; Claaßen, W.; Glück, C.; Zeeb, B.; Weiss, J. A Non-Invasive Method for the Characterisation of Milk Protein Foams by Image Analysis. Int. Dairy J. 2016, 62, 1–9. [Google Scholar] [CrossRef]
- Amaury, G.; El-Hajjaji, S.; Burteau, S.; Abdoulaye, P.; Pirard, B.; Taminiau, B.; Daube, G.; Sindic, M. Study of the Microbial Diversity of a Panel of Belgian Artisanal Cheeses Associated with Challenge Studies for Listeria Monocytogenes. Food Microbiol. 2021, 100, 103861. [Google Scholar] [CrossRef]
- Dugat-Bony, E.; Garnier, L.; Denonfoux, J.; Ferreira, S.; Sarthou, A.; Bonnarme, P.; Irlinger, F. Highlighting the Microbial Diversity of 12 French Cheese Varieties. Int. J. Food Microbiol. 2016, 238, 265–273. [Google Scholar] [CrossRef]
- Erdogan, A.; Gurses, M.; Sert, S. Isolation of Moulds Capable of Producing Mycotoxins from Blue Mouldy Tulum Cheeses Produced in Turkey. Int. J. Food Microbiol. 2003, 85, 83–85. [Google Scholar] [CrossRef]
- Qiao, Y.; Zhang, K.; Zhang, Z.; Zhang, C.; Sun, Y.; Feng, Z. Fermented Soybean Foods: A Review of Their Functional Components, Mechanism of Action and Factors Influencing Their Health Benefits. Food Res. Int. 2022, 158, 111575. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.G.P.; Cotter, P.D. Filamentous Fungi in Artisanal Cheeses: A Problem to Be Avoided or a Market Opportunity? Heliyon 2023, 9, e15110. [Google Scholar] [CrossRef] [PubMed]
- Munique, L.; Beatriz, C.; Lucia, M.; Vieira, C.; Monteiro-Vitorello, C.B.; De Mello, A.; Magdalena, M.; Müller-Santos, M.; Hiromi, M.; Thie, B.; et al. Strain-Specific Polyketide Synthase Genes of Aspergillus Niger. Int. J. Food Microbiol. 2012, 155, 137–145. [Google Scholar] [CrossRef]
- Bhatnagar, D.; Rajasekaran, K.; Gilbert, M.; Cary, J.W.; Magan, N. Advances in Molecular and Genomic Research to Safeguard Food and Feed Supply from Aflatoxin Contamination. World Mycotoxin J. 2018, 11, 47–72. [Google Scholar] [CrossRef]
- Mahato, D.K.; Kamle, M.; Sharma, B.; Pandhi, S.; Devi, S.; Dhawan, K.; Selvakumar, R.; Mishra, D.; Kumar, A.; Arora, S.; et al. Patulin in Food: A Mycotoxin Concern for Human Health and Its Management Strategies. Toxicon 2021, 198, 12–23. [Google Scholar] [CrossRef]
- Paz, C.; Viscardi, S.; Iturra, A.; Marin, V.; Miranda, F.; Barra, J.; Mendez, I.; Duran, P. Antifungal Effects of Drimane Sesquiterpenoids Isolated from Drimys winteri against Gaeumannomyces graminis Var. Tritici. Appl. Environ. Microbiol. 2020, 86, e01834-20. [Google Scholar] [CrossRef]
- Tadesse, S.; Berhanu, T.; Woldegiorgis, A.Z. Aflatoxin M1 in Milk and Milk Products Marketed by Local and Industrial Producers in Bishoftu Town of Ethiopia. Food Control 2020, 118, 107386. [Google Scholar] [CrossRef]
- Carvajal-Moreno, M.; Vargas-Ortiz, M.; Hernández-Camarillo, E.; Ruiz-Velasco, S.; Rojo-Callejas, F. Presence of Unreported Carcinogens, A Fl Atoxins and Their Hydroxylated Metabolites, in Industrialized Oaxaca Cheese from Mexico City. Food Chem. Toxicol. 2019, 124, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Milani, J. Ecological Conditions a affecting Mycotoxin Production in Cereals: A Review. Vet. Med. 2013, 58, 405–411. [Google Scholar] [CrossRef]
- Mahato, D.K.; Lee, K.E.; Kamle, M.; Devi, S.; Dewangan, K.N.; Kumar, P.; Kang, S.G. Aflatoxins in Food and Feed: An Overview on Prevalence, Detection and Control Strategies. Front. Microbiol. 2019, 10, 2266. [Google Scholar] [CrossRef] [PubMed]
- Pardo, E.; Marín, S.; Ramos, A.J.; Sanchis, V. Ecophysiology of Ochratoxigenic Aspergillus Ochraceus and Penicillium Verrucosum Isolates. Predictive Models for Fungal Spoilage Prevention—A Review. Food Addit. Contam. 2006, 23, 398–410. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Heydt, M.; Magan, N.; Geisen, R. Stress Induction of Mycotoxin Biosynthesis Genes by Abiotic Factors. FEMS Microbiol. Lett. 2008, 284, 142–149. [Google Scholar] [CrossRef]
- Coton, M.; Auffret, A.; Poirier, E.; Debaets, S.; Coton, E.; Dantigny, P. Production and Migration of Ochratoxin A and Citrinin in Comté Cheese by an Isolate of Penicillium verrucosum Selected among Penicillium spp. Mycotoxin Producers in YES Medium. Food Microbiol. 2019, 82, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Casquete, R.; Benito, M.J.; Córdoba, M.d.G.; Ruiz-Moyano, S.; Galván, A.I.; Martín, A. Physicochemical Factors Affecting the Growth and Mycotoxin Production of Penicillium Strains in a Synthetic Cheese Medium. LWT 2018, 89, 179–185. [Google Scholar] [CrossRef]
- Sengun, I.; Yaman, D.; Gonul, S. Mycotoxins and Mould Contamination in Cheese: A Review. World Mycotoxin J. 2008, 1, 291–298. [Google Scholar] [CrossRef]
- Camardo Leggieri, M.; Decontardi, S.; Bertuzzi, T.; Pietri, A.; Battilani, P. Modeling Growth and Toxin Production of Toxigenic Fungi Signaled in Cheese under Different Temperature and Water Activity Regimes. Toxins 2016, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Cramer, B.; Humpf, H. Detection of the Cytotoxic Penitrems A − F in Cheese from the European Single Market by HPLC-MS/MS. J. Agric. Food Chem. 2018, 66, 1264–1269. [Google Scholar] [CrossRef]
- Scott, P.M.; Kennedy, B.P.; Harwig, J.; Blanchfield, B.J. Study of Conditions of Production of Roquefortine and Other Metabolites of Penicillin Roqueforti. Appl. Environ. Microbiol. 1977, 33, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Decontardi, S.; Mauro, A.; Lima, N.; Battilani, P. Survey of Penicillia Associated with Italian Grana Cheese. Int. J. Food Microbiol. 2017, 246, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Zhang, Y.; Sun, C.; Huang, Y.; Zhang, J.; Zheng, X.; Yu, T. Characterization and Overexpression of RHO1 from Cryptococcus Laurentii ZJU10 Activates CWI Signaling Pathway on Enhancing the Inhibition of Blue Mold on Pears. Int. J. Food Microbiol. 2018, 278, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rank, C.; Nielsen, K.F.; Larsen, T.O.; Varga, J.; Samson, R.A.; Frisvad, J.C. Distribution of Sterigmatocystin in Filamentous Fungi. Fungal Biol. 2011, 115, 406–420. [Google Scholar] [CrossRef]
- Rizzotto, F.; Khalife, M.; Hou, Y.; Chaix, C.; Lagarde, F.; Scaramozzino, N.; Vidic, J. Recent Advances in Electrochemical Biosensors for Food Control. Micromachines 2023, 14, 1412. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Iordache, F.; Stanca, L.; Mitranescu, E.; Stoica, L.B.; Geicu, O.I.; Bilteanu, L.; Serban, A.I. Biosensors for Food Mycotoxin Determination: A Comparative and Critical Review. Chemosensors 2024, 12, 92. [Google Scholar] [CrossRef]
- Benkerroum, N. Mycotoxins in Dairy Products: A Review. Int. Dairy J. 2016, 62, 63–75. [Google Scholar] [CrossRef]
- Sarmast, E.; Fallah, A.A.; Jafari, T.; Mousavi, A. Impacts of Unit Operation of Cheese Manufacturing on the Aflatoxin M1 Level: A Global Systematic Review and Meta-Analysis. LWT 2021, 148, 111772. [Google Scholar] [CrossRef]
- Morandi, S.; Cremonesi, P.; Arioli, S.; Stocco, G.; Ascanio, V.D.; Mora, D.; Brasca, M. Effect of Using Mycotoxin-Detoxifying Agents in Dairy Cattle Feed on Natural Whey Starter Biodiversity. J. Dairy Sci. 2022, 105, 6513–6526. [Google Scholar] [CrossRef]
- Griffin, S.; Magro, M.; Farrugia, J.; Falzon, O.; Camilleri, K.; Valdramidis, V.P. Towards the Development of a Sterile Model Cheese for Assessing the Potential of Hyperspectral Imaging as a Non-Destructive Fungal Detection Method. J. Food Eng. 2021, 306, 110639. [Google Scholar] [CrossRef]
- Calasso, M.; Ercolini, D.; Mancini, L.; Stellato, G.; Minervini, F.; Di, R.; De Angelis, M.; Gobbetti, M. Relationships among House, Rind and Core Microbiotas during Manufacture of Traditional Italian Cheeses at the Same Dairy Plant. Food Microbiol. 2016, 54, 115–126. [Google Scholar] [CrossRef]
- Anelli, P.; Haidukowski, M.; Epifani, F.; Teresa, M.; Moretti, A.; Logrieco, A.; Susca, A. Fungal Mycobiota and Mycotoxin Risk for Traditional Artisan Italian Cave Cheese. J. Food Microbiol. 2019, 78, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Cheeseman, K.; Ropars, J.; Renault, P.; Dupont, J.; Gouzy, J.; Branca, A.; Abraham, A.L.; Ceppi, M.; Conseiller, E.; Debuchy, R.; et al. Multiple Recent Horizontal Transfers of a Large Genomic Region in Cheese Making Fungi. Nat. Commun. 2014, 5, 2876. [Google Scholar] [CrossRef]
- Vacheyrou, M.; Normand, A.; Guyot, P.; Cassagne, C.; Piarroux, R.; Bouton, Y. Cultivable Microbial Communities in Raw Cow Milk and Potential Transfers from Stables of Sixteen French Farms. Int. J. Food Microbiol. 2011, 146, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Pattono, D.; Grosso, A.; Stocco, P.P.; Pazzi, M.; Zeppa, G. Survey of the Presence of Patulin and Ochratoxin A in Traditional Semi-Hard Cheeses. Food Control 2013, 33, 54–57. [Google Scholar] [CrossRef]
- Taniwaki, M.H.; Hocking, A.D.; Pitt, J.I.; Fleet, G.H. Growth and Mycotoxin Production by Fungi in Atmospheres Containing 80% Carbon Dioxide and 20% Oxygen. Int. J. Food Microbiol. 2010, 143, 218–225. [Google Scholar] [CrossRef]
- Hayaloglu, A.A. Cheese: Microbiology of Cheese; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780081005965. [Google Scholar]
- Franciosi, E.; Settanni, L.; Cavazza, A.; Poznanski, E. Biodiversity and Technological Potential of Wild Lactic Acid Bacteria from Raw Cows’ Milk. Int. Dairy J. 2009, 19, 3–11. [Google Scholar] [CrossRef]
- Guinee, T.P. Pasteurized Processed Cheese Products, 4th ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2021; Volume 3, ISBN 9780128187661. [Google Scholar]
- Lund, F.; Filtenborg, O.; Frisvad, J.C. Associated Mycoflora of Cheese. Food Microbiol. 1995, 12, 173–180. [Google Scholar] [CrossRef]
- Montagna, M.T.; Santacroce, M.P.; Spilotros, G.; Napoli, C.; Minervini, F.; Papa, A.; Dragoni, I. Investigation of Fungal Contamination in Sheep and Goat Cheeses in Southern Italy. Mycopathologia 2004, 158, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Finne, C.; Wasteson, Y.; Brendehaug, J.; Skaar, I. Mould Contaminants on Jarlsberg and Norvegia Cheese Blocks from Four Factories. Int. J. Food Microbiol. 2001, 70, 21–27. [Google Scholar]
- Taniwaki, M.H.; Hocking, A.D.; Pitt, J.I.; Fleet, G.H. Growth and Mycotoxin Production by Food Spoilage Fungi under High Carbon Dioxide and Low Oxygen Atmospheres. Int. J. Food Microbiol. 2009, 132, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Detobel, F.; Eghbali, H.; De Bruyne, S.; Terryn, H.; Gardeniers, H.; Desmet, G. Effect of the Presence of an Ordered Micro-Pillar Array on the Formation of Silica Monoliths. J. Chromatogr. A 2009, 1216, 7360–7367. [Google Scholar] [CrossRef] [PubMed]
- Finoli, C.; Vecchio, A.; Galli, A.; Dragoni, I. Roquefortine C Occurrence in Blue Cheese. J. Food Prot. 2001, 64, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Barrios, M.J.; Medina, L.M.; Lopez, M.C.; Jordano, R. Fungal Biota Isolated from Spanish Cheeses. J. Food Saf. 1998, 18, 151–157. [Google Scholar] [CrossRef]
- Bailly, J.D.; Querin, A.; Le Bars-Bailly, S.; Benard, G.; Guerre, P. Citrinin Production and Stability in Cheese. J. Food Prot. 2002, 65, 1317–1321. [Google Scholar] [CrossRef] [PubMed]
- Iha, M.H.; Barbosa, C.B.; Okada, I.A.; Trucksess, M.W. Aflatoxin M1 in Milk and Distribution and Stability of Aflatoxin M1 during Production and Storage of Yoghurt and Cheese. Food Control 2013, 29, 1–6. [Google Scholar] [CrossRef]
- Taylor, P.; Cakmakci, S.; Gurses, M.; Hayaloglu, A.A.; Cetin, B.; Sekerci, P. Food Additives & Contaminants: Part A Mycotoxin Production Capability of Penicillium Roqueforti in Strains Isolated from Mould-Ripened Traditional Turkish Civil Cheese. Food Addit. Contam. Part A 2014, 32, 37–41. [Google Scholar] [CrossRef]
- El-Fadaly, H.M.; El-Kadi, S.M.; Hamad, M.N.; Habib, A.A. Isolation and Identification of Egyptian Ras Cheese (Romy) Contaminating Fungi during Ripening Period. J. Microbiol. Res. 2015, 5, 1–10. [Google Scholar] [CrossRef]
- Camardo Leggieri, M.; Decontardi, S.; Battilani, P. Modelling the Sporulation of Some Fungi Associated with Cheese, at Different Temperature and Water Activity Regimes. Int. J. Food Microbiol. 2018, 278, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Delavenne, E.; Mounier, J.; Déniel, F.; Barbier, G.; Blay, G. Biodiversity of Antifungal Lactic Acid Bacteria Isolated from Raw Milk Samples from Cow, Ewe and Goat over One-Year Period. Int. J. Food Microbiol. 2012, 155, 185–190. [Google Scholar] [CrossRef]
- Creppy, E.E. Update of Survey, Regulation and Toxic Effects of Mycotoxins in Europe. Toxicol. Lett. 2002, 127, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, C.; Foglia, P.; Guarino, C.; Marzioni, F.; Nazzari, M.; Samperi, R.; Lagan, A. Aflatoxin M1 Determination in Cheese by Liquid Chromatography—Tandem Mass Spectrometry. J. Chromatogr. A 2006, 1135, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Rico-Munoz, E.; Samson, R.A.; Houbraken, J. Mould Spoilage of Foods and Beverages: Using the Right Methodology. Food Microbiol. 2019, 81, 51–62. [Google Scholar] [CrossRef]
- Mohammadi, S.; Behmaram, K.; Keshavarzi, M.; Saboori, S. A Fl Atoxin M1 Contamination in Different Iranian Cheese Types: A Systematic Review and Meta-Analysis. Int. Dairy J. 2022, 133, 105437. [Google Scholar] [CrossRef]
- Aminul, M.; Roy, S.; Nabi, A.; Solaiman, S.; Rahman, M.; Huq, M.; Amin, N.; Ahmed, N. Microbiological Quality Assessment of Milk at Di Ff Erent Stages of the Dairy Value Chain in a Developing Country Setting. Int. J. Food Microbiol. 2018, 278, 11–19. [Google Scholar] [CrossRef]
- Biancardi, A.; Piro, R.; Galaverna, G.; Asta, C.D. A Simple and Reliable Liquid Chromatography-Tandem Mass Spectrometry Method for Determination of Ochratoxin A in Hard Cheese. Int. J. Food Sci. Nutr. 2013, 64, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Dall, C.; De Dea, J.; Galaverna, G.; Dossena, A. The Occurrence of Ochratoxin A in Blue Cheese. Food Chem. 2008, 106, 729–734. [Google Scholar] [CrossRef]
- Passer, E.; Vallone, L.; Hymery, N.; Coton, M.; Coton, E. Occurrence of Roquefortine C, Mycophenolic Acid and a Fl Atoxin M1 Mycotoxins in Blue-Veined Cheeses. Food Control 2015, 47, 634–640. [Google Scholar] [CrossRef]
- Maragos, C.M. Application of Ambient Ionization Mass Spectrometry to Detect the Mycotoxin Roquefortine C in Blue Cheese. Food Anal. Methods 2022, 15, 751–760. [Google Scholar] [CrossRef]
- Anti, I.; Zivan, J. Presence of a Fl Atoxin M1 in White and Hard Cheese Samples from Serbia. Food Control 2015, 50, 111–117. [Google Scholar] [CrossRef]
- Scott, P.M. Toxins of Penicillium Species Used in Cheese Manufacture. J. Food Prot. 1981, 44, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi, Y.; Nikousefat, Z.; Karami, N. Occurrence, Seasonal Variation and Risk Assessment of Exposure to a Fl Atoxin M1 in Iranian Traditional Cheeses. Food Control 2017, 79, 356–362. [Google Scholar] [CrossRef]
- Elkak, A.; El Atat, O.; Habib, J.; Abbas, M. Occurrence of Aflatoxin M1 in Cheese Processed and Marketed in Lebanon. Food Control 2012, 25, 140–143. [Google Scholar] [CrossRef]
- Pascual, S.; Rico, J.R.; De Cal, A.; Melgarejo, P. Ecophysiological Factors Affecting Growth, Sporulation and Survival of the Biocontrol Agent Penicillium Oxalicum. Mycopathologia 1997, 139, 43–50. [Google Scholar] [CrossRef]
- Izzo, L.; Mikušová, P.; Lombardi, S.; Sulyok, M.; Ritieni, A. Analysis of Mycotoxin and Secondary Metabolites in Commercial and Traditional Slovak Cheese Samples. Toxins 2022, 14, 134. [Google Scholar] [CrossRef] [PubMed]
- Ezekiel, C.N.; Oyedele, O.A.; Kraak, B.; Ayeni, K.I.; Sulyok, M.; Houbraken, J.; Krska, R. Fungal Diversity and Mycotoxins in Low Moisture Content Ready-To-Eat Foods in Nigeria. Front. Microbiol. 2020, 11, 615. [Google Scholar] [CrossRef] [PubMed]
- Hossain, Z.; Busman, M.; Maragos, C.M. Immunoassay Utilizing Imaging Surface Plasmon Resonance for the Detection of Cyclopiazonic Acid (CPA) in Maize and Cheese. Anal. Bioanal. Chem. 2019, 411, 3543–3552. [Google Scholar] [CrossRef] [PubMed]
- Varlamova, R.M.; Medyantseva, E.P.; Khamidullina, R.R.; Budnikov, H.C. Amperometric Tyrosinase Biosensors Based on Nanomaterial- Modified Electrodes for Aflatoxin M1. J. Anal. Chem. 2019, 74, 59–67. [Google Scholar] [CrossRef]
- Cort, M.; Wong-Gonz, E.; Granados-Chinchilla, F. Distribution, Stability, and Protein Interactions of A Fl Atoxin M1 in Fresh Cheese. Food Control 2017, 73, 581–586. [Google Scholar] [CrossRef]
- Deveci, O. Changes in the Concentration of a X Atoxin M1 during Manufacture and Storage of White Pickled Cheese. Food Control 2007, 18, 1103–1107. [Google Scholar] [CrossRef]
- Duarte, S.C.; Almeida, A.M.; Teixeira, A.S.; Pereira, A.L.; Falcão, A.C.; Pena, A.; Lino, C.M. A Fl Atoxin M1 in Marketed Milk in Portugal: Assessment of Human and Animal Exposure. Food Control 2013, 30, 411–417. [Google Scholar] [CrossRef]
- Zhao, C.; Ji, Y.; Shao, Y.; Jiang, X.; Zhang, H. Novel Molecularly Imprinted Polymer Prepared by Nanoattapulgite as Matrix for Selective Solid-Phase Extraction of Diethylstilbestrol. J. Chromatogr. A 2009, 1216, 7546–7552. [Google Scholar] [CrossRef] [PubMed]
- Zebib, H.; Abate, D.; Woldegiorgis, A.Z. Exposure and Health Risk Assessment of Aflatoxin M1 in Raw Milk and Cottage Cheese in Adults in Ethiopia. Foods 2023, 12, 817. [Google Scholar] [CrossRef]
- Kamkar, A.; Karim, G.; Aliabadi, F.S.; Khaksar, R. Fate of Aflatoxin M1 in Iranian White Cheese Processing. Food Chem. Toxicol. 2008, 46, 2236–2238. [Google Scholar] [CrossRef] [PubMed]
- Girgin, G. Exposure of Newborns to Aflatoxin M1 and B1 from Mothers’ Breast Milk in Ankara, Turkey. Food Chem. Toxicol. 2010, 48, 314–319. [Google Scholar] [CrossRef]
- Flores-Flores, M.E.; Lizarraga, E.; Adela, L.; Gonz, E. Presence of Mycotoxins in Animal Milk: A Review. Food Control 2015, 53, 163–176. [Google Scholar] [CrossRef]
- Muñoz, K.; Campos, V.; Blaszkewicz, M.; Vega, M.; Alvarez, A.; Neira, J.; Degen, G.H. Exposure of Neonates to Ochratoxin A: First Biomonitoring Results in Human Milk (Colostrum) from Chile. Mycotoxin Res. 2010, 26, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Chiara, A.; Giammarco, M.; Di, L.; Fusaro, I.; Gramenzi, A.; Formigoni, A.; Vignola, G.; Lambertini, L. Distribution of Aflatoxin M1 during Grana Padano Cheese Production from Naturally Contaminated Milk. Food Chem. 2009, 113, 595–599. [Google Scholar] [CrossRef]
- Fernández-Bodega, M.A.; Mauriz, E.; Gómez, A.; Martín, J.F. Proteolytic Activity, Mycotoxins and Andrastin A in Penicillium Roqueforti Strains Isolated from Cabrales, Valdeón and Bejes—Tresviso Local Varieties of Blue-Veined Cheeses. Int. J. Food Microbiol. 2009, 136, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Anfossi, L.; Baggiani, C.; Giovannoli, C.; Arco, G.D.; Passini, C.; Giraudi, G. Occurrence of a Fl Atoxin M1 in Italian Cheese: Results of a Survey Conducted in 2010 and Correlation with Manufacturing, Production Season, Milking Animals, and Maturation of Cheese. Food Control 2012, 25, 125–130. [Google Scholar] [CrossRef]
- Scott, W.J. Water Relations of Food Spoilage Microorganisms. Adv. Food Res. 1957, 7, 83–127. [Google Scholar] [CrossRef]
- Andrade, P.D.; Laine, J.; Caldas, E.D. A in Breast Milk by High-Performance Liquid Chromatography/Fluorescence after Liquid—Liquid Extraction with Low Temperature Purification (LLE-LTP). J. Chromatogr. A 2013, 1304, 61–68. [Google Scholar] [CrossRef]
- Peng, W.; Marchal, J.L.M.; Poel, A.F.B. Van Der Strategies to Prevent and Reduce Mycotoxins for Compound Feed Manufacturing. Anim. Feed Sci. Technol. 2018, 237, 129–153. [Google Scholar] [CrossRef]
- Alshannaq, A.; Yu, J. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cudjoe, E.; Vuckovic, D.; Pawliszyn, J. Direct Monitoring of Ochratoxin A in Cheese with Solid-Phase Microextraction Coupled to Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2009, 1216, 7505–7509. [Google Scholar] [CrossRef]
- Ben Taheur, F.; Mansour, C.; Kouidhi, B.; Chaieb, K. Use of Lactic Acid Bacteria for the Inhibition of Aspergillus Flavus and Aspergillus Carbonarius Growth and Mycotoxin Production. Toxicon 2019, 166, 15–23. [Google Scholar] [CrossRef]
- Sherif, S.O.; Salama, E.E.; Abdel-Wahhab, M.A. Mycotoxins and Child Health: The Need for Health Risk Assessment. Int. J. Hyg. Environ. Health 2009, 212, 347–368. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, M.; Aldred, D.; Magan, N. Environmental Factors and Weak Organic Acid Interactions Have Differential Effects on Control of Growth and Ochratoxin A Production by Penicillium Verrucosum Isolates in Bread. Int. J. Food Microbiol. 2005, 98, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Hadi, A.; Schmidt-Heydt, M.; Parra, R.; Geisen, R.; Magan, N. A Systems Approach to Model the Relationship between Aflatoxin Gene Cluster Expression, Environmental Factors, Growth and Toxin Production by Aspergillus Flavus. J. R. Soc. Interface 2012, 9, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Paterson, R.R.M.; Lima, N. Further Mycotoxin Effects from Climate Change. Food Res. Int. 2011, 44, 2555–2566. [Google Scholar] [CrossRef]
- Altafini, A.; Roncada, P.; Guerrini, A.; Sonfack, G.M.; Fedrizzi, G.; Caprai, E. Occurrence of Ochratoxin a in Different Types of Cheese Offered for Sale in Italy. Toxins 2021, 13, 540. [Google Scholar] [CrossRef] [PubMed]
- Pietri, A.; Leni, G.; Mulazzi, A.; Bertuzzi, T. Ochratoxin A and Sterigmatocystin in Long-Ripened Grana Cheese: Occurrence, Wheel Rind Contamination and Effectiveness of Cleaning Techniques on Grated Products. Toxins 2022, 14, 306. [Google Scholar] [CrossRef]
- Medina, A.; Akbar, A.; Baazeem, A.; Rodriguez, A.; Magan, N. Climate Change, Food Security and Mycotoxins: Do We Know Enough? Fungal Biol. Rev. 2017, 31, 143–154. [Google Scholar] [CrossRef]
- Kim, N.H.; Ryang, J.H.; Lee, B.S.; Kim, C.T.; Rhee, M.S. Continuous Ohmic Heating of Commercially Processed Apple Juice Using Five Sequential Electric Fi Elds Results in Rapid Inactivation of Alicyclobacillus Acidoterrestris Spores. Int. J. Food Microbiol. 2017, 246, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Tronchoni, J.; Rodrigues, A.J.; Curiel, J.A.; Morales, P.; Gonzalez, R. Hypoxia and Iron Requirements Are the Main Drivers in Transcriptional Adaptation of Kluyveromyces Lactis during Wine Aerobic Fermentation. Int. J. Food Microbiol. 2017, 246, 40–49. [Google Scholar] [CrossRef]
- Metwally, M.M.; El-Sayed, A.A.; Mehriz, A.M.; Abu Sree, Y.H. Sterigmatocystin—Incidence, Fate and Production by A Versicolor in Ras Cheese. Mycotoxin Res. 1997, 13, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Noori, N.; Yahyaraeyat, R.; Khosravi, A.; Atefi, P.; Akhondzadeh Basti, A.; Akrami, F.; Bahonar, A.; Misaghi, A. Effect of Zataria Multiflora Boiss. Essential Oil on Growth and Citrinin Production by Penicillium Citrinum in Culture Media and Mozzarella Cheese. J. Food Saf. 2012, 32, 445–451. [Google Scholar] [CrossRef]
- Gervats, P.; Molin, P.; Grajek, W.; Bensoussan, M. Influence of the Water Activity of a Solid Substrate on the Growth Rate and Sporogenesis of Filamentous Fungi. Biotechnol. Bioeng. 1988, 31, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Parra, R.; Aldred, D.; Archer, D.B.; Magan, N. Water Activity, Solute and Temperature Modify Growth and Spore Production of Wild Type and Genetically Engineered Aspergillus Niger Strains. Enzyme Microb. Technol. 2004, 35, 232–237. [Google Scholar] [CrossRef]
- Lima, N.; Battilani, P.; Decontardi, S. Polyphasic Identi Fi Cation of Penicillia and Aspergilli Isolated from Italian Grana Cheese. Food Microbiol. 2018, 73, 137–149. [Google Scholar] [CrossRef]
- Liewen, M.B.; Marth, E.H. Growth and Inhibition of Microorganisms in the Presence of Sorbic Acid: A Review. J. Food Prot. 1985, 48, 364–375. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, L.; Ross, R.P.; Hill, C. Potential of Bacteriocin-Producing Lactic Acid Bacteria for Improvements in Food Safety and Quality. Biochimie 2002, 84, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Cheong, E.Y.L.; Sandhu, A.; Jayabalan, J.; Kieu Le, T.T.; Nhiep, N.T.; My Ho, H.T.; Zwielehner, J.; Bansal, N.; Turner, M.S. Isolation of Lactic Acid Bacteria with Antifungal Activity against the Common Cheese Spoilage Mould Penicillium Commune and Their Potential as Biopreservatives in Cheese. Food Control 2014, 46, 91–97. [Google Scholar] [CrossRef]
- Ashiq, S. Natural Occurrence of Mycotoxins in Food and Feed: Pakistan Perspective. Compr. Rev. Food Sci. Food Saf. 2015, 14, 159–175. [Google Scholar] [CrossRef]
- Prandini, A.; Tansini, G.; Sigolo, S.; Filippi, L.; Laporta, M.; Piva, G. On the Occurrence of Aflatoxin M1 in Milk and Dairy Products. Food Chem. Toxicol. 2009, 47, 984–991. [Google Scholar] [CrossRef]
- Kousta, M.; Mataragas, M.; Skandamis, P.; Drosinos, E.H. Prevalence and Sources of Cheese Contamination with Pathogens at Farm and Processing Levels. Food Control 2010, 21, 805–815. [Google Scholar] [CrossRef]
- Rankin, S.A.; Christiansen, A.; Lee, W.; Banavara, D.S.; Lopez-Hernandez, A. Invited Review: The Application of Alkaline Phosphatase Assays for the Validation of Milk Product Pasteurization. J. Dairy Sci. 2010, 93, 5538–5551. [Google Scholar] [CrossRef]
- Stiles, M.E. Biopreservation by Lactic Acid Bacteria. Antonie Leeuwenhoek 1996, 70, 331–345. [Google Scholar] [CrossRef]
- Ledenbach, L.H.; Marshall, R.T. Microbiological Spoilage of Dairy Products. In Compendium of the Microbiological Spoilage of Foods and Beverages; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Var, I.; Erginkaya, Z.; Güven, M.; Kabak, B. Effects of Antifungal Agent and Packaging Material on Microflora of Kashar Cheese during Storage Period. Food Control 2006, 17, 132–136. [Google Scholar] [CrossRef]
- Haq, H.U.; Altunay, N.; Tuzen, M.; Boczkaj, G. Quality Control of Cheese Samples for the Presence of Natamycin Preservative—A Natural Deep Eutectic Solvent (NADES) Based Extraction Coupled with HPLC. J. Food Compos. Anal. 2024, 129, 106101. [Google Scholar] [CrossRef]
- Ademola, O.; Saha, N.; Liverpool-Tasie, L.S.O.; Obadina, A.; Wu, F. Mycotoxin Reduction through Lactic Acid Fermentation: Evidence from Commercial Ogi Processors in Southwest Nigeria. Food Control 2021, 121, 107620. [Google Scholar] [CrossRef]
- Gallo, A.; Fancello, F.; Ghilardelli, F.; Zara, S. Effects of Several Commercial or Pure Lactic Acid Bacteria Inoculants on Fermentation and Mycotoxin Levels in High-Moisture Corn Silage. Anim. Feed. Sci. Technol. 2022, 286, 115256. [Google Scholar] [CrossRef]
- Galasong, Y.; Sogin, J.H.; Worobo, R.W. Natural Glycolipids Inhibits Certain Yeasts and Lactic Acid Bacteria Pertinent to the Spoilage of Shelf Stable Beverages. Food Control 2023, 146, 109544. [Google Scholar] [CrossRef]
- Salah-Abbès, J.B. Efficacy of Lactic Acid Bacteria Supplementation against Fusarium Graminearum Growth in Vitro and Inhibition of Zearalenone Causing Inflammation and Oxidative Stress in Vivo. Toxicon 2021, 202, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Lynch, K.M.; Pawlowska, A.M.; Brosnan, B.; Coffey, A.; Zannini, E.; Furey, A.; McSweeney, P.L.H.; Waters, D.M.; Arendt, E.K. Application of Lactobacillus Amylovorus as an Antifungal Adjunct Toextend the Shelf-Life of Cheddar Cheese. Int. Dairy J. 2014, 34, 167–173. [Google Scholar] [CrossRef]
- Lasram, S.; Zemni, H.; Hamdi, Z.; Chenenaoui, S.; Houissa, H. Industrial Crops & Products Antifungal and Antiaflatoxinogenic Activities of Carum carvi L., Coriandrum sativum L. Seed Essential Oils and Their Major Terpene Component against Aspergillus Flavus. Ind. Crops Prod. 2019, 134, 11–18. [Google Scholar] [CrossRef]
- Philippe, S.; Farougou, S.; Alitonou, G.; Djenontin, S.T. Chemical Composition and Antifungal Activity of Essential Oil of Fresh Leaves of Ocimum gratissimum from Benin against Six Mycotoxigenic Fungi Isolated from a Traditional Cheese wagashi. Int. Res. J. Biol. Sci. 2014, 1, 22–27. [Google Scholar]
- Muñoz-Tebar, N.; Gonz, E.J.; Mar, T.; Santos, A. Biological Activity of Extracts from Aromatic Plants as Control. Foods 2021, 10, 1576. [Google Scholar] [CrossRef] [PubMed]
- Gandomi, H.; Misaghi, A.; Basti, A.A.; Bokaei, S.; Khosravi, A.; Abbasifar, A.; Javan, A.J. Effect of Zataria Multiflora Boiss. Essential Oil on Growth and Aflatoxin Formation by Aspergillus Flavus in Culture Media and Cheese. Food Chem. Toxicol. 2009, 47, 2397–2400. [Google Scholar] [CrossRef] [PubMed]
- Mohajeri, F.A.; Misaghi, A.; Gheisari, H.; Basti, A.A.; Amiri, A.; Ghalebi, S.R.; Derakhshan, Z.; Tafti, R.D. The Effect of Zataria Multiflora Boiss Essential Oil on the Growth and Citrinin Production of Penicillium Citrinum in Culture Media and Cheese. Food Chem. Toxicol. 2018, 118, 691–694. [Google Scholar] [CrossRef] [PubMed]
Type of Cheese | Origin | Country | Fungal Strains | Reference |
---|---|---|---|---|
Handmade, semi-hard, and mature | Storehouse | Spain | Alternaria, Aspergillus, Fusarium, Geotrichum, Penicillium sp. | [23] |
Blue | Supermarket | Italy | Penicillium glabrum, P. roqueforti, and P. cyclopium | [51] |
Goat, Saint Marcellin, and Soigno | Supermarket | France | Penicillium citrinum and P. expansum | [52] |
Blue moldy Tulum | Supermarket | Turkey | Penicilliumroqueforti | [24] |
Nalžovy | Artisan | Czech Republic | Penicillium nalgiovens | [53] |
Camembert cheese-ripening | Storage | Canada | Penicillium camemberti and G. candidum | [54] |
Handmade and semi-hard | Supermarket | Italy | Aspergillus versicolor, A. niger, P. camemberti, P. citrinum, P. crustosum, P. nalgiovense, P. nordicum and P. roqueforti. | [41] |
Hard | Supermarket | Serbia | Aspergillus flavus, A. parasiticus | [5] |
Civil | Market | Turkey | Penicilliumroqueforti | [55] |
Blue-veined cheese | Supermarket | Denmark, France, Italy, Ireland, Netherlands and Scotland | Penicillium roqueforti | [51] |
Ras cheese (romy) | Market | Egypt | Aspergillus ochraceus, A. alliaceus, A. oryzae, A. niger, A. nidulans, A. flavus, A. glaucus, A. flavipes, and Penicillium sp. | [56] |
Grana cheese | Storehouse | Italy | Aspergillus versicolor, P. camemberti, P. citrinum, P. crustosum, P. nalgiovense, P. nordicum, P. roqueforti, and P. verrucosum | [25] |
Cave cheese | Storehouse | Italy | Penicilliumgravinicasei | [28] |
Grana cheese | Storehouse | Italy | Aspergillus flavus, P. crustosum, P. verrucosum, and P. solitum | [57] |
Type of Cheese | Mycotoxin | Country | References |
---|---|---|---|
Blue cheese | ROQ-C; MPA; PAT, OTA; and PR | Denmark, France, Italy, Ireland, Netherlands, Turkey, and Scotland, USA | [9,22,27,64,65,66,67] |
Semi-hard | OTA; PAT, AFM1 | Italy, Serbia | [41,68] |
Goat, Saint Marcellin, Soigno | CIT | France | [69] |
Civil | ROQ-C; MPA; PAT | Turkey | [68] |
Traditional | AFM1 | Iran | [70] |
Ras | STC | Egypt | [30,36,59] |
Cave | OTA, CIT, PAT, STC or AFB1 | Italy | [30,38,59] |
Grana | OTA; ROQ-C; PR toxin; PA; CIT | Italy | [25,56,57] |
Camembert | CPA; AFM1 | Canada, Lebanon | [2,30,52,71] |
Cheese | AFM1; CPA | Brazil, Lebanon | [9,72] |
Cheese | Enniatin A/B | Slovakia, Nigeria | [73,74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aranda, C.; Rodriguez, R.; Fernández-Baldo, M.A.; Durán, P. Mycotoxins in Cheese: Assessing Risks, Fungal Contaminants, and Control Strategies for Food Safety. Foods 2025, 14, 351. https://doi.org/10.3390/foods14030351
Aranda C, Rodriguez R, Fernández-Baldo MA, Durán P. Mycotoxins in Cheese: Assessing Risks, Fungal Contaminants, and Control Strategies for Food Safety. Foods. 2025; 14(3):351. https://doi.org/10.3390/foods14030351
Chicago/Turabian StyleAranda, Camila, Rodrigo Rodriguez, Martín A. Fernández-Baldo, and Paola Durán. 2025. "Mycotoxins in Cheese: Assessing Risks, Fungal Contaminants, and Control Strategies for Food Safety" Foods 14, no. 3: 351. https://doi.org/10.3390/foods14030351
APA StyleAranda, C., Rodriguez, R., Fernández-Baldo, M. A., & Durán, P. (2025). Mycotoxins in Cheese: Assessing Risks, Fungal Contaminants, and Control Strategies for Food Safety. Foods, 14(3), 351. https://doi.org/10.3390/foods14030351