Integrating Metagenomic and Culture-Based Techniques to Detect Foodborne Pathogens and Antimicrobial Resistance Genes in Malaysian Produce
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Processing
2.2. Culture of Foodborne Pathogens
2.3. Bacterial Spiking for Mock Community Creation
2.4. Boiled Cell DNA Extraction and PCR
2.5. gDNA Extraction
2.6. DNA Library Preparation and Sequencing
2.7. Bioinformatics Analysis
3. Results
3.1. Quality Control of Raw Reads
3.2. Mock Community
3.2.1. Comparison Between Metagenomic and Culture-Based Results
3.2.2. Antimicrobial-Resistant Gene (ARG) Profiles
3.3. Metagenomic Analysis of Microbial Community
3.3.1. Microbial Composition in Vegetables
3.3.2. Microbial Composition in Meats
3.3.3. Microbial Composition in Fruits
3.4. Comparative Analysis of Foodborne Pathogens in Vegetables, Meat, and Fruits Using Metagenomics and Culture Methods
3.4.1. Vegetables
3.4.2. Meats
3.4.3. Fruits
3.5. Antimicrobial Resistance Gene (ARG) Profiles
3.5.1. High ARG Abundance
3.5.2. Low ARG Abundance
3.5.3. Fluoroquinolone Resistance
4. Discussion
4.1. Mock Community
4.1.1. Metagenomic and Culture-Based Methods
4.1.2. ARG Profiles
4.2. Metagenomic Analysis of Microbial Community
4.2.1. Microbial Composition in Vegetables
4.2.2. Microbial Composition in Meats
4.2.3. Microbial Composition in Fruits
4.3. Comparison Between Metagenomic and Culture-Based Results
4.4. Foodborne Pathogen Detection Consistency
4.5. Antimicrobial Resistance Gene (ARG) Profiles
4.5.1. Variability of ARGs by Sample Type
4.5.2. Resistance Trends in Specific Antibiotic Classes
4.5.3. Implications and Future Considerations
4.6. Novelty and Impact on Malaysian Food Safety Research
4.7. Limitations and Future Directions
4.8. Shotgun Metagenomics for Foodborne Pathogen Detection in Malaysia
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Food Safety. Available online: https://www.who.int/news-room/fact-sheets/detail/food-safety (accessed on 5 March 2023).
- FDA Foodborne Pathogens. Available online: http://www.cdc.gov/ecoli/ (accessed on 29 May 2024).
- CDC About Food Safety. Available online: https://www.cdc.gov/food-safety/about/index.html (accessed on 16 July 2024).
- Thung, T.Y.; Lee, E.; Wai, G.Y.; Pui, C.F.; Kuan, C.H.; Premarathne, J.M.K.J.K.; Nurzafirah, M.; Tan, C.W.; Malcolm, T.T.H.; Ramzi, O.S.B.; et al. A Review of Culture-Dependent and Molecular Methods for Detection of Salmonella in Food Safety. Food Res. 2019, 3, 622–627. [Google Scholar] [CrossRef]
- Foddai, A.C.G.; Grant, I.R. Methods for Detection of Viable Foodborne Pathogens: Current State-of-Art and Future Prospects. Appl. Microbiol. Biotechnol. 2020, 104, 4281–4288. [Google Scholar] [CrossRef]
- Bobrinetskiy, I.; Radovic, M.; Rizzotto, F.; Vizzini, P.; Jaric, S.; Pavlovic, Z.; Radonic, V.; Nikolic, M.V.; Vidic, J. Advances in Nanomaterials-Based Electrochemical Biosensors for Foodborne Pathogen Detection. Nanomaterials 2021, 11, 2700. [Google Scholar] [CrossRef]
- Lewis, E.; Hudson, J.A.; Cook, N.; Barnes, J.D.; Haynes, E. Next-Generation Sequencing as a Screening Tool for Foodborne Pathogens in Fresh Produce. J. Microbiol. Methods 2020, 171, 105840. [Google Scholar] [CrossRef]
- Zhang, B.; Asad Rahman, M.; Liu, J.; Huang, J.; Yang, Q. Real-Time Detection and Analysis of Foodborne Pathogens via Machine Learning Based Fiber-Optic Raman Sensor. Measurement 2023, 217, 113121. [Google Scholar] [CrossRef]
- Zhou, J.; Yin, L.; Dong, Y.; Peng, L.; Liu, G.; Man, S.; Ma, L. CRISPR-Cas13a Based Bacterial Detection Platform: Sensing Pathogen Staphylococcus Aureus in Food Samples. Anal. Chim. Acta 2020, 1127, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Ogunremi, D.; Dupras, A.A.; Naushad, S.; Gao, R.; Duceppe, M.O.; Omidi, K.; Márquez, I.G.; Huang, H.; Goodridge, L.; Lévesque, R.C.; et al. A New Whole Genome Culture-Independent Diagnostic Test (WG-CIDT) for Rapid Detection of Salmonella in Lettuce. Front. Microbiol. 2020, 11, 602. [Google Scholar] [CrossRef] [PubMed]
- Buytaers, F.E.; Saltykova, A.; Denayer, S.; Verhaegen, B.; Vanneste, K.; Roosens, N.H.C.; Piérard, D.; Marchal, K.; De Keersmaecker, S.C.J. A Practical Method to Implement Strain-Level Metagenomics-Based Foodborne Outbreak Investigation and Source Tracking in Routine. Microorganisms 2020, 8, 1191. [Google Scholar] [CrossRef]
- Buytaers, F.E.; Saltykova, A.; Mattheus, W.; Verhaegen, B.; Roosens, N.H.C.; Vanneste, K.; Laisnez, V.; Hammami, N.; Pochet, B.; Cantaert, V.; et al. Application of a Strain-Level Shotgun Metagenomics Approach on Food Samples: Resolution of the Source of a Salmonella Foodborne Outbreak. Microb. Genom. 2021, 7, 547. [Google Scholar] [CrossRef]
- Kuan, C.H.; Lim, L.W.K.; Ting, T.W.; Rukayadi, Y.; Ahmad, S.H.; Wan Mohamed Radzi, C.W.J.; Thung, T.Y.; Ramzi, O.B.; Chang, W.S.; Loo, Y.Y.; et al. Simulation of Decontamination and Transmission of Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes during Handling of Raw Vegetables in Domestic Kitchens. Food Control 2017, 80, 395–400. [Google Scholar] [CrossRef]
- Saw, S.H.; Mak, J.L.; Tan, M.H.; Teo, S.T.; Tan, T.Y.; Cheow, M.Y.K.; Ong, C.A.; Chen, S.N.; Yeo, S.K.; Kuan, C.S.; et al. Detection and Quantification of Salmonella in Fresh Vegetables in Perak, Malaysia. Food Res. 2020, 4, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Kuan, C.H.; Wong, W.C.; Pui, C.F.; Mahyudin, N.A.; Tang, J.Y.H.; Nishibuchi, M.; Radu, S. Prevalence and Quantification of Listeria monocytogenes in Beef Offal at Retail Level in Selangor, Malaysia. Braz. J. Microbiol. 2013, 44, 1169–1172. [Google Scholar] [CrossRef]
- Loo, Y.Y.; Puspanadan, S.; Goh, S.G.; Kuan, C.H.; Chang, W.S.; Lye, Y.L.; John, Y.H.T.; Rukayadi, Y.; Yoshitsugu, N.; Nishibuchi, M.; et al. Quantitative Detection and Characterization of Shiga Toxin-Producing Escherichia coli O157 and Non-O157 in Raw Vegetables by MPN-PCR in Malaysia. Int. Food Res. J. 2013, 20, 3313–3317. [Google Scholar]
- Haslinda, W.H.; Tang, J.Y.H.; Tuan Zainazor, T.C.; Mohd Khairi Hilman, A.L.; Wan Norezah, W.M.; Irdawaty, T.; Noor Hafizatulakmal, H. Prevalence and Antimicrobial Susceptibility of Non-Typhoidal Salmonella (NTS) from Salad Vegetables at Farms and Retail Markets in Terengganu, Malaysia. Food Res. 2022, 6, 274–286. [Google Scholar] [CrossRef]
- Khalid, M.I.; Tang, J.Y.H.; Baharuddin, N.H.; Rahman, N.S.; Rahimi, N.F.; Radu, S. Prevalence, Antibiogram, and Cdt Genes of Toxigenic Campylobacter jejuni in Salad Style Vegetables (Ulam) at Farms and Retail Outlets in Terengganu. J. Food Prot. 2015, 78, 65–71. [Google Scholar] [CrossRef]
- Rahman, M.; Alam, M.U.; Luies, S.K.; Kamal, A.; Ferdous, S.; Lin, A.; Sharior, F.; Khan, R.; Rahman, Z.; Parvez, S.M.; et al. Contamination of Fresh Produce with Antibiotic-Resistant Bacteria and Associated Risks to Human Health: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 360. [Google Scholar] [CrossRef] [PubMed]
- Thung, T.Y.; Mazlan, N.; Lee, E.; New, C.Y.; Tan, C.W.; Son, R.; Rinai, K.R.; Anua, S.M.; Mastor, N.N. Antimicrobial Resistance Profile of Salmonella Present in Organic Farming in Selangor, Malaysia. Food Res. 2020, 4, 2176–2180. [Google Scholar] [CrossRef]
- Kaur, M. Exco Member: 23 Food Poisoning Cases Involving 900 Victims Reported in Perak. Star, 15 September 2022; pp. 1–2. [Google Scholar]
- Asrin, R.K.; Ismail, L. Food Poisoning Cases in Perak at Alarming Level. New Straits Times 2016, 1–2. [Google Scholar]
- Zulkeffeli, Z.; Mui’zz Morhalim, A. Thematic Report | Perak State Economy & Its Potentials; Malaysian Industrial Development Finance Berhad: Kuala Lumpur, Malaysia, 2022. [Google Scholar]
- Jusoh, A.; Sauman Sabin, Y.; Abdullah, F. Analysis of the Prospect of Heritage Tourism in Kinta Valley, Perak (Malaysia) Article in Creativity and Innovation Management. Int. J. Innov. Creat. Change 2020, 11, 418–440. [Google Scholar]
- Anand, S.; Mangano, E.; Barizzone, N.; Bordoni, R.; Sorosina, M.; Clarelli, F.; Corrado, L.; Boneschi, F.M.; D’Alfonso, S.; De Bellis, G. Next Generation Sequencing of Pooled Samples: Guideline for Variants’ Filtering. Sci. Rep. 2016, 6, 33735. [Google Scholar] [CrossRef]
- Dong-ju Kim, Relation of Microbial Biomass to Counting Units for Pseudomonas aeruginosa. Afr. J. Microbiol. Res. 2012, 6, 4620–4622. [CrossRef]
- Shams, S.; Ghorbanalizadgan, M.; Haj Mahmmodi, S.; Piccirillo, A. Evaluation of a Multiplex PCR Assay for the Identification of Campylobacter jejuni and Campylobacter coli. Infect. Epidemiol. Med. 2017, 3, 6–8. [Google Scholar] [CrossRef]
- Kuan, C.-H.; Rukayadi, Y.; Ahmad, S.H.; Wan Mohamed Radzi, C.W.J.; Thung, T.-Y.; Premarathne, J.M.K.J.K.; Chang, W.-S.; Loo, Y.-Y.; Tan, C.-W.; Ramzi, O.B.; et al. Comparison of the Microbiological Quality and Safety between Conventional and Organic Vegetables Sold in Malaysia. Front. Microbiol. 2017, 8, 1–10. [Google Scholar] [CrossRef]
- Thong, K.L.; Hoe, S.L.L.; Puthucheary, S.D.; Yasin, R.M. Detection of Virulence Genes in Malaysian Shigella Species by Multiplex PCR Assay. BMC Infect Dis. 2005, 5, 8. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. In Proceedings of the Bioinformatics; Oxford University Press: Oxford, UK, 2018; Volume 34, pp. i884–i890. [Google Scholar]
- Siegwald, L.; Caboche, S.; Even, G.; Viscogliosi, E.; Audebert, C.; Chabé, M. The Impact of Bioinformatics Pipelines on Microbiota Studies: Does the Analytical “Microscope” Affect the Biological Interpretation? Microorganisms 2019, 7, 393. [Google Scholar] [CrossRef]
- Kibegwa, F.M.; Bett, R.C.; Gachuiri, C.K.; Stomeo, F.; Mujibi, F.D. A Comparison of Two DNA Metagenomic Bioinformatic Pipelines While Evaluating the Microbial Diversity in Feces of Tanzanian Small Holder Dairy Cattle. Biomed. Res. Int. 2020, 2020, 2348560. [Google Scholar] [CrossRef]
- Weiss, S.; Xu, Z.Z.; Peddada, S.; Amir, A.; Bittinger, K.; Gonzalez, A.; Lozupone, C.; Zaneveld, J.R.; Vázquez-Baeza, Y.; Birmingham, A. Normalization and Microbial Differential Abundance Strategies Depend upon Data Characteristics. Microbiome 2017, 5, 27. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-Based Genome Alignment and Genotyping with HISAT2 and HISAT-Genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Buchfink, B.; Reuter, K.; Drost, H.G. Sensitive Protein Alignments at Tree-of-Life Scale Using DIAMOND. Nat. Methods 2021, 18, 366–368. [Google Scholar] [CrossRef]
- Li, H. Minimap2: Pairwise Alignment for Nucleotide Sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef]
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes De Novo Assembler. Curr. Protoc. Bioinform. 2020, 70, e102. [Google Scholar] [CrossRef] [PubMed]
- Sanders, H.L. Marine Benthic Diversity: A Comparative Study. Am. Nat. 1968, 102, 243–282. [Google Scholar] [CrossRef]
- Gweon, H.S.; Shaw, L.P.; Swann, J.; De Maio, N.; Abuoun, M.; Niehus, R.; Hubbard, A.T.M.; Bowes, M.J.; Bailey, M.J.; Peto, T.E.A.; et al. The Impact of Sequencing Depth on the Inferred Taxonomic Composition and AMR Gene Content of Metagenomic Samples. Environ. Microbiomes 2019, 14, 7. [Google Scholar] [CrossRef]
- Jang, J.; Hur, H.G.; Sadowsky, M.J.; Byappanahalli, M.N.; Yan, T.; Ishii, S. Environmental Escherichia coli: Ecology and Public Health Implications—A review. J. Appl. Microbiol. 2017, 123, 570–581. [Google Scholar] [CrossRef]
- Mahfouz, N.; Ferreira, I.; Beisken, S.; von Haeseler, A.; Posch, A.E. Large-Scale Assessment of Antimicrobial Resistance Marker Databases for Genetic Phenotype Prediction: A Systematic Review. J. Antimicrob. Chemother. 2020, 75, 3099–3108. [Google Scholar] [CrossRef]
- Azli, B.; Razak, M.N.; Omar, A.R.; Mohd Zain, N.A.; Abdul Razak, F.; Nurulfiza, I. Metagenomics Insights into the Microbial Diversity and Microbiome Network Analysis on the Heterogeneity of Influent to Effluent Water. Front. Microbiol. 2022, 13, 779196. [Google Scholar] [CrossRef]
- Hanafiah, A.; Sukri, A.; Yusoff, H.; Chan, C.S.; Hazrin-Chong, N.H.; Salleh, S.A.; Neoh, H.M. Insights into the Microbiome and Antibiotic Resistance Genes from Hospital Environmental Surfaces: A Prime Source of Antimicrobial Resistance. Antibiotics 2024, 13, 127. [Google Scholar] [CrossRef]
- Frankel, G.; Shaw, R.K.; Pink, D.; Berger, C.N.; Hand, P. Fresh Produce as a Potential Vector for Bacterial Human Pathogens. Microb. Biotechnol. 2009, 2, 595–597. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Fu, L.; Chen, C.; Sun, W.; Tian, Y.; Xie, H. Characteristics and Rapid Diagnosis of Pectobacterium carotovorum Ssp. Associated with Bacterial Soft Rot of Vegetables in China. Plant Dis. 2020, 104, 1158–1166. [Google Scholar] [CrossRef] [PubMed]
- Agyemang, P.A.; Kabir, M.N.; Kersey, C.M.; Dumenyo, C.K. The Bacterial Soft Rot Pathogens, Pectobacterium carotovorum and P. atrosepticum, Respond to Different Classes of Virulence-Inducing Host Chemical Signals. Horticulturae 2020, 6, 13. [Google Scholar] [CrossRef]
- Zaczek-Moczydłowska, M.A.; Fleming, C.C.; Young, G.K.; Campbell, K.; O’Hanlon, R. Pectobacterium and Dickeya Species Detected in Vegetables in Northern Ireland. Eur. J. Plant Pathol. 2019, 154, 635–647. [Google Scholar] [CrossRef]
- Ruiz-Roldán, L.; Rojo-Bezares, B.; Lozano, C.; López, M.; Chichón, G.; Torres, C.; Sáenz, Y. Occurrence of Pseudomonas spp. In Raw Vegetables: Molecular and Phenotypical Analysis of Their Antimicrobial Resistance and Virulence-Related Traits. Int. J. Mol. Sci. 2021, 22, 12626. [Google Scholar] [CrossRef]
- Ambreetha, S.; Marimuthu, P.; Mathee, K.; Balachandar, D. Rhizospheric and Endophytic Pseudomonas aeruginosa in Edible Vegetable Plants Share Molecular and Metabolic Traits with Clinical Isolates. J. Appl. Microbiol. 2022, 132, 3226–3248. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Yamada, K.; Sasaki, M.; Nakamura, Y.; Yamaguchi, T. Pseudomonas Otitidis Bacteremia in an Immunocompromised Patient with Cellulitis: Case Report and Literature Review. BMC Infect. Dis. 2023, 23, 883. [Google Scholar] [CrossRef]
- Dubey, A.; Siddiqui, T.; Kar, M.; Sahu, C.; Singh Patel, S. A Rare Case Report of Pseudomonas oryzihabitans Bacteremia from North India in a Terminally Ill Patient. J. Adv. Microbiol. 2022, 22, 1–4. [Google Scholar] [CrossRef]
- Ojo, A.E.; Ajibola, A.T.; Adebajo, S.O.; Oloyede, A.R.; Ojo, O.A.; Chibundu, T.Z. Characterization of Carbapenem-Resistant Enterobacteriaceae in Fresh Vegetables. Niger. J. Biotechnol. 2023, 39, 97–105. [Google Scholar] [CrossRef]
- Gupta, P.J.; Trivedi, M.J.; Soni, H.P. Enterobacter Cloacae PNE2 as Promising Plant Growth Promoting Bacterium, Isolated from the Kadi Vegetable Market Waste, Gujarat. Biosci. Biotechnol. Res. Asia 2022, 19, 773–786. [Google Scholar] [CrossRef]
- Abd El-Ghany, W.A. A Review on Aeromoniasis in Poultry: A Bacterial Disease of Zoonotic Nature. J. Infect. Dev. Ctries. 2023, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Tian, Y.; Chen, S.; Xu, X.; Wang, H. Characterization of the Spoilage Heterogeneity of Aeromonas Isolated from Chilled Chicken Meat: In vitro and in situ. LWT—Food Sci. Technol. 2022, 162, 113470. [Google Scholar] [CrossRef]
- Jawher, I.M.; Hassan, M.G. Antibiotics Resistance Patterns of Pseudomonas Aeruginosa Isolated from Meat at Mosul City Retails. Iraqi J. Vet. Sci. 2023, 37, 363–367. [Google Scholar] [CrossRef]
- Watson, S.C.; Furbeck, R.A.; Fernando, S.C.; Chaves, B.D.; Sullivan, G.A. Spoilage Pseudomonas Survive Common Thermal Processing Schedules and Grow in Emulsified Meat during Extended Vacuum Storage. J. Food Sci. 2023, 88, 2162–2167. [Google Scholar] [CrossRef]
- Wang, X.Y.; Xie, J. Characterization of Metabolite, Genome and Volatile Organic Compound Changes Provides Insights into the Spoilage and Cold Adaptive Markers of Acinetobacter johnsonii XY27. LWT—Food Sci. Technol. 2022, 162, 113453. [Google Scholar] [CrossRef]
- WHO. Bacterial Priority Pathogens List; WHO: Geneva, Switzerland, 2024. [Google Scholar]
- Carvalho, M.; Bento de Carvalho, T.; Barbosa, J.B.; Teixeira, P.; Bergogne-Bérézin, E. Acinetobacter. In Encyclopedia of Food Safety; Elsevier: Amsterdam, The Netherlands, 2024; pp. 58–67. [Google Scholar]
- Koo, O.K.; Kim, S.M.; Kang, S.H. Antimicrobial Potential of Leuconostoc Species against E. Coli O157:H7 in Ground Meat. J. Korean Soc. Appl. Biol. Chem. 2015, 58, 831–838. [Google Scholar] [CrossRef]
- Raimondi, S.; Candeliere, F.; Amaretti, A.; Costa, S.; Vertuani, S.; Spampinato, G.; Rossi, M. Phylogenomic Analysis of the Genus Leuconostoc. Front. Microbiol. 2022, 13, 897656. [Google Scholar] [CrossRef]
- Özdemir, Z. Identification of Enterobacteriaceae Members and Fluorescent Pseudomonads Associated with Bacterial Rind Necrosis and Rot of Melon in Turkey. Eur. J. Plant Pathol. 2021, 160, 797–812. [Google Scholar] [CrossRef]
- Al-Kharousi, Z.S.; Guizani, N.; Al-Sadi, A.M.; Al-Bulushi, I.M.; Shaharoona, B. Hiding in Fresh Fruits and Vegetables: Opportunistic Pathogens May Cross Geographical Barriers. Int. J. Microbiol. 2016, 2016, 4292417. [Google Scholar] [CrossRef] [PubMed]
- Ranawat, B.; Mishra, S.; Singh, A. Enterobacter hormaechei (MF957335) Enhanced Yield, Disease and Salinity Tolerance in Tomato. Arch. Microbiol. 2021, 203, 2659–2667. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.D.; Lee, S.I.; Hnasko, R.; McGarvey, J.A. Biocontrol of Escherichia coli O157:H7 by Enterobacter Asburiae AEB30 on Intact Cantaloupe Melons. Microb. Biotechnol. 2024, 17, e14437. [Google Scholar] [CrossRef] [PubMed]
- Ababneh, Q.; Al-Rousan, E.; Jaradat, Z. Fresh Produce as a Potential Vehicle for Transmission of Acinetobacter baumannii. Int. J. Food Contam. 2022, 9, 5. [Google Scholar] [CrossRef]
- Cerezales, M.; Xanthopoulou, K.; Ertel, J.; Nemec, A.; Bustamante, Z.; Seifert, H.; Gallego, L.; Higgins, P.G. Identification of Acinetobacter Seifertii Isolated from Bolivian Hospitals. J. Med. Microbiol. 2018, 67, 834–837. [Google Scholar] [CrossRef]
- Kumar, A.; Augustine, D.; Mehta, A.; Dinesh, K.R.; Viswam, D.; Philip, R. Leuconostoc garlicum: An Unusual Pathogen in the Era of Vancomycin Therapy. Indian J. Chest Dis. Allied Sci. 2022, 54, 127–130. [Google Scholar] [CrossRef]
- Leonard, S.R.; Mammel, M.K.; Lacher, D.W.; Elkins, C.A. Strain-Level Discrimination of Shiga Toxin-Producing Escherichia coli in Spinach Using Metagenomic Sequencing. PLoS ONE 2016, 11, e0167870. [Google Scholar] [CrossRef]
- Kocurek, B.; Ramachandran, P.; Grim, C.J.; Morin, P.; Howard, L.; Ottesen, A.; Timme, R.; Leonard, S.R.; Rand, H.; Strain, E.; et al. Application of Quasimetagenomics Methods to Define Microbial Diversity and Subtype Listeria monocytogenes in Dairy and Seafood Production Facilities. Microbiol. Spectr. 2023, 11, e01482-23. [Google Scholar] [CrossRef] [PubMed]
- Leonard, S.R.; Mammel, M.K.; Lacher, D.W.; Elkins, C.A. Application of Metagenomic Sequencing to Food Safety: Detection of Shiga Toxin-Producing Escherichia coli on Fresh Bagged Spinach. Appl. Environ. Microbiol. 2015, 81, 8183–8191. [Google Scholar] [CrossRef]
- Chiu, C.Y.; Miller, S.A. Clinical Metagenomics. Nat. Rev. Genet. 2019, 20, 341–355. [Google Scholar] [CrossRef]
- Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Hilbert, F.; Lindqvist, R.; et al. Whole Genome Sequencing and Metagenomics for Outbreak Investigation, Source Attribution and Risk Assessment of Food-Borne Microorganisms. EFSA J. 2019, 17, 1–78. [Google Scholar] [CrossRef]
- Srinivas, M.; O’Sullivan, O.; Cotter, P.D.; van Sinderen, D.; Kenny, J.G. The Application of Metagenomics to Study Microbial Communities and Develop Desirable Traits in Fermented Foods. Foods 2022, 11, 3297. [Google Scholar] [CrossRef]
- Batool, M.; Galloway-Peña, J. Clinical Metagenomics—Challenges and Future Prospects. Front. Microbiol. 2023, 14, 1186424. [Google Scholar] [CrossRef] [PubMed]
- Threlfall, J. New Research on Antimicrobial Resistance in Foodborne Pathogens. In Advances in Microbial Food Safety; Sofos, J., Ed.; Woodhead Publishing: Sawston, UK, 2013; pp. 134–156. ISBN 978-0-85709-438-4. [Google Scholar]
- Costa, M.M.; Cardo, M.; Soares, P.; D’anjo, M.C.; Leite, A. Multi-Drug and β-Lactam Resistance in Escherichia coli and Food-Borne Pathogens from Animals and Food in Portugal, 2014–2019. Antibiotics 2022, 11, 90. [Google Scholar] [CrossRef]
- Yankova, N.; Demchenkov, N.; Kosheleva, A.; Morozov, A.; Sorokovikova, T.; Morozova, A.; Mgebrishvili, S.; Dorenskaya, A. Cephalosporin Antibiotic Resistance. Arch. Euromedica 2023, 13, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Barcenilla, C.; Álvarez-Ordóñez, A.; López, M.; Alvseike, O.; Prieto, M. Microbiological Safety and Shelf-Life of Low-Salt Meat Products—A Review. Foods 2022, 11, 2331. [Google Scholar] [CrossRef]
- Yadav, B.; Spinelli, A.C.; Govindan, B.N.; Tsui, Y.Y.; McMullen, L.M.; Roopesh, M.S. Cold Plasma Treatment of Ready-to-Eat Ham: Influence of Process Conditions and Storage on Inactivation of Listeria innocua. Food Res. Int. 2019, 123, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Muchaamba, F.; Stoffers, H.; Blase, R.; von Ah, U.; Tasara, T. Potassium Lactate as a Strategy for Sodium Content Reduction without Compromising Salt-Associated Antimicrobial Activity in Salami. Foods 2021, 10, 114. [Google Scholar] [CrossRef]
- da Costa, R.J.; Voloski, F.L.S.; Mondadori, R.G.; Duval, E.H.; Fiorentini, Â.M. Preservation of Meat Products with Bacteriocins Produced by Lactic Acid Bacteria Isolated from Meat. J. Food Qual. 2019, 2019, 4726510. [Google Scholar] [CrossRef]
- Guarddon, M.; Miranda, J.M.; Vázquez, B.I.; Cepeda, A.; Franco, C.M. Direct Quantification and Distribution of Tetracycline-Resistant Genes in Meat Samples by Real-Time Polymerase Chain Reaction. J. Food Sci. 2012, 77, M372–M376. [Google Scholar] [CrossRef]
- Puah, S.M.; Chua, K.H.; Jin Ai, M.A. Prevalence of Virulent Resistant Salmonella Enterica Strains from Sushi and Sashimi Samples in Malaysia. Trop. Biomed. 2016, 33, 476–485. [Google Scholar]
- Rybak, B.; Potrykus, M.; Plenis, A.; Wolska, L. Raw Meat Contaminated with Cephalosporin-Resistant Enterobacterales as a Potential Source of Human Home Exposure to Multidrug-Resistant Bacteria. Molecules 2022, 27, 4151. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Radzi, W.; Fadzil, M. Antimicrobial Resistance of Listeria Monocytogenes and Salmonella Enteritidis Isolated from Vegetable Farms and Retail Markets in Malaysia. Int. Food Res. J. 2017, 24, 1831–1839. [Google Scholar]
- Subramaniam, R.; Jambari, N.N.; Hao, K.C.; Abidin, U.F.U.Z.; Mahmud, N.K.; Rashid, A. Prevalence of Antimicrobial-Resistant Bacteria in HACCP Facilities. Food Saf. 2023, 11, 54–61. [Google Scholar] [CrossRef]
- Heide, L. The Aminocoumarins: Biosynthesis and Biology. Nat. Prod. Rep. 2009, 26, 1241–1250. [Google Scholar] [CrossRef]
- Wang, Q.; Lei, C.; Cheng, H.; Yang, X.; Huang, Z.; Chen, X.; Ju, Z.; Zhang, H.; Wang, H. Widespread Dissemination of Plasmid-Mediated Tigecycline Resistance Gene Tet (X4) in Enterobacterales of Porcine Origin. Microbiol. Spectr. 2022, 10, e01615-22. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.Y.; Jiang, Y.; Wu, H.; Liu, J.; Gu, Q.Y.; Wang, Z.Y.; Sun, L.; Jiao, X.; Li, Q.; Wang, J. Distribution and Spread of Tigecycline Resistance Gene Tet(X4) in Escherichia Coli from Different Sources. Front. Cell. Infect. Microbiol. 2024, 14, 1399732. [Google Scholar] [CrossRef]
- Wei, B.; Kang, M. In Vitro Activity of Fosfomycin against Campylobacter Isolates from Poultry and Wild Birds. PLoS ONE 2018, 13, e0200853. [Google Scholar] [CrossRef]
- O’Bryan, C.A.; Crandall, P.G.; Ricke, S.C. Chapter 6—Antimicrobial Resistance in Foodborne Pathogens. In Food and Feed Safety Systems and Analysis; Ricke, S.C., Atungulu, G.G., Rainwater, C.E., Park, S.H., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 99–115. ISBN 978-0-12-811835-1. [Google Scholar]
- Soon, J.M.; Singh, H.; Baines, R. Foodborne Diseases in Malaysia: A Review. Food Control 2011, 22, 823–830. [Google Scholar] [CrossRef]
- Philip, A. Food Safety in Malaysia. In Proceedings of the The 30th CMAAO General Assembly and 51st Council Meeting; Ensuring Food Safety: An Important Challenge Today; 2015. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC4829767/ (accessed on 1 December 2024).
- Yap, M.; Ercolini, D.; Álvarez-Ordóñez, A.; O’toole, P.W.; O’sullivan, O.; Cotter, P.D. Next-Generation Food Research: Use of Meta-Omic Approaches for Characterizing Microbial Communities Along the Food Chain. Annu. Rev. Food Sci. Technol. 2022, 13, 361–384. [Google Scholar] [CrossRef]
Bacterial spp. | Enrichment Phase | Plating Phase | Colony Morphology | ||
---|---|---|---|---|---|
Media Broth | Incubation Conditions | Agar | Incubation Conditions | ||
Campylobacter | Bolton | Anaerobic chamber with microaerobic gas-generating pouch (microaerobic atmosphere (10% CO2, 5% O2, and 85% N2)), 42 °C, 48 h | BFC | Anaerobic chamber with anaerobic gas-generating pouch, 42 °C, 48 h | Gray and flat with or without green hue |
Escherichia coli | EC | 42 °C, 48 h | EMB | 42 °C, 48 h | Green metallic sheen with dark center |
Listeria | BLEB | 30 °C, 48 h | PALCAM | 30 °C, 48 h | Gray-green with black halo |
Salmonella | BPW; after 24 h incubation, aliquoted 1 mL into 9 mL RV broth | BPW at 37 °C, 24 h RV at 37 °C, 24 h | XLD | 37 °C, 24 h | Pink or red with black center |
Shigella | Shigella broth | Anaerobic chamber with anaerobic gas-generating pouch, 42 °C, 20 h | MAC | 35 °C, 20 h | Pale or colorless |
Targeted Gene | Primer Sequence 5′ to 3′ | Amplicon Size | Reference |
---|---|---|---|
Campylobater spp. (cadF) | cadF-F: TTG AAG GTA ATT TAG ATA TG cadF-R: CTA ATA CCT AAA GTT GAA AC | 400 bp | [27] |
C. jejuni (hipO) | hipO-F: GAA GAG GGT TTG GGT GGT G hipO-R: AGC TAG CTT CGC ATA ATA ACT TG | 735 bp | [27] |
E. coli (uidA) | uidA-F: TAT GGA ATT TCG CCG ATT TT uidA-R: TGT TTG CCT CCC TGC TGC GG | 166 bp | [27] |
Listeria (16S rRNA) | U1: CTC CAT AAA GGT GAC CCT LI1: CAG CMG CCG CGG TAA TWC | 938 bp | [28] |
L. monocytogenes (hlyA) | LM1: CCT AAG ACG CCA ATC GAA LM2: AAG CGC TTG CAA CTG CTC | 702 bp | [28] |
Salmonella (random fragment) | ST11: GCC AAC CAT TGC TAA ATT GGC GCA ST15: GGT AGA AAT TCC CAG CGG GTA CTG G | 429 bp | [28] |
S. Typhimurium (fliC) | Fli15: CGG TGT TGC CCA GGT TGG TAA T Typ04: ACT GGT AAA GAT GGC T | 620 bp | [28] |
Shigella spp. (set1A) | Shig1: TGG AAA AAC TCA GTG CCT CT Shig2: CCA GTC CGT AAA TTC ATT CT | 309 bp | [29] |
S. flexneri (ipaH) | ShET1A-F: TCA CGC TAC CAT CAA AGA ShET1A-R: TAT CCC CCT TTG GTG GTA | 423 bp | [29] |
Location | Sample | Total Number of Sequenced Reads |
---|---|---|
Kampar | Cabbage | 34,642,353 |
Spinach | 37,129,548 | |
Lettuce | 39,626,617 | |
Gopeng | Cabbage | 47,778,289 |
Spinach | 46,992,789 | |
Lettuce | 41,050,773 | |
Ipoh | Cabbage | 36,873,538 |
Spinach | 36,372,744 | |
Lettuce | 32,172,185 | |
Kampar | Raw Chicken Meat | 31,217,785 |
Cooked Chicken Meat | 31,364,518 | |
Deli Meat | 25,829,333 | |
Gopeng | Raw Chicken Meat | 32,086,390 |
Cooked Chicken Meat | 38,798,640 | |
Deli Meat | 50,473,078 | |
Ipoh | Raw Chicken Meat | 36,587,717 |
Cooked Chicken Meat | 64,105,433 | |
Deli Meat | 29,364,161 | |
Kampar | Honeydew | 35,030,608 |
Papaya | 38,853,325 | |
Watermelon | 41,443,821 | |
Gopeng | Honeydew | 41,913,941 |
Papaya | 33,164,209 | |
Watermelon | 29,072,423 | |
Ipoh | Honeydew | 31,864,779 |
Papaya | 30,559,471 | |
Watermelon | 25,019,535 |
Detection Method/Sample | Foodborne Pathogen | ||||
---|---|---|---|---|---|
Escherichia | Campylobacter | Listeria | Salmonella | Shigella | |
Metagenomics | |||||
Vegetable | + | + | / | + | + |
Meat | + | + | / | + | + |
Fruit | + | + | + | + | + |
Culture and PCR | |||||
Vegetable | + | + | + | + | + |
Meat | + | + | + | + | + |
Fruit | + | + | + | + | + |
Detected with Culture | Not Detected with Culture | |
---|---|---|
Detected with Metagenomics | 34 [True Positive (TP)] | 1 [False Positive (FP)] |
Not Detected with Metagenomics | 16 [False Negative (FN)] | 84 [True Negative (TN)] |
Sample | ARGs of E. coli ATCC BAA-197 | ||||||
---|---|---|---|---|---|---|---|
TEM-12 | sul1 | AAC(3)-IIe | SCO-1 | APH(3′)-Ia | aadA1 | catA | |
Vegetable | / | + | + | + | + | / | / |
Meat | / | + | + | + | + | + | / |
Fruit | / | + | + | + | + | + | / |
Sample | ARGs of S. Typhimurium ATCC 700408 | |||
---|---|---|---|---|
sul1 | aadA16 | floR | CARB-2 | |
Vegetable | + | + | + | / |
Meat | + | + | + | / |
Fruit | + | / | + | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quek, J.J.W.; Wong, J.L.; Tan, J.L.; Yeo, C.C.; Saw, S.H. Integrating Metagenomic and Culture-Based Techniques to Detect Foodborne Pathogens and Antimicrobial Resistance Genes in Malaysian Produce. Foods 2025, 14, 352. https://doi.org/10.3390/foods14030352
Quek JJW, Wong JL, Tan JL, Yeo CC, Saw SH. Integrating Metagenomic and Culture-Based Techniques to Detect Foodborne Pathogens and Antimicrobial Resistance Genes in Malaysian Produce. Foods. 2025; 14(3):352. https://doi.org/10.3390/foods14030352
Chicago/Turabian StyleQuek, Jerrald Jia Weai, Jun Leong Wong, Joon Liang Tan, Chew Chieng Yeo, and Seow Hoon Saw. 2025. "Integrating Metagenomic and Culture-Based Techniques to Detect Foodborne Pathogens and Antimicrobial Resistance Genes in Malaysian Produce" Foods 14, no. 3: 352. https://doi.org/10.3390/foods14030352
APA StyleQuek, J. J. W., Wong, J. L., Tan, J. L., Yeo, C. C., & Saw, S. H. (2025). Integrating Metagenomic and Culture-Based Techniques to Detect Foodborne Pathogens and Antimicrobial Resistance Genes in Malaysian Produce. Foods, 14(3), 352. https://doi.org/10.3390/foods14030352